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CONTENT-BASED COMMUNITY DETECTION IN 
SOCIAL CORPORA 

 

Annette Bobrik, Matthias Trier1 
 
 
Abstract 
Electronic communication media are a widespread means of interaction. They effect network 
relationships among people. Such networks provide connectivity but are often structured in 
clusters. Current cluster analysis in social corpora is mainly based on structural properties. This 
paper extends existing approaches with content-based cluster identification and community 
detection in social corpora. Following a design science methodology, we demonstrate our 
approach using a corporate e-mail dataset. After analyzing relationships between structural and 
content-based groups we conclude that our method contributes to detecting online communities, 
especially for large structural or smaller but dispersed topical groups. 
 
1. Introduction 
 
Electronic communication media have become the most widespread means of interacting in a 
company. In a recent study, 98 percent of all employees with internet access collaborate via e-mail 
at their workplace, most of them several times a day. Three quarters used it to improve their 
teamwork and to increase the number of people they actively communicate with [5]. E-Mail is thus 
a strong force for connecting people at the workplace. It has been shown to complement formal 
work networks and provide more diverse, participative and less formally aligned relations [2]. Such 
effects are not limited to the domain of e-mail communication: The internet sports new combined 
forms of interaction that blend contents and communication (e.g. comments to stories) [21].  
All these interactions of people captured over time form a social network structure via 
communication [11]. One of the primary methods for studying the resulting electronic communities 
is Social Network Analysis (SNA) [24]. For this paper, the collection of all (electronic) traces of 
interrelated communication relationships is defined as a social corpus. 
 
Research in online communication networks is directed at understanding the structures and 
properties of these complex systems to identify structural patterns (e.g. [10]). One important interest 
is the location of groups in such networks. For this objective, SNA offers a series of clustering and 
grouping algorithms that find widespread application in practice. For example, Tyler et al. applied a 
graph-theoretic betweenness centrality algorithm to automatically identify communities in a 
research department of 400 employees at Hewlett-Packard [22] solely based on studying e-mail 
interactions. They detected 66 distinct groups reaching from 2 up to 57 members. A subsequent 
manual validation has shown that about 60 percent of the persons found the automatically identified 
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groups to be completely correct. This example shows that networks simultaneously allow flows of 
knowledge and provide connectivity but are also often structured in clusters of actors [12]. Actors 
tend to cluster in homogenous groups that are only loosely connected to other groups [17]. However 
such research and the current algorithmic implementations in common SNA tools like Pajek or 
UCINet only apply structural analysis of community groups. 
 
The domain of content analysis with means of information retrieval has not yet been accommodated 
in the methodological framework of SNA. Previous related research in content analysis and topic 
mining is focused on algorithms for generating keyword or topic descriptors in semi-formal text [3]. 
In the few studies of contents of social corpora, the focus was on expert profiling and on subsequent 
assessment of search strategies to search for persons with appropriate expertise in online networks 
[26]. The authors applied conventional text mining and indexed all the messages of a person and 
created a keyword vector, in which a keyword is weighted by its term frequency-inverted document 
frequency [26]. A precursor to the work in this paper is our content-based analysis and exploration 
concept called ‘Social Search’ [21]. It combines network visualization and the ability to create topic 
oriented sub-networks of an online discourse. Despite such initial approaches, these and similar 
studies mostly use content analysis to profile and search for individuals in social corpora. A 
comprehensive method of applying content-based analysis to study the group level of social 
networks is missing. Consequently there is not much known about how topical profiles are spread 
in social corpora, how virtual groups reflect topics, or if topical analysis would yield divergent 
group segmentation. With such a gap, every conventional structure-based method will not be able to 
convincingly detect communities in a multi-contextual network with multiple topics that are 
simultaneously shared among actors. Such communities are not only structural phenomenon but 
have been defined by seminal literature as networks about something [25]. 
 
