
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1992 Proceedings International Conference on Information Systems
(ICIS)

1992

MODELING REQUIREMENTS FOR
FUTURE: ISSUES AND IMPLEMENTATION
CONSIDERATIONS
Pentti Marttiin
University of Jyvaskylli

Kalle Lyytinen
University of Jyvaskylli

Matti Rossi
University of Jyvaskylli

Veli-Pekka Tahvanainen
University of Jyvaskylli

Kari Smolander
University of Jyvaskylli

See next page for additional authors

Follow this and additional works at: http://aisel.aisnet.org/icis1992

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1992 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Marttiin, Pentti; Lyytinen, Kalle; Rossi, Matti; Tahvanainen, Veli-Pekka; Smolander, Kari; and Tolvanen, Juha-Pekka, "MODELING
REQUIREMENTS FOR FUTURE: ISSUES AND IMPLEMENTATION CONSIDERATIONS" (1992). ICIS 1992 Proceedings. 33.
http://aisel.aisnet.org/icis1992/33

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1992%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1992?utm_source=aisel.aisnet.org%2Ficis1992%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1992%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1992%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1992?utm_source=aisel.aisnet.org%2Ficis1992%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1992/33?utm_source=aisel.aisnet.org%2Ficis1992%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Authors
Pentti Marttiin, Kalle Lyytinen, Matti Rossi, Veli-Pekka Tahvanainen, Kari Smolander, and Juha-Pekka
Tolvanen

This article is available at AIS Electronic Library (AISeL): http://aisel.aisnet.org/icis1992/33

http://aisel.aisnet.org/icis1992/33?utm_source=aisel.aisnet.org%2Ficis1992%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages

MODELING REQUIREMENTS FOR FUTURE: ISSUES
AND IMPLEMENTATION CONSIDERATIONS

Pentti Marttiin
Kalle Lyytinen

Matti Rossi
Veli-Pekka Tahvanainen

Kari Smolander
Juha-Pekka Tolvanen

Department of Computer Science and Information Systems
University of Jyvaskylli

ABSTRACT

In this paper, we discuss some requirements for future CASE (Computer Aided Software/Systems
Engineering) environments. These requirements include increased modifiability and flexibility as well as
support for task and agent models. We claim that they can only be addressed by developing more
powerful representation and modeling techniques. As a possible basis for a modeling technique, we
propose the GOPRR (Graph-Object-Property-Relationship-Role) data model, which addresses some of
these requirements. In addition, a general information architecture for a future CASE environment is
outlined. It includes three kinds of models for methodology specification: meta-datamodels, activity
(task) models, and agent models. These models are defined using the GOPRR model with some
additional concepts for IS development process and agent participation.

1. INTRODUCTION representation support and changeable repository (meta
data) have appeared on the market. Thus, possibilities for

Interest in extending the functionality of Computer Aided building a customizable repository are already there.
Software Engineering (CASE) tools has been spurred by the Examples of commercial CASE shells are VSF (Pocock
rapid advances in computing power, object-oriented data- 1991) and Paradigm+. Other research oriented CASE
base management techniques, and graphical interfaces. As shells with similar features are RAMATIC (Bergsten et al.
a result numerous mtegrated tool and support environments 1989), MetaEdit (Smolander et al. 1991), and MetaView

have been launched during the last years. In general, a with its graphical extension GI (Sorenson, Tremblay and
CASE tool can be seen as a mechanism that empowers an McAllister 1991).
information system (IS) developer through supporting a
variety of development tasks by managing and manipulating The main reason for CASE tools penetration was the need
different kinds of IS representations. As Forte and Norman for improving the quality of systems development processes
(1992) point out, CASE tools have been successful in and productivity (Osterweil 1987; Chafette 1986). Support
automating many routine software development tasks. The for development processes is still lacking in most CASE
most common way to support development tasks using tools. However, these tools can produce IS descriptions
current CASE tools is to help in elicitation tasks by de- according to a method, but they contain no knowledge of
riving graphical IS specifications, and then transforming what methods can be used in specific development phases,
them into textual representations for correctness checking how the descriptions are produced„ what is the output of the
and reporting. Therefore these tools fail to address several phase, and how the outputs should be validated. In organi-
important features in IS development (ISD) and have zations where users with different abilities participate in
problems with their views of (meta) data, process and systems development projects and where the decision
group work support, and technical features. making needs close co-ordination between managers and

projects, it is important to support development processes
Most current CASE tools lack customizing capabilities, with output validation mechanisms.
support only a fixed set of methods, and thereby operate on
a fixed metamodel. During the last years, however, new Another lacking feature has been the failure to address
CASE shells' with combined textual/graphical/matrix systems development as a group activity. Recently, several

9

attempts have been made to broaden the scope of CASE and the tools s/he has picked for use. S/he then sets up the
environmentf to support Computer-Supported Cooperative environment for a certain project, in which a graphical
Work (CSCW), business modeling and reengineering, "view manager" provides tools to modify or look at the
strategy formulation and architecture specification (Conklin different parts of the IS specification. S/he begins to work
and Begeman 1988; Chen, Nunamaker and Weber 1989; by modifying the contents of a project's schedule. The
Rose, Maltzahn and Jarke 1992). Clearly, support for these schedule comes up as an activity net in a graphic window.
tasks is needed if early phases of systems development will Being more comfortable with textual definition of tasks,
be covered by CASE. s/he changes the type of the window from graphic to text

