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Abstract: The paper studies single-machine

scheduling to maximize number of batch of jobs

with uncertain processing times. Firstly, an ex-

pected value model to maximize number of batch

of jobs processed is given based on uncertainty the-

ory. Then, the model is transformed into a deter-

ministic integer programming model and its prop-

erties are provided. Further, its arithmetic, called

Man-computer Alternant Arithmetic, is presented.

Finally, a numerical example on the model is given.

Keywords: Integer programming, uncertainty the-

ory, single machine, batch scheduling, Man-computer

Alternant Arithmetic

§1 Introduction

Recently, the topic of ”single-machine schedul-

ing for finite batches of jobs” becomes more and

more popular. In [1–3, 7, 11, 13, 22, 26, 31], the

scholars focused on minimizing weighted com-

pletion times for batches of jobs based on de-

terminate processing times for each job on single-

machine. Whereas, the processing times of jobs on

single-machine are often uncertain. Therefore, many

researches discussed the above question using prob-

ability theory [6, 12, 13, 15, 16, 21, 33]. Differed

from the above literatures, Zhou [34, 35] presented a

new model on single machine scheduling problems to

maximize weighted number of batches of jobs

Proceedings of the Twelfth International Conference on Elec-

tronic Business, Xi’an, China, October 12-16, 2012, 273-281.

processed on the machine. Here, the processing time

of each job is assumed to be a known constant. In

this paper, by using uncertainty theory initiated by

Liu [18, 20, 23, 24], we shall study single machine

scheduling problems to maximize weighted number

of batches of jobs with indeterminate process-

ing times. It should be pointed out that uncer-

tainty theory has been applied in many places such

as uncertain programming (Liu [19], Zhang[36, 37],

Gao[9, 10], Peng[14], Li[28]), uncertain risk analysis

(Li[29]), uncertain logic (Chen[5]), uncertain process

(Yao[17]) etc [4, 8, 27, 30, 32].

The rest of this paper is organized as follows.

In Section 2, some basic concepts and results about

uncertainty theory are recalled. In Section 3, a

new model of uncertain batch scheduling on single

machine, by assuming processing times of jobs are

uncertain variables with uncertainty distributing, is

presented. Then this model is transformed into a

deterministic integer programming model, and its

properties are provided. Further, a arithmetic on

this model, called Man-computer Alternant Arith-

metic, is constructed. Finally, a numerical example

on the model is examined. At last, a brief summary

is given.

§2 Preliminaries

In this section, we will introduce some basic con-

cepts and results about uncertainty theory.

Definition 2.1. (Liu [18]). The uncertainty distri-
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bution Φ of an uncertain variable ξ is defined by

Φ(x) =M{ξ ≤ x}

for any real number x, and we use ξ ∼ Φ(x) to denote

ξ has uncertainty distribution Φ.

Liu [20] gave some types of uncertainty distri-

butions to describe uncertain variables. In the fol-

lowing we only state zigzag uncertainty distribution

since the paper only use it.

Definition 2.2 [20]. An uncertain variable ξ is

called zigzag if it has a zigzag uncertainty distribu-

tion

Φ(x) =


0, if x < a

(x− a)/2(b− a), if a ≤ x ≤ b

(x+ c− 2b)/2(c− b), if b ≤ x ≤ c

1, if x > c

(1)

denoted by Z(a, b, c) .

Definition 2.3.(Liu [20, 23]) An uncertainty distri-

bution Φ of ξ said to be regular if its inverse function

Φ−1(α) exists and is unique for each α ∈ [0, 1]. It is

said to be inverse uncertainty distribution of ξ.

If ψ is regular, uncertainty distribution ψ is con-

tinuous and strictly increasing at each point x satis-

fying 0 < ψ(x) < 1. Also, inverse uncertainty distri-

bution ψ−1 is continuous and strictly increasing in

(0, 1).

Definition 2.4.(Liu [20, 23, 25]) Let ξ be an uncer-

tain variable. Then the expected value of ξ is defined

by

E[ξ] =
∫ +∞

0

M{ξ ≥ r}dr −
∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is fi-

nite.