2. Research Objectives 
 
Based on the recognition of the above shortcomings, this paper is introducing an approach for 
content-based community detection in social corpora based on content clustering techniques. With 
this method, current structural insights about groups in social corpora can be extended with a 
topical perspective. Identified groups can be related to structural patterns in order to identify topic 
communities which are inefficiently spread across the interaction structure or which are isolated 
from other people. With this method, we want to contribute to research on better algorithms to 
identify group-level properties of electronic networks. This will enable more sophisticated 
automated awareness services (i.e. to answer questions like who is related to my context, or who is 
a relevant contact?), the support of large overlapping global teams, or other collaborative 
community services. Our research is driven by the following two research questions: 
 

1. How can content-based clustering be applied for the detection of topical communities in 
social corpora? 

2. To what extend do groups identified by existing methods of structural clustering correlate 
with content-based communities? 

 
We employ a design science research methodology as our focus is less on empirical insight about 
factor relationships but on the design and evaluation of a method (a design artifact) [23]. 
Consequently, the remainder of the paper is organized as follows: In Section 3 the related 
approaches and basic foundations for content-based clustering in social corpora are given. In 
Section 4, we introduce our proposed approach to find communities with similar 
context/collaborative content. We then demonstrate and evaluate the new approach using a 
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corporate e-mail dataset. The corresponding data source is described in Section 5. Finally, we 
compare our results with subgroups obtained from structural clustering to discuss the general 
relationship of these two perspectives in Section 6. A conclusion of our findings is presented in 
Section 7. 
 
3. Methods and Foundations for Community Detection in Social Corpora 
 
In this section we briefly introduce related research and corresponding foundations for our approach 
of content-based community detection. They include the concepts of Social Network Intelligence, 
event-driven network analysis, measures of topic importance, and algorithms for structural 
clustering. 
 
3.1. Event-driven Network Analysis Approach 
 
The methods presented in this paper relate to the underlying concept of Social Network Intelligence 
(SNI), initially introduced in [19]. This approach aims at extending conventional network analysis 
with a dynamic analysis on the longitudinal processes in a social network (network dynamics) and a 
content-based analysis of social networks. The approach allows studying the change and evolution 
of network structures, the impact of events, or processes of topic dissemination in networks. A 
comprehensive account of the resulting advantages is presented in [20]. As SNI requires extensive 
computational effort, the corresponding software implementation Commetrix has been introduced. 
Commetrix is a java-based tool constructed for event-based dynamic network analysis and attempts 
to address the limitations of current approaches [19]. The development of this tool yielded a 
comprehensive set of software-based methods for exploratory static and dynamic visualization with 
integrated analysis of social network measures. The methodological core of SNI and Commetrix is 
event-based network analysis: Relationships are not directly considered but their constituting timed 
events are captured. In communication network analysis such relational events are created by 
exchanging messages with others. From these events, relationships can be aggregated. For each 
event several properties are captured. For example, a time stamp or a topical descriptor of each 
message event can recorded as a message property. Hence, the sequence of messages and the 
change in relationship structure or strength is represented as a series of relational events in the data 
model. In addition to these important changes in capturing relationships, the actual actors are 
modeled together with their actor properties.  
 
3.2. Measure of topic importance  
 
In information retrieval the term frequency-inverted document frequency (tf.idf) weighting scheme 
is often used together with the cosine similarity to determine the similarity between two documents 
[18]. The importance of a keyword tk increases proportionally to the number nk,j the keyword 
appears in the document dj but decreases with the number of documents of the document collection 
D it appears in. The keyword occurrence in one document is normalized by the total number of 
keywords tk in the document. As social networks can interact on different types of social content 
and keywords can be retrieved on different levels of abstraction as single words, or word 
collections, or concepts, keywords, documents and document collections can be generalized as 
topics, content objects and content collections. 
 