and continues his/her work with a task list After having
CASE researchers are also searching for solutions for modified the project s/he looks at tile electronic white board
specific technical design issues that are currently under where one of his/her project members notifies him/her
supported in CASE such as transformation support (Brink- about a problematic OER-design. S/he closes the schedule
kemper et al. 1989; Boloix, Sorenson and Tremblay 1991; window and clicks the "OER-diagram" icon, causing the
Rossi et al. 1992), reengineering (Bjerknes et al. 1991), and OER·diagram to appear, and locates the problematic part by
version control (Katz 1990; Hahn, Jarke and Rose 1991), searching for the note assigned to it. S/he sketches a
Object-orientation (Booch 1991; Rumbaugh et al. 1991) and solution for the problem by backtracking the design into an
supplementing CASE environments with hypertext features3 earlier version and then starts a negotiation session to
(Conklin and Begeman 1988; Garg and Scacchi 1990; converse about the solution with other project members.
Cybulski and Reed 1992) have been proposed as solutions An automatic repository agent also takes part in the discus-
to some of these problems. sion by showing those parts of the project. that are affected

by the design change. When the others have accepted the
In general, CASE environments address the obvious need to solution, s/he stores the new design into the repository and
produce, analyze and manage descriptions of various kinds continues with his/her other duties. Meanwhile, the reposi-
during interactive system development (ISD) in a consis- tory agent will check and annotate all affected documents
tent, efficient and user-friendly manner. This need can be and possibly update some transformations and documents
addressed as a metamodeling problem: what are the re- automatically.
quirements for languages to describe and model data stored,
represented, and manipulated in the IS repository and what As a project manager, S.E. uses the same shell with
is the process to specify the content and functionality of special reporting tools to monitor the state of the project
such a repository? We define memmodeling to be the task and to estimate the cost and risks of the project. When, for
that produces a metamodel for ISD. Accordingly, a mem- example, s/he needs the FPA++ cost analyzing software,
model embraces a methodology specification.4 In general, s/he can initiate it from within the environment, because the
this issue has been largely ignored until recent years and FPA++ tool conforms with the "common software plat-
commercial CASE tools suggest only ad hoc solutions to form" standard, and the local CASE environment manager
this problem. The goal of this paper is to specify the has attached it to the CASE repository allowing FPA++ to
requirements for the information architecture of the future use the repository services. As S.E. performs these moni-
CASE (shell) environments that will help to address these toring operations repetitively, s/he has specified semiauto-
problems in a more systematic manner. matic and automatic agents that perform routine tasks (e.g.,

collect managerial data check the consistency of IS specifi-
The paper is organized as follows. In section 2, we take a cations, do library management and notify of slippage from
look at the future and try to characterize an ideal CASE the schedule) for him/her, in a manner similar to the assis-
environment by the turn of the millennium. In section 3, tants in The Pmgrammers' Apprentice (Rich and Waters
we specify the elementary requirements for representing 1990).
methodology data in such an environment In section 4, we
discuss how to meet these requirements within an integrated When the users of the CASE environment find a modeling
environment. Finally, in section 5, we draw some conclu- technique inappropriate, the CASE environment manager
sions of the desired level of methodology support in the can use the CASE administrator's toolset (C. Martin 1988)
future CASE environments. to modify the repository in order to overcome the problems.

The toolset gives the CASE environment manager the
means to meet the tool users' different needs such as

2. '·2001: A CASE ODYSSEY" organizational standards and the users' modeling experi-
ence. It gives him/her the opportunity to reconfigure tools

To give an idea of a future CASE environment, we outline and the repository to capture the peculiarities of the evol-
here a scenario of a session using such an environment ving universe of discourse (the domain of systems develop-

ment activity): Hence, the repository can be customized
Think of a usual morning in the software development during the project without necessarily loosing earlier work.
center of NanoSoft Corp. A software engineer and project The user (agent) profiles that maintain data of the project
manager S.E. logs into his/her Beta+ workstation and picks members, their positions and abilities, are an integral part
up a "CASE Factory" icon in the "WorkSpace manager." of the repository. Using this data, the CASE environment
The "CASE Factory" icon starts the CASE environment's manager can specify access rights and project assignments
desktop window. It shows as icons his/her curTent projects within the administrator's toolset. Accordingly, the same

10

person can appear in both the roles of a software engineer between atomic or complex data items. These are
and a CASE tool administrator if his/her user profile allows typical requirements for specifying methods such as
this. Data Flow Diagrams (DFD) (Gane and Sarson 1979)

or Entity-Relationship (ER) modeling (Chen 1976) into
These requirements for the next generation environment are a CASE environment. The modeling principles needed
to some extent known and accepted as, for example, C. here are classification/instantiation, generaliz-
Martin (1988) and McClure (1989) show. Their implemen- ation/specification, and cartesian and cover aggrega-
tation, however, remains a major research challenge. When uon.
these demands are met, those users who instead of CASE
tools prefer word processors, graphical packages, and Classification/instantiation is presented in meta-
compilers will start to fully utilize "real" CASE environ-. modeling in terms of type-instance pairs. Generaliza-
ments. tion/specification is handled with is_a and

is_a_kind_of relationships, for example aflow from
process in a DFD diagram is_a_kind offlow (cf.