Definition 2.5. (Liu [24]) The uncertain) variables

ξ1, ξ2, · · · , ξm are said to be independent if

M

{
m⋂

i=1

(ξi ∈ Bi)

}
= min

1≤i≤m
M{ξi ∈ Bi}

for any Borel sets B1, B2, · · · , Bm of real numbers.

Theorem 2.1.(Liu [20, 23]) Let ξ and η be indepen-

dent uncertain variables with finite expected values.

Then for any real numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

Theorem 2.2.(Liu [20, 23]) The zigzag uncertain

variable ξ ∼ Z(a, b, c) has a expected value

E[ξ] =
a+ 2b+ c

4
.

Theorem 2.3. (Liu [20, 23])Let ξ be uncertain vari-

able with uncertainty distribution Φ. If the expected

value exists, then

E[ξ] =
∫ 1

0

Φ−1(α)dα.

§3 Single Machine Scheduling to

Maximize Number of Batch of

Jobs with Uncertain Processing

Times

§3.1 Problem Statement

Firstly, we give the following hypothesis:

(i ) There are n independent jobs need to pro-

cess in one machine in turn. And these jobs are di-

vided into m batches

G1, G2, · · · , Gm.

Each batch Gk(k = 1, 2, ...,m) has nk(k = 1, 2, ...,m)

sub-jobs, respectively. And wk(k = 1, 2, ...,m) is the

weight (or profit) of k−th (k = 1, 2, ...,m) batch,

respectively, where

m∑
k=1

nk = n.

(ii) The processing time of j−th (j = 1, 2, ..., nk)

job of k− batch (k = 1, 2, ...,m) on the machine is a

uncertain variable ξk
j (k = 1, 2, ...,m, j = 1, 2, ..., nk),

respectively, with uncertainty distributing Φk
j (j =
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1, 2, ..., nk, k = 1, 2, ...,m, j = 1, 2, ..., nk) respec-

tively, and the consignment time of Gk is dk(k =

1, 2, ...,m), respectively.

(iii) There is no delay time between two connec-

tive jobs.

(iv) The machine process only one job at each

time, and each job should be processed one time on

the machine.

In this paper, with the above hypothesis, we

will focus on the question to seek a processing order

such that the weighted number of batches of jobs

is maximum according to the requested consignment

time of each batch job.

§3.2 Model

Note that the above problem is related to un-

certain variable, therefore we can deal with it by us-

ing uncertainty theory. According to the hypothesis

and goal of the above problem, it is easily seen that

the optimization solution can be reduced to find a

order of batches {G1, G2, ..., Gm}. Now, we assume

that the processing order of n jobs on the machine is

{Gx1 , Gx2 , ..., Gxm}, where x = (x1, x2, ..., xm) is an

element of D, the set of all sequences of {1, 2, ...,m}.
We introduce the following symbols and param-

eters:

(i) Let

txk =
nxk∑
j=1

ξxk
j (k = 1, 2, ...,m)

denotes the uncertain processing time of batch

Gxk(k = 1, 2, ...,m), and

ηi(x) =
i∑

k=1

txk =
i∑

k=1

nxk∑
j=1

ξxk

j

denotes the uncertain completion time of batch

Gxi(i = 1, 2, ...,m), respectively.

(ii) Let

Ti(ηi(x)) =

{
1, if E[ηi(x)] ≤ dxi

0, otherwise

denotes the truth value of batch Gxi
(i = 1, 2, ...,m).

That is, Ti(ηi(x)) values 1 if Gxi(i = 1, 2, ...,m) is

completed in requested consignment times and 0 if

not.

(iii) Let

T (x) =
m∑

i=1

wxiTi(ηi(x))

denotes the weighted number of batches of jobs pro-

cessed on the machine.

Summarize (i)-(iii) we obtain a new model for

uncertain batch scheduling on single machine:

max
x=(x1,x2,...,xm)

m∑
i=1

wxiTi(ηi(x))

s.t.