However, the tf.idf measure has some disadvantages when analyzing social content. In particular, 
we do not compare single content objects but content collections of varying size. Thus, we propose 
a variation of the tf.idf measure for comparing social content collections. Similar to the tf.idf 
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measure the importance of topic tk for actor a increases proportionally to the number of content 
objects cj in the content collection of the actor, Ca, containing the topic but decreases with the 
number of content objects of the overall content base C it appears in. The importance measure can 
be formalized as: 
 

 

 
 
3.3. Structural Clustering 
 
A cluster analysis performed on the network structure seeks to detect densely connected subgroups. 
A widely used clustering algorithm for community detection is the divisive hierarchical edge 
betweenness algorithm by Newman and Girvan [6]. The algorithm iteratively removes edges from 
the network until it disaggregates into smaller subgroups. As a result a hierarchy of nested partitions 
is obtained ranging from all actors in one large group to each actor in a group by his own2. From 
this hierarchy the partition is chosen which maximizes the modularity measure [16]. The maximum 
of the modularity measure indicates that the actors are maximally connected with their group 
members and minimally connected with other groups. 
 
4. A New Approach of Content-based Clustering 
 
In contrast to the edge betweenness algorithm which is working merely on the structure of the 
network we propose a content-based clustering procedure which takes the network context into 
account. It is basically an iterative partitioning clustering procedure which assigns objects to 
clusters due to the similarity of their features. While clustering social corpora the actors are the 
objects to be clustered and the topics in their content collections are the features the clustering is 
performed on. The similarities of the topics are calculated from the importance of the topics in each 
content collection. We assume that collaborative content approximates the context of the network 
activities and actors are assigned to subgroups with similar context expressed by the content objects 
they are related to. With the Enron dataset each message is assigned to the content collection of its 
sender and receiver. In a preliminary semi-automatic text mining procedure the body text and 
subject of each message is reduced to a set of topics weighted by their importance (see Section 3.2). 
 
Each iterative partitioning clustering procedure is characterized by the initial partition, the 
proximity index, the type of cluster representative, the type of pass and the statistical criterion used 
[8]. Topic similarities are usually calculated from the cosine similarity [18]. We use the cosine 
similarity with the K-means clustering method by McQueen [13]. The K-means clustering method 
is an inclusive, combinatorial K-means pass through the data which is iteratively optimized by the 
square error criterion. The square error criterion measures the dissimilarity of the members of a 
group to its cluster representative. The cluster representative is either an object with average feature 
values (centroid) or the member of the group which is on average most similar to all other members 
(medoid) [9]. Centroids do not necessarily have an expression in the data objects. For this reason we 
use medoids as cluster representatives. The results and the performance of a partitioning clustering 
procedure strongly depend on the chosen parameters. Especially the choice of the initial partition 
will influence the outcome of the analysis. There are several ways to select the initial partition [1, 
                                                 
2 This holds only for connected graphs. Unconnected graphs already start with their actors assigned to several 
unconnected subcomponents which are then further divided. 

298



8]: a) randomly assign the objects to K clusters, b) select K seed points from the data, e.g. randomly 
or K well-separated objects, e.g. the centroid of the whole data and then selecting successive seed 
points which are at least a certain distance away from those already chosen, or c) use a pre-
computed initial partition, e.g. from a preliminary hierarchical cluster analysis. With the first two 
methods the optimal number of clusters in the data has to been known, or estimated, before. With 
the third method using a hierarchical clustering algorithm the optimal number of clusters can be 
derived from the clustering hierarchy applying an appropriate stopping rule (see [15]). We use an 
initial partition obtained from a hierarchical clustering procedure using cosine similarity, the 
weighted average linkage rule by McQuitty [14] and Hartigan’s stopping rule which minimizes the 
change of the within-cluster sum of squares to the representative of the cluster for two subsequent 
partitions [7]. 
 