3. REQUIREMENTS FOR METAMODELING Smolander et al. 1991). The cartesian aggregation
IN CASE ENVIRONMENTS defines that an object is constructed from its compo-

nents (attributes) and the cover aggregation specifies
To build next generation CASE environments such as the that a complex object consists of other objects. An
one outlined above, we need to understand the necessary example of the former is "A car has attributes model
properties and functions of such an environment. In this name, model yeat; color and miles driven" and of the
section, we present a method representation framework that latter is "A car consists of parts: door, wheels, and
forms an essential functional component of the future motor."
CASE environments. The principle here is to first define
the simplest requirements for data representation and then • Operational semantics defined over these representa-
to derive the generic principles that are needed if a CASE tions
environment is to fully support all the requirements that are
typical for data storage, transfer, and representation during These include the mechanisms for specifying semanti-
IS development. Accordingly, we have divided the cally correct update semantics, operation granularity,
modeling requirements into the following three interrelated transactions, object identification, and naming. The
levels of complexity: update semantics specify the sequence of operations for

adding, changing, and deleting the contents of an IS
1. requirements for representing IS data related to the use repository that will preserve the object semantics.

of a single method, Operation granularity defines the level on which the
operation arguments are specified, for example update

2. requirements for representing IS data related to the use locks can be set either on the model or on the object
of multiple connected methods, and level. In the object-oriented terminology, the opera-

tions correspond to methods defined for each modeling
3. requirements related to describing the IS development concept class and the notion of transaction is defined

process and lS developer groups. by a chain of methods covering a set of classes.

To cope with the complexity of the higher levels, the tool . Three or n-dimensional representations
developer needs to understand the mechanisms and princi-
ples of the lower levels. Therefore, we claim that CASE This involves modeling and implementing recursive
environment with a full life cycle coverage must be able to data structures such as decompositions used in data
represent different methods, to interlink these into chains or flow diagrams. A detailed discussion of decomposition
support packages (methodologies), and finally to handle the principles is given by Wand and Weber (1989), where
users' or groups' requirements such as the work style and several decomposition types are introduced and a
interactions. general decomposition model is developed. A general

model of n-dimensional representations and the associ-
ated consistency rules is needed to handle recursively

3.1 Single Method Representation organized diagrams in a semantically correct way. A
possible solution for the graphical representation of

We distinguish between the following levels of representa- decompositions is presented by Harel (1988).
tion for a single method. The representations can be
implemented in a textual, tabular, or a graphical form (cf. . Representations of domain knowledge
Lyytinen, Smolander and Tahvanainen 1989).

Domain knowledge relates to the use of a method. It
• Two-dimensional representations is required for validating representations with regard to

business models, application area, architectures, and
The two-dimensional representations define the method knowledge. Principles of supporting business
modeling principles to describe the relationships models within a CASE environment are discussed in

11

more detail by Chen, Nunamaker and Weber (1989). Therefore, CASE tools are expected to describe and main-
These include modeling concepts that guide managers' tain knowledge of their use environments and also instan-
thinking and activities (such as organizational struc- tiate possible scenarios of their use. A tentative list of the
tures and goals, business processes and strategies, needed user related requirements follows.
strategic assumptions, critical success factors) and the
relationships between them. As such method knowl- . User role models and the associated subschemes for
edge grows, one can also build knowledge-based the IS repository
tutorials and let the methods "mature" through evolu-
tionary steps and versions encompassing different User roles can be divided into roles in the host organi-
levels of complexity. zation and in the different projects. The first ones

build up to an organization model of the larger ISD
environment. The user roles in projects define poten-

3.2 Multiple Connected Methods tial use scenarios of the CASE environments; i.e., they
permit users to accomplish various ISD tasks. For

Here we are dealing with issues that arise when several example, they can permit users to delete specific
methods are interwoven with one another in IS develop- models or to participate in voting on designs as mem-
meat, for example, during different development phases or bers of the project management team.
by applying alternative points of view for the same design
or implementation problem. Three aspects of this problem . Communication models and specifications of the usage
can be distinguished here. of the IS repository in user-to-user communications

• Horizontal consistency Communication models are closely linked to role
models. They support computer assisted communica-

This can be defined as the consistency between differ- lions, which provide mail services (group mail) and co-
ent method descriptions on the same level of abstrac- ordinate group work in different tasks of ISD (for
tion. For example DFD and ER models must be cross- example, voting/ranking mechanisms in requirements
checked for the data definition in case the DFD stores analysis and review cycles in the design phase or
are also modelled as ER entities. Lehman and Turski release and configuration mechanisms in maintenance).
(1987) call this the verification of a model.

• Method usage knowledge: selection guidelines for
• Vertical consistency difrerent situations

Lehman and Turski (1987) call this the validation of a Method usage aids explain where to use different
model. Vertical consistency implies the maintenance methods and different representations. These aids help
of semantically equivalent descriptions on different to define and store formal (or informal) representations
levels of abstraction and through the phases of the ISD of the methodology phases, specifications of their
life cycle. For example, an ER model must be trans- applications, and general method handbooks for phases,
lated into a semantically equivalent relational database and to maintain a history of the method uses and their
schema. We must also bear in mind the problems of success rates.
reengineering, in which we essentially want to translate
a description or a piece of code to a description on a • Explanations of method use connections
higher level of abstraction and take a look at the
representations produced in the earlier phases of the These explanations are based on the ordering of the
development life cycle. phases and tasks in a methodology. These give guid-

ance to the developers for using the methodology in a
• Dynamic consistency "correct" way. These explanations describe what are

the specified horizontal, vertical, and dynamic intercon-
Dynamic consistency means the capability of keeping a nections between the methods in the meta-datamodel.
consistent trace of model changes. In more common Otherwise, misunderstandings can arise, leading, for
terms, this is usually referred to as the version control example, from one unnecessary transformation model
problem, which has been addressed in several version to another although these models need only a horizon-
control systems such as SCCS and RCCS in UNIX[M. tal connection.
Katz (1990) has described general requirements for
version modeling and representing different modeling · Justifications for making specific choices in design
strategies. situations