Ti(ηi(x)) =

{
1, if E[ηi(x)] ≤ dxi

0, otherwise

x = (x1, x2, ..., xm) ∈ D

§3.3 Property

Theorem 3.3.1 If there exists a k0 ∈
{1, 2, ...,m} such that the batch Gk0 satisfies the fol-

lowing conditions:

(1) E[tk0 ] = min{E[tk]|k ∈ {1, 2, ...,m}};
(2) wk0 = max{wk|k ∈ {1, 2, ...,m}};
(3) dk0 = min{dk|k ∈ {1, 2, ...,m}};
(4) E[tk0 ] ≤ dk0 .

Then there exists a x = (x1, x2, ..., xm), a solution of

model (5), such that j0 ∈ {1, 2, ...,m}, xj0 = k0 and

Tj0(ηj0(x)) = 1.

Proof It is evident that Model (5) has at least one

solution. Suppose x = (x1, x2, ..., xm) is a solution

of model (5), and k0 = xj0 (j0 ∈ {1, 2, ...,m}). If

Tk0(ηk0(x)) = 1, then conclusion of the Theorem

3.3.1 is true; or else, if Tk0(ηk0(x)) = 0, then we

assert that x∗ = (xj0 , x2, ..., xj0−1, x1, xj0+1, ..., xm)

is also a solution of model (5) (Note that x∗

obtained by exchanging xj0 and x1 in x =

(x1, x2, ..., xj0−1, xj0 , xj0+1, ..., xm)). In fact, because
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E[tk0 ] = min{E[tk]|k ∈ {1, 2, ...,m}} we have

E[ηi(x∗)]

= E[txj0 ] +
j0−1∑
k=2

E[txk ] + E[tx1 ] +
i∑

k=j0+1

E[txk ]

≤ E[ηi(x)], i = 1, 2, ...,m.

Then it follows from dk0 = min{dk|k ∈ {1, 2, ...,m}}
that Ti(ηi)(x∗) = 1 if Ti(ηi)(x) = 1, for every

i ∈ {1, 2, ...,m}. Thus by wk0 = max{wk|k ∈
{1, 2, ...,m}}, we have

T (x∗) =
m∑

i=1

wxi

Ti(ηi(x∗))

≥
m∑

i=1

wxi

Ti(ηi(x)) = T (x),

which means that x∗ is a solution of model (5) with

the desired condition.

Note 3.3.1 The above theorem shows that when

Gk0 satisfies the given conditions (1)-(4), then Gk0

should be priority processing.

Theorem 3.3.2 For two batches scheduling x =

(x1, x2, ..., xm) and x∗ = (y1, y2, ..., , ym), where

xk1 = yk2 , xk2 = yk1 , xj = yj ,

j = 1, 2, ..., k1 − 1, k1 + 1, ..., k2 − 1, k2 + 1, ...,m.

If they satisfies the following conditions:

(1) dxk1 ≤ dxk2 ,

(2) Tk1(ηk1(x)) = Tk1+1(ηk1+1(x)) = ... =

Tk2−1(ηk2−1(x)) = 0,

(3) Tk2(ηk2(x)) = 1,

then T (x∗) ≥ T (x).

Proof Since xj = yj , j = 1, 2, ..., k1 − 1, we have

Ti(ηi(x∗)) = Ti(ηi(x)), i = 1, 2, ..., k1 − 1. Also,

from xk2 = yk1 , d
xk1 ≤ dxk2 and Tk1(ηk1(x)) =

Tk1+1(ηk1+1(x)) = ... = Tk2−1(ηk2−1(x)) = 0, we

have Tj(ηj(x∗)) ≥ Tj(ηj(x)), j = k1, ..., k2 − 1. Note

that Tj(ηj(x∗)) = Tj(ηj(x)), j = k2, ...,m. There-

fore, it follows from the senses of T (x) and T (x∗)

that T (x∗) ≥ T (x).

Note 3.3.2 From the senses of T (x) and T (x∗), we

know that if T (x∗) ≥ T (x) then we need to select x∗

as the solution of Model (5). If not we reserve x as

the solution of Model (5).