Our content-based cluster analysis approach is not intended to compete with the structural 
clustering but to provide additional insights in group formation processes within collaborative 
networks. Each clustering procedure will identify different subgroups in a network due to the 
structural or content-based similarity of the actors. Depending on the network structure they belong 
to a set of densely connected members that are rather loosely connected to other members. 
Depending on the network context approximated by the content of their interactions they belong to 
a set of actors with similar context which are not necessarily densely connected to each other. 
Besides a visual comparison of the results from the two clustering procedures we evaluate some 
structural and content-based properties. The structural properties are the density, the average 
clustering coefficient, the average relationship strength, and the number of unconnected 
components. The density measures how many possible relationships are established whereas the 
clustering coefficient measures how many established relationships form relationships themselves. 
The average relationship strength provides information about the communicational activity within 
the cluster. The content dissimilarity is measured by the square error value which is the sum of the 
within-cluster dissimilarities of the content collections of the group members to the content 
collection of their medoid.  
 
To measure the stability in group memberships between the structural and the content-based 
clusters we use two different measures: The first stability measure is the percentage of structural 
group members belonging to the same content-based cluster. The second stability measure is based 
on a version of the Dice coefficient [4] for actor-oriented group membership stability. It measures 
how stable the group membership of an actor is in terms of constant group members and structural 
as well as content-based group size. Suppose  and  are the sets of group members of actor  in 
the structural and the content-based clustering.  is then the overlap between both groups. The 
two actor-oriented group membership stability measures can be formalized as follows: 
 

 
 and   

 
 

 
To calculate the group membership stability of a structural cluster the average values of both actor-
oriented group membership stability measures are used, namely AGMS#1(a) and AGMS#2(a). 
 
5. Data Source 
 
Our analysis is based on a subsample of the publicly available corporate Enron e-mail dataset. The 
Enron Corporation was an American energy company which went bankrupt in late 2001. The 
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subsample sorely consists of internal messages exchanged between non-isolated Enron employees 
on management level from September 1th 2000 to March 31th 2001. On the one hand this was done 
to prevent the analysis to be overcrowded with too many peripheral actors with minimal impact on 
the network and to focus on the internal collaborative relationships (focus on Enron employees). On 
the other hand preliminary studies on the Enron dataset and its context have shown that within the 
selected period of time important communication threads can be found as it covers the California's 
electricity crisis which led to the downfall of the Enron company (focus on selected period of time). 
Two additional reasons for the subsample selection had to be considered. First, the selected period 
is more stable in the presence and activity of the network participants than earlier or later periods. 
Second, as the analysis of subgroups is more interested in larger collections of actors than in single 
individuals a window size has to be chosen where large and dense network structures can emerge. A 
much shorter period would yield to networks with many unconnected, stringy components where 
the results from the structural as well as content-based clustering procedures are obvious. 
 
Within the subsample 112 actors formed 441 relationships with average relationship strength of 
17.39 messages. The density of the network is 7.09 percent. The diameter only amounts to a path 
length of 5 steps and the average path length between every pair of at least indirectly connected 
actors is 2.76 steps. However, there are two unconnected components in the network, one large 
component with 106 actors and one small component with 6 actors. The core group of active 
people, which together accumulate 80 percent of all network activity, has a share of 18.75 percent. 
The maximum degree is 24 contacts. The most active actor has sent 826 and received 234 messages 
from contacts in the sample. Interestingly, the most active actor and the most connected actor are 
not the same person. Moreover, the most connected actor has a much smaller network activity with 
49 messages sent and 60 messages received, which is an almost perfect reciprocal relation. The 
clustering coefficient of the subsample, that is how many contacts of all actors are connected 
themselves, is 35.20 percent. 
 
6. Results and Interpretation 
 
The structural as well as the content-based clustering procedure has been applied to the subsample 
of the Enron dataset described in the previous Section. Figure 1 provides the visual representation 
of the cluster memberships for both clustering procedures. Table 1 and Table2 contain