Justifications to make design choices are based on the
33 User Related Requirements availability of decisions made during earlier designs

and on the knowledge of the qualities of the chosen
CASE tools are used by multiple users who all set varying models. This can be done by collecting histories of
requirements on the functionality of the CASE tool. design trajectories and of the design steps followed

12

(i.e., keeping track of the tasks and the decisions made) 4, HOW TO SUPPORT THE METAMODELING

in every phase and by organizing and storing the REQUIREMENTS WITH AN INTEGRAIED
arguments in favor and against the possible models INFORMATION ARCHITECTURE

(see e.g., Hahn, Jarke and Rose 1991).
In this section, we propose an architecture to support the

• Quality criteria for models
metamodeling requirements discussed in section 3. We

present the underlying principles of an information architec-

This helps the validation and verification of the IS
ture that allows one to model the data (IS models gene-

models. Validation can be defined as a strive to rated),the behavior of the information system development

achieve a best match between the IS models and the (ISD), and the usage of the derived meta data (user related

"reality." Generally this is a very difficult issue. requirements).

Some proposed ways to achieve a better match are
higher levels of participation, enhanced group pro- 4.1 Information Architecture
cesses, simulation, and the use of prototypes and mock-
ups. Verification mechanisms can be implemented Our aim is to model different methods and methodologies
using the semantics of the data model, verification adequately with as small a set of concepts as possible.
constraints, and other specified rules. Another objective is to outline an information architecture

that can be successfully used in modeling methodologies
and implemented into a CASE environment to support

Some of these requirements have been taken into account in computer-aided methodology engineering (CAME). We
some CASE tools. The most common requirement is the first describe the information architecture, the contents of
possibility to specify an access control mechanism for the models on different architecture and levels. We then
user roles. Some CASE tools even include review cycle demonstrate how these models can support the meta-

mechanisms (Hahn, Jarke and Rose 1991). modeling requirements stated above.

[SD meta·meta- Meta-metamodel
[eve!

GOPRR
is based on , is based on

Activity types Agent types

defines

ISDmot= Metamodel

5*tr-fi- Meta-datamodelI.V. f== 2-- .

integration

ActivayModele' ho»-odel
4 defines

ISO level Methodology in use A=%-r--r--l
<jSDesdption 1} IS Model

guides/reflects defines
usage 01

'ISD Process & 4 4 'IS Model Usage'
Behaviof defines actors/activiues

Figure 1. The Information Architecture

13

Figure 1 shows the three general levels of the information In order to better support all of the requirements, we
architecture·. ISD meta-metalevel, ISD metalevel Bnd ISD suggest some extensions to the OPRR model. We call the
level. First we take a look at the methodology used in IS resulting model GOPRR (Smolander 1991a). Its fundamen-
development. The IS model in the ISD level represents an tal primitives are a graph (G), an object (0), a property
existing IS or a future system at specific time in IS devel- (P), a relationship (R), and a role (R). A graph is a collec-
opment. It contains a set of IS descriptions (e.g., "ac- tion of the other primitives chunked into some larger mean-
counting" DFI)-diagram or "customer-product" matrix). ingful unit it "collects" these primitives, binds the objects
In general, support for the methodology covers more than with their roles to participate in relationships, and links the
the specified syntax for IS descriptions. It needs to contain respective representational features (symbols) to the primi-
guidance for creating and manipulating process descrip- tives. An object is a thing that exists on its own: A
tions, i.e., how and in what order the users can and should relationship connects objects in some semantically mean-
work with the models. Because there are several parties ingful way through roles, which specify how the objects
involved in IS development, we also need to organize their participate in the relationship. A poperly is an attribute to
work (i.e., specify the actors and activities) and define the an object, a relationship, a role, or a graph. Graphical
use modes (e.g., access rights, transactions) for IS descrip- representations of these primitives and their connections are
tions. If we want to define such methodology support, we shown in Figure 2.
need a metamodel containing the following three ISD
metalevel models. A major strength in using the GOPRR model in building

the information architecture is its close affinity with graphi-
• The meta-datamodel contailis one or more inteITelated cal representations. In Table 1, we depict two dimensions:

description types. We define a description type to be a the conceptual-representational dimension and the type-
model of one method or technique. Examples of such insmnce dimension (Smolander et al. 1991) in modeling
description types are "specifications" of DFD and ER and locate our primitives in these dimensions. For each
models. A metamodel also contains the mechanisms to type (primitive), we have a corresponding representation
specify the connections and transformations discussed definition, which specifies the graphicals behavior, i.e., the
in section 3.2. available options for drawing an instance of this type. A

view definition can override these and specify the instances
• The activity model supports the follow-up of a method- to be represented in the graph type with specific representa-

ology application (method usage), for example, by tional features. A dam Ope specifies that property belongs
directing the users through the development phases or to integer, real, string, text, collection, link, time, or some
suggesting steps for a prototyping process. other domain. The link property creates an association

between objects or properties. It is used to create the
• The agent model defines the access to and use of the horizontal connections we described in section 3.2. We add

IS models during the development tasks and encapsu- a "creation" time-stamp to every primitive when it is
lates the operations (such as querying), controls (access created. Using the various time properties, we can add
rights, access control), and coordination tasks (such as temporal time semantics to the primitives as in (Theodou-
mail support) available for the users in different roles. lidis, Loucopoulos and Wangler 1991).