Theorem 3.3.3 For two batches scheduling x =

(x1, x2, ..., xm) and x∗ = (y1, y2, ..., , ym), where

xk1 = yk2 , xk2 = yk1 , xj = yj ,

j = 1, 2, ..., k1 − 1, k1 + 1, ..., k2 − 1, k2 + 1, ...,m.

If they satisfies the following conditions:

(1) dxk1 ≤ dxk2 ,

(2) E[txk2 ] ≤ E[txk1 ],

(3) Tk1(ηk1(x)) = 0,

then T (x∗) ≥ T (x).

Proof Note that

Tj(ηj(x∗)) = Tj(ηj(x)), j = 1, 2, ..., k1 − 1.

Since dxk1 ≤ dxk2 and E[txk2 ] ≤ E[txk1 ], we have

Tk1(ηk1(x
∗)) ≥ Tk1(ηk1(x)) = 0,

Tj(ηj(x∗)) ≥ Tj(ηj(x)), j = k1 + 1, ..., k2 − 1,

Tk2(ηk2(x
∗)) = 0.

Tj(ηj(x∗)) = Tj(ηj(x)), j = k2 + 1, ...,m.

Thus, it follows from the senses of T (x) and T (x∗)

that T (x∗) ≥ T (x).

Theorem 3.3.4 Suppose two batches scheduling

x = (x1, x2, ..., xm) and x∗ = (y1, y2, ..., , ym), where

xk1 = yk2 , xk2 = yk1 , xj = yj ,

j = 1, 2, ..., k1 − 1, k1 + 1, ..., k2 − 1, k2 + 1, ...,m,

satisfies the following conditions:

(1) Tk1(ηk1(x)) = 1,

(2) Tk2(ηk2(x)) = 0.

If wxk1 ≤ wxk2 , dxk1 ≤ dxk2 and E[txk2 ] ≤
E[txk1 ], then T (x∗) ≥ T (x). If not we compare

T (x∗) with T (x) by calculating
∑k2

j=k1
Tj(ηj(x∗))

and
∑k2

j=k1
Tj(ηj(x)). In fact, the relation T (x∗)

and T (x) is equivalent to the relation between



Single Machine Scheduling to Maximize Number of Batch of Jobs with Uncertain Processing Times 277

∑k2
j=k1

Tj(ηj(x∗)) and
∑k2

j=k1
Tj(ηj(x)).

Proof Since Tk1(ηk1(x)) = 1 and Tk2(ηk2(x)) = 0

hold , T (x∗) ≥ T (x) is evident if wxk1 ≤ wxk2 ,

dxk1 ≤ dxk2 and E[txk2 ] ≤ E[txk1 ].

It is easily seen that the case of if not holds by

the following fact

Tj(ηj(x∗)) = Tj(ηj(x)), j = 1, 2, ..., k1 − 1,

Tj(ηj(x∗)) = Tj(ηj(x)), j = k2 + 1, ...,m.

§3.4 Man-computer Alternant Arithmetic

Now we design a arithmetic ( called Man-

computer Alternant Arithmetic ) of the model (5)

according to Theorem 3.3.1-3.3.4.

Step 1 Calculating execrated values E[tk] of

tk(k = 1, 2, ...,m), respectively, by Theorem 2.1 and

2.2.

Step 2 From small to big, d1, d2, ..., dm is arranged

as dx1
1 , dx1

2 , ..., dx1
m . Then select x1 = (x1

1, x
1
2, ..., x

1
n)

as the initial approximate solution of the model (5).

Step 3 Suppose x1 = (x1
1, x

1
2, ..., x

1
j−1, x

1
j =

k0, x
1
j+1, ..., x

1
m) and k0 satisfies condi-

tions of Theorem 3.3.1. Then we use

x2 = (k0, x
1
1, x

1
2, ..., x

1
j−1, x

1
j+1, ..., x

1
m) to substi-

tute x1, by Theorem 3.3.1. Repeat the above

step for {x1
1, x

1
2, ..., x

1
j−1, x

1
j+1, ..., x

1
m} entail to the

Theorem 3.3.1 does not work.