Because the objective is to support different methods and At the instance level, an object instance is represented by
methodologies, we atso need a higher level model (meta- an object symbol, a relationship instance by a connector
metamodel) for defining meta-datamodels, activity models, line between object symbols, and a role instance by a line-
and agent models, as well as mechanisms to integrate them. end symbol (e.g., different arrowheads). Property values

are stored in data fields which are shown as labels. Finally,
The concepts used in the meta-metamodel are classified in the graph is represented by a group of interconnected
terms of GOPRR-primitives, activity types, and agent types. graphical representations of the other primitives, for exam-
The GOPRR-primitives are used to define the mem-data- ple, as an ER-diagram.
model, the model that specifies the static part of the
methods. These primitives form the core of the offered Figure 3 shows the GOPRR specification of GOPRR itself.9
functionality of the CASE environment and they are de- That is, GOPRR is used here both as the graphical
scribed in more detail below. modeling language and the method modeled. The GOPRR

model is a graph that can contain graphs, non-properties
We first describe what the GOPRR-primitives are and why (the "technical ancestor primitive" for object, roles and
they are chosen for modeling the meta data in the IS relationships),and properties. Objects can participate in
environment. We have earned out extensive metamodeling many roles and each role must contain at least one object.
tasks using the OPRR (Object-Property-Role-Relationship) A relationship has two or more roles denoting binary or n-
data mode16 and demonstrated its capability to support ary relationships, respectively. Objects, roles and relation-
"flat" models (without decompositions or complex objects) ships are generalized to form the class of non-properties.
and in particular, its capability to deal with graphical Any of these can be exploded to a graph, which can in-
representations (see Smolander 199lb, Smolander et al. clude a set of objects, relationships, and their bindings
1991), However, this level of functionality is not sufficient through their roles. The content and behavior of the non-
to support all of the requirements listed in section 3.1. properties and graphs are described using properties. Ob-

14

Object types: Relationship types:

Graph Aggregation,
/ Participation,

CompositionObject

Inheritance
Relationship

3 > Inclusion

Role > Explosion

Property

Figure 2. Graphical Representations of Object Types (Primitives)
and Relation Types of GOPRR

Table 1. Levels of GOPRR

ISD meta-metalevel Representation definition ISD metaleve[Representation

Graph Type View definition Collection of instances Collection of
representations

Object type Symbol definition Object instance Object symbol

Property type Data type Property value Data field

Relationship type Line type Relationship instance Connector

Role type Symbol definition Role instance Terminal symbol

jects in GOPRR have a single inheritance, which means constraints that cannot be defined using the basic GOPRR
that an object inherits the properties of and participates in primitives alone), prototype rules (usually design guide-
the same roles as its ancestor object. lines, which permit users to violate them), and muisfoima-

tion rules (describing how one description type is trans-
Using GOPRR, we can define several integrity checks. For formed to another). Both the basic and prototype rules can
example, we can define the minimum inputs and outputs be active (checked automatically) or passive (checked on an
for objects such as a "process" using roles. Also, with explicit trigger). The transformation rules are passive and
different relationships, we can define what kind of flows triggered when a transformation takes place. In the
can be connected to a "data store." However, m order to GOPRR model, the rules can be attached to any primitive.
increase the quality of checking complex descriptions, we This means that in a DFD graph type we can attach rules,
have to extend the GOPRR model with rules. The rule for example, to the diagrams, to the processes or the flows
primitive serves several different purposes in CASE envi- of the diagram, or to the properties of the flow. The
ronments (e.g., transition, constraint, and verification rules; implementation of rules in CASE environments has been
see also the classification to static and dynamic rules in discussed by Chen (1988), Boloix, Sorenson and Tremblay
Persson and Wangler 1990). Here we classify the rules (1991), and Rossi et al. (1992).
used in defining the meta-metamodel into basic rules (those

15

GOPRR
model D

(1 los 17*#4. Ag tion Sh

(0,M) \+T
non-property

inclusidh- --- -
, Co n

C poe m Relationship

Role
>--Ptscglani

Figure 3. The GOPRR Representation of GOPRR

---/4Object
Activity Agent
type

Development Development Human Technical
decision task agent agent

/1-
 Coordination Milestone Phase Step Checking Transfer- Review

mation

Figure 4. The Specializations of Activity and Agent Gpes

The activity model describes the users' behavior when Hofstede and Wijers (1991) and Heym and Osterle (1992).
following the methodology. The purpose of the activity The activity types used in the activity model can be divided
model is to help, support and co-ordinate the developers' into development tasks including development phases, steps,
work and to help in maintaining a history of the develop- transformations, integrity checkings and reviews, and
ment tasks and decisions. Similar dynamic models for development decisions, for example, situations that occur
CASE environments have been introduced by Verhoef, ter when one has to choose one of the several development

16

alternatives available (see Figure 4). We have divided all of the roles and properties of the relationship, all proper-
decisions to informal coordination decisions and formal ties of the roles, and the links to the objects involved in the
milestones where outputs have to be confirmed. Activity relationship. We divide the semantics further between the
types as specialized objects inherit the object semantics concepts and their representations. So, in our example, all
described in the GOPRR model, so they can also participate representations of the removed concepts have to be re-
in other types of relationships than those listed in Figure 1. moved. At the same time, we must check all of the rules
For example, one activity type can precede another. associated with the deleted primitives. The operation

granularity, transactions, object identification, and naming
An agent type can furthermore be specialized to a human mechanisms depend on the selected repository mechanism
agent (to organize humans or other "collections of respons- and information architecture.
ibilities" into different roles such as "system analysts" and
"project"). Human agents can deploy (perform or trigger) The last item in this group is domain knowledge. We can
technical agents, which are simple procedures or operations build business models (business rules, functional or busi-
such as sending a group mail to all project members. ness models) graphically and then define the human agents
Agent types can be seen as specialized objects which are to perform the business tasks. The tasks of the business
related to IS model objects and activity types. model definition are described in the process model. Using

the metamodeling approach, the redesign and enhancement
We cannot say exactly what are the activity types and agent of the models should be possible and allow evolution of
types needed in different organizations. Our aim here is to models as the business evolves.
find the most general and useful types. The object inheri-
lance in GOPRR allows one to specialize further various
activity and agent types (the hierarchy in Figure 4 can be 4.2.2 Support for Multiple Connected Methods
the basis for more detailed types).

A meta-datamodel is composed of one or more description
types. Horizontal consistency implies language complete-

4.2 How the Inrormation Architecture Can ness, i.e., "correct" intersections between description types.
Meet the Modeling Requitements There are several mechanisms which can be used to en-

hance and model these intersections. First, we can use the
4.2.1 Support for single Method Representation same object in different description types (specified in

GOPRR as graph types). In a view definition, the graph
The first group of metamodeling requirements presented type can specify a different representation for a object, and
above contains support for two-dimensional, three-dimen- thereby exclude properties, change relationships, or a
sional, operational semantics, and domain knowledge changed representation. Another way is to create links
representation. The two-dimensional representations can between identified objects with a specific link property.
be, by and large, modeled with the information architecture. The latter is used, for example, when we have to describe
To support classification/instantiation, we have made a that an object necessarily follows another.
distinction between types and instances in Table 1. Other
abstraction mechanisms are implemented by the following Vertical consistency implies transformations between
fixed associations included in GOPRR. description types on different levels. To achieve this, we

have to specify transformation rules as a part of the meta-
• GeneralizatioWspecialization is handled with the inheri- datamodel. Transformation rules can be added to the

tance mechanism for objects. We can make special- methodology specification when creating a transformation
ized objects such as activity types and agent types, task in the activity model. The activity models can also be
which can participate in more specific relationships and used to define the usage patterns that hold between inter-
contain more properties. connected methods. Finally, the agent model can specify

what parts of a method description a specific user in a
• Decomposition is modeled with the relationships project group can modify. To handle dynamic consistency,

inclusion and explosion shown in Figure 2. the time-stamping mechanism, and the capability to exclude
specific properties through view definitions can be applied.

· For the cartesian aggregation, we use the aggregation
between graph and property or between non-property
and property. To enable the cover aggregation (com- 4.2.3 Support of User Related Requirements
plex objects), we can use the same mechanism as for
decomposition. We can build an agent model to take care of the first two

issues of the user related requirements: the organization-
The operational semantics for IS methods are derived from wide or project-directed role models and communication
the semantics of the meta-metamodel. GOPRR suggests models. Organizations can build role models to organize
rules for updates: each update has associations from each resources and allocate them to projects. Projects can build
primitive to other primitives. A simple example is deleting life cycle models that help to co-operate during IS develop-
a relationship instance (on the IS level), where all of the ment. The communication model describes the desired
following primitives have to be removed: the relationship, communication patterns in a project or an organization.

17

To support method usage, we can use knowledge of the should also offer a seamless integration of the development
meta·datamodel and the activity model and the proposed steps and different types of tools. Finally, the environment
guidelines for modeling. In the first case, we develop should offer users enough flexibility so that when they
procedures to check the relations between the descriptions demand changes, the environment can easily accommodate
and to monitor in which ISD phases the description types these changes.
are used. In the second case, a prototype rule is trans-
mitted to the developer as a guideline message when s/he is We have several plans for future research. First, we need
attempting to do something incorrect. The prototype and to examine the coverage and significance of the proposed
transformation rules are also used in explaining the method architecture by defining several methodologies with it
connections. (Tolvanen, Marttiin and Smolander 1992). One of our

main activities is to design and build parts of the proposed
For justifying the choices, we can collect a history of environment and examine its impacts on ISD work. Exam-
decision situations as a part of the activity model and ining groupware solutions to develop more sophisticated
thereby maintain a version history mechanism (due to time agent models also seems to be a very promising research
stamping and versioning of objects) and allow the devel- area.
opers to build software tools to browse this knowledge base
for finding the reasons for specific design decisions.

6. REFERENCES
Verification of a model can be handled with the semantics
of GOPRR, horizontal consistency mechanisms, and verifi- Bergsten, P.; But)enko, J.; Dahl, R.; Gustafsson, M.; and
cation rules (rules for checking completeness and prototl pe Johansson, L.-A. "RAMATIC - A CASE Shell for
rules for enforcing the models to retain specific properties). Implementation of Specific CASE Tools." TEMPORA
The methodology engineer is responsible for developing the T6.1 Report, SISU, Stockholm, 1989.
validation rules for a new method or a methodology,
although the environment provides some architectural Bjerknes, G.; Bratteteig, T.; Braa, K.; Kautz, K.; Kaasb011,
support such as rule building aids, reusable rule and report J.; and 0grim, L. "Project FIRE: Functional Integration
models, simulation and fast mock ups. For validating through REdesign." In 0. Forsgren (ed.), Proceedings Of
documents and other outputs, we can specify particular the Fourteenth IRIS (Information Systems Research Seminar
review lasks into an activity model. in Scandinavia), Institute of Information Processing, Uni-

versity of Umel Sweden, 1991, pp. 353-362.

5. CONCLUSIONS AND FUTURE WORK Boloix, G.; Sorenson, R; and Tremblay, J, "On Transfor-
mations Using a Metasystem Approach to Software Devel-We described the general requirements for the next genera-

tion CASE environment, discussed a set of design issues
opment." Technical Report, Department of Computing

that need be considered when developing a general archi- Science, University of Alberta, Canada, 1991.
tecture to support these requirements, and examined how
the future environments can meet them. The implications

Booch, G. Object Oriented Design with Applications.

of this paper are twofold, The first one is recognizing the
Menlo Park, California: The Benjamin/Cummings Pub-

importance of incorporating the conceptual modeling lishing Company, 1991.

approach to all aspects of CASE environments. This is
introduced as support for data, process, and group-work Brinkkemper, S.; de Lange, M.; Looman, R.; and van der

features of methodologies. We have presented how con- Steen, E "On the Derivation of Method Companionship
ceptual modeling primitives can be used to define the by Meta-Modelling." In J. Jenkins (Editor), CASE '89,
models belonging to the methodology (meta-datamodel), Third International Workshop on Computer-Aided S*vare
behaviors and processes associated with the methodology Engineering. Imperial College, London, United Kingdom,
(activity model), and usage of the methodology (agent July, 17-21, 1989, pp. 226-286.
model). The second implication is the coverage of the
aspects needed in the environment. For example, we plan Bubenko, J. "Selecting a Strategy for Computer-Aided
to add facilities to support group work and an automatic Software Engineering (CASE)." SYSLAB Report Num-
transformation of models between different abstraction ber 59, University of Stockholm, June 1988.
levels during the ISD.

Charette, R. N. Software Engineering Environments:
The future CASE environment, in our opinion, can be Concepts and Technotogy. New-York: McGraw-Hill,
described as an evolving organizational knowledge base 1986.
(design information system) rather than of a passive data
store for system descriptions. This implies that future Chen, M. The Integration of Organization and infornia-
environments must have a set of tools to handle the elicita- lion Systems Modeling: A Metasystem Approach to the
tion of ISD specifications and to guide the users in Generation Of Group Decision Support Systems and Com-
gathering information on the IS as well as tools to co- puter-Aided Software Engineering. Unpublished Ph.D.
ordinate the development processes. The environment Dissertation, University of Arizona, 1988.

18

Chen, M.; Nunamaker, J. E, Jr.; and Weber, E. "The Use Lyytinen, K.; Smolander, K.; and Tahvanainen, V.-P.
of Integrated Organization and Information Systems Models "Modelling CASE Environments in Systems Work." In
in Building and Delivering Business Application Systems," CASE89 Conference Papers, Kista, Sweden, 1989.
IEEE Transactions on Knowledge and Data Engineering,
Volume 1, September 1989, pp. 406-409. Martin, C. "Second-Generation CASE Tools: A Chat-

lenge to Vendors," /EEE Sofware, March 1988, pp. 4649.
Chen, P. "The Entity-Relationship Model - Toward a
Unified View of Data," ACM Transactions on Database Martin, J. hformation Engineering, Volumes 1,2, and 3.
Systems, Volume 1, March 1976, pp. 9-36. Lancashire, England: Savant Research Studies, 1988.

Conklin, J., and Begeman, M. "gIBIS: A Hypertext Tool McClure, C. CASE is Sojhvare Automation. Englewood
for Exploratory Police Discussion," ACM Transactions on Cliffs, New Jersey: Prentice-Hall, 1989.
Ofice /nformation Systems, Volume 6, October 1988, pp.
303-331. Osterweil, L. "Software Processes are Software Too." In

Proceeding of the Ninth International Conference on
Cybulski, J. L., and Reed, K. "A Hypertext Based Soft- Sofware Engineering. Washington DC: IEEE Computer
ware Engineering Environment," IEEE Software, Vol- Society Press, 1987, pp. 2-13.
ume 9, March 1992, pp. 62-68.

Persson, U., and Wangler, B. "A Specification of Require-
Forte, G., and Norman, R. J. "A Self-Assessment by the ments for an Advanced Information Systems Development
Software Engineering Community," Communications ofthe Tool." In S. Brinkkemper and G. Wijers (Editors), Pro-

ACM, Volume 35, April 1992, pp. 28-32. ceedings of the Workshop on the Next Generation of CASE
7bols. SERC, Netherlands, 1990.

Gane, C., and Sarson, T. Structured Systems Analysis:
Tools and Techniques. Englewood Cliffs, New Jersey: Pocock, J. N. "VSF and Its Relationship to Open Systems
Prentice-Hall, 1979. and Standard Repositories." In A. Endres and H. Weber

(Editors), Sojlware Development Environments and CASE
Garg, R K., and Scacchi, W. "A Hypertext System to Technology. Berlin, Gennany: Springer-Verlag, 1991, pp
Manage Software Life-Cycle Documents," /EEE Soffware, 53-68.
Volume 7, May 1990, pp. 90-98.

Rich, C., and Waters, R. The Programmer's Apprentice.
Hahn, U.; Jarke, M.; and Rose, T. "Teamwork Support in Reading, Massachusetts: ACM Press, 1990,
a Knowledge-Based Information Systems Environment,"
IEEE Transactions on Software Engineering. Volume VI. Rose, T.; Maltzahn, C.; and Jarke, M. "Integrating Object

May 1991, pp. 467-481. and Agent Worlds." In R Loucopoulos (Editor) CAiSE '92
Advanced Information Systems Engineering. Berlin, Ger-

Harel, D. "On Visual Formalisms," Communications Of many: Springer-Verlag, 1992, pp. 17-32.
the ACM, Volume 31, May 1988, pp. 514-530.

Rossi, M.; Gustafsson, M.; Smolander, K.; Johansson, L.-
Heym, M., and Osterle, H. "A Reference Model for A.; and Lyytinen, K. "Metamodeling Editor as a Front
Information Systems Development." In K. E. Kendall, K. End Tool for a CASE Shell." In R Loucopoulos (Editor),
Lyytinen, J. I. DeGross (Editors), Tile impact of Computer CAiSE '92 Advanced Information Systems Engineering.

Supported Technologies on information Systems Develop- Berlin, Germany: Springer-Verlag, 1992, pp. 546-567.
ment. Amsterdam: North-Holland, 1992, pp. 215-240.

Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; and
/nformation Manager User's Guide. LBMS, Pre-Release Lorensen, W. Object-Oriented Modeling and Design.
Version 1.01,1991. Englewood Cliffs, New Jersey: Prentice-Hall, 1991.

Katz, R. "Toward a Unified Framework for Version Smolander, K.; Lyytinen, K.; Tahvanainen, V.-P.; and
Modeling in Engineering Databases," ACM Computing Marttiin R "MetaEdit - A Flexible Graphical Environ-
Surveys, Volume 22, December 1990, pp. 375-408. ment for Methodology Modelling." In R. Andersen, J.

Bubenko, and A. S01vberg (Editors), Advanced Information
Lehman, M., and Turski, W. "Essential Properties of Systems Engineering. Berlin, Germany: Springer-Verlag,
IPSEs." ACM SIGSOFT Software Engineering Notes, 1991, pp. 168-193.
Volume 12, January 1987, pp. 52-56.

Smolander, K. "GOPRR - A Proposal for a Meta-
Lundeberg, M.; Goldkuhl, G.; and Nilsson, A. information modeling Method." Internal working paper, Department of
Systems Development - A Systematic Approach. Engle- Computer Science and Information Systems, University of
wood Cliffs, New Jersey: Prentice-Hall, 1980. Jyvaskyle, Finland, 199la.

19

Smolander, K. "OPRR - A Model for Methodology ENDNOTES
Modeling." In Veli-Pekka Tallvanainen and Kalle Lyyti-
nen Wdiurs), Proceedings of the Second Workshop on the 1. Bubenko (1988) defines a CASE shell as "a tool to
Next Generation of CASE Tools. Department of Computer define a method or a chain of methods."

Science and Information Systems, University of Jyvaskyll 2. A CASE environment supports several methods inFinland, 199lb, pp. 135-151. several phases of the IS development, whereas a CASE
tool need not do so (Lyytinen, Smolander and Tahvan-

Sorenson, R; Tremblay, J.; and McAllister, A. "The ainen 1989).
EARA/GI Model for Software Specification Environ-
ments," Technical Report, Department of Computing 3. These proposals are focused on integrated CASE
Science, University of Alberta, June 1991. environments, whereas we are interested in CASE

shells.
Theodoulidis, C.; Loucopoulos, R; and Wangler, B. "A
Conceptual Modelling Formalism for Temporal Database 4. By a methodology, we mean systematic principles to
Applications," Information Systems, Volume 16, April develop an IS such as ISAC (Lundeberg, Goldkuhl and

Nilsson 1980) or lE (J. Martin 1988).1991, pp. 401416.
5. This can be regarded as a set of "things " ' about

Tolvanen, J.-P.; Marttiin, P.; and Smolander, K. "An which we need to store information in order to model
Integrated Model for Information Systems Modeling." In the information system in the organization adequately.
preparation, 1992.

6. The OPRR datamodel was first introduced by Welke
Verhoef, T. E; ter Hofstede A. H. M.; and Wijers, G. M. (1988) and is defined formally by Smolander (199lb).
"Structuring Modelling Knowledge for CASE Shells." In It has been used in some CASE shells such as Meta-
R. Andersen, J. Bubenko, A. Selvberg (Editors), Advanced System's QuickSpec (Welke 1988), LBMS's Infonna-

tion Manager (1991),and the MetaEdit prototypeInformation Systems Engineering. Berlin, Germany:
Springer-Verlag, 1991, pp. 502-524. (Smolander et al. 1991).

7. A graph can also act as an object. In graph theory, a
Wand, Y.; Weber, R. "A Model of Systems Decomposi- similar situation appears when some node represents a
tion." In J. I. DeGross, J. C. Henderson, and B. R. Kon- subgraph.
synski (Editors), Proceedings of the Tenth International
Conference on Information Systems. Boston, Massachu- 8. The concepts can also have tabular representation
setts, 1989, pp. 41-51. definitions.

Welke, R. "Metabase - A Platform for the Next Genera- 9. We have specified GOPRR here semiformally and

lion of Meta Systems Products." In Proceedings of CASE without update semantics. The more formal and
detailed specification is under development and needsStudies 1988, Mem Systems, Ann Arbor, 1988. to be completed before we implement the information
architecture in a tool.

20

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1992

	MODELING REQUIREMENTS FOR FUTURE: ISSUES AND IMPLEMENTATION CONSIDERATIONS
	Pentti Marttiin
	Kalle Lyytinen
	Matti Rossi
	Veli-Pekka Tahvanainen
	Kari Smolander
	See next page for additional authors
	Recommended Citation
	Authors

	tmp.1422413388.pdf.nlpzx