Step 4 Suppose that we have obtained

x2 = (x2
1, x

2
2, ..., x

2
m) by Step 3. By Theorem

3.3.2, we arrange the order of x2
i (i = 1, . . . ,m)

in x2 and obtain a new sequence denoted as

x3 = (x3
1, x

3
2, ..., x

3
m), repeat the above procedure

such that Ti(ηi(x3)) = 1, i = 1, 2, ..., j0, Ti(ηi(x3)) =

0, i = j0 + 1, ...,m.

Step 5 Suppose that we have obtained

x3 = (x3
1, x

3
2, ..., x

3
m) by Step 4 such that

Ti(ηi(x3)) = 1, i = 1, 2, ..., j0,

Ti(ηi(x3)) = 0, i = j0 + 1, ...,m.

By using Theorem 3.3.3, we arrange elements of

{x3
j0+1, ..., x

3
m} and obtain a new sequence denoted

as x4 = (x4
1, x

4
2, ..., x

4
m) such that T (x) is a increasing

function.

Step 6 Suppose that we have obtained x4 =

(x4
1, x

4
2, ..., x

4
m) by Step 5 such that

Ti(ηi(x4)) = 1, i = 1, 2, ..., p0,

Ti(ηi(x4)) = 0, i = p0 + 1, ...,m.

By using Theorem 3.3.4 again and again, we arrange

every two elements of x4
r, x

4
s, r ∈ {1, 2, . . . , p0}, s ∈

{p0 + 1, . . . ,m} and obtain a new sequence denoted

as x5 = (x5
1, x

5
2, ..., x

5
m) such that T (x) is a increasing

function.

Step 7 Report x5, i.e., the optimal solution of the

model (5).

§3.5 Numerical Example

In the section we give a numerical example of

the model (4) or (5).

Suppose that we need to process 8 batch

{G1, G2, ..., G8} of jobs with weights w1 = 1
8 , w

2 =
3
16 , w

3 = 1
16 , w

4 = 1
8 , w

5 = 1
8 , w

6 = 3
16 , w

7 =
1
16 , w

8 = 1
8 on a machine, respectively, and process-

ing times of jobs on the machine are zigzag uncertain

variable. Their frondose indexes are given by the fol-

lowing table 1:

Note that Zk
j (a, b, c) in the above table de-

notes zigzag uncertainty distribution of uncertain

processing times ξk
j for j−th job of k−th batch.

Such as, date of 1− line in the above table tell us,

1−th batch contains two jobs, uncertain processing

times of its has a zigzag uncertainty distribution

Z1
1 (11, 12, 13), 2−th job has a zigzag uncertainty dis-

tribution Z1
2 (15, 16, 17), and their consignment time

is in 48 hour.

From the table 1, we have
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Table 1 Indexes of 8 batch of jobs
Name Distribution of ξk

1 Distribution of ξk
2 Distribution of ξk

3 Consignment time(hour)dk

1-th batch Z1
1 (11, 12, 13) Z1

2 (15, 16, 17) no 48

2-th batch Z2
1 (15, 16, 19) no no 24

3-th batch Z3
1 (43, 45, 46) Z3

2 (15, 18, 19) no 240

4-th batch Z4
1 (34, 35, 36) Z4

2 (25, 28, 29) Z4
3 (14, 16, 17) 294

5-th batch Z5
1 (12, 14, 16) Z5

2 (15, 16, 17) Z5
3 (15, 18, 19) 95

6-th batch Z6
1 (16, 18, 19) Z3

2 (15, 17, 18) no 96

7-th batch Z7
1 (40, 45, 47) Z7

2 (15, 17, 18) no 250

8-th batch Z8
1 (34, 36, 37) Z8

2 (27, 28, 30) Z8
3 (15, 16, 18) 300

t1(x) = ξ11 + ξ12 , t
2(x) = ξ21 ,

t3(x) = ξ31 + ξ32 , t
4(x) = ξ41 + ξ42 + ξ43 ,

t5(x) = ξ51 + ξ52 + ξ53 , t
6(x) = ξ61 + ξ62 ,

t7(x) = ξ71 + ξ72 , t
8(x) = ξ41 + ξ42 + ξ43 .

Thus we have a new model of uncertain batches

scheduling on single machine as follows:

max
x=(x1,x2,x3,x4,x5,x6,x7,x8)

8∑
i=1

wxiTi(ηi(x))

s.t.

Ti(ηi(x)) =

{
1, if E[ηi(x)] ≤ dxi

0, otherwise

x = (x1, x2, x3, x4, x5, x6, x7, x8) ∈ D

New we design a Man-computer Alternant Arith-

metic of model (7).

Step of Man-computer Alternant Arithmetic:

Step 1 By using Theorem 2.1 and 2.2 we gained the

execrated values of tk, k = 1, 2, ..., 8 are as follows,

respectively:

E[t1] = 28, E[t2] = 16.5, E[t3] = 62.25, E[t4] = 78.25,

E[t5] = 47.5, E[t6] = 34.5, E[t7] = 61, E[t8] = 80.25.

Step 2 From small to big,

48, 24, 240, 245, 95, 96, 250, 300 is arranged as

24, 48, 95, 96, 240, 245, 250, 300. Thus we choose

x1 = (2, 1, 5, 6, 3, 7, 4, 8) as initialization approxi-

mate solution of the model (7). Thus we have the

Table 2 Indexes of scheduling x1

Name ηi(x1) di Ti(x1)

2-th batch 16.5 24 1

1-th batch 44.5 48 1

5-th batch 92 95 1

6-th batch 216.5 96 0

3-th batch 188.75 240 1

7-th batch 249.75 250 1

4-th batch 328 294 0

8-th batch 408.25 300 0

Table 3 Indexes of scheduling x2

Name ηi(x1) di Ti(x1)

2-th batch 16.5 24 1

1-th batch 44.5 48 1

5-th batch 92 95 1

3-th batch 154.25 240 1

7-th batch 215.25 240 1

6-th batch 249.75 96 0

4-th batch 328 294 0

8-th batch 408.25 300 0
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Table 4 Indexes of scheduling x2

Name ηi(x1) di wi E[ti] Ti(x1)

2-th batch 16.5 24 3/16 16.5 1

1-th batch 44.5 48 2/16 28 1

5-th batch 92 95 2/16 47.5 1

3-th batch 154.25 240 1/16 62.25 1

7-th batch 215.25 240 1/16 61 1

4-th batch 293.5 294 2/16 78.25 1

6-th batch 328 96 3/16 34.5 0

8-th batch 408.25 300 2/16 80.25 0

indexes of scheduling x1 given by table 2. Step

3 We can verify that k0 = 2 satisfies conditions of

Theorem 3.3.1. Thus x2 = x1 = (2, 1, 5, 6, 3, 7, 4, 8).

Step 4 We again and again use Theorem 3.3.2 to

arrange the order of x2
i (i = 1, . . . ,m) in x2 and

obtain a new sequence x3 = (2, 1, 5, 3, 7, 6, 4, 8).

Their indexes are given by table 3.

Step 5 By using Theorem 3.3.3, we arrange

elements of {6, 4, 8} and obtain a new sequence

denoted as x4 = (2, 1, 5, 3, 7, 4, 6, 8) such that T (x)

is a increasing function. The indexes of x4 are given

by table 4.

Note that Theorem 3.3.3 cannot be used for the

above x4.

Step 6 Note that w6 = 3/16 > w5 = 2/16. We

exchange place of 6 and 5 in x4 to get a new x5
1 =

(2, 1, 6, 3, 7, 4, 5, 8) such that T (x5) > T (x4) by using

Theorem 3.3.4. For indexes of scheduling x5 we see

table 5. Note that Theorem 3.3.4 cannot be used for

the above x5.

Step 7 By the above process, we get the optimal

solution of the model (7) as x5 = (2, 1, 6, 3, 7, 4, 5, 8).

§4 Conclusions

In the paper, based on Liu’s uncertainty the-

ory, an expected value model to maximize number of

batch of jobs processed was given. Then the model

was transformed into a deterministic integer pro-

gramming model and its properties were provided.

The so called Man-computer Alternant Arithmetic

on this model was established. The availability of

the model and its arithmetic were checked by a nu-

merical example.
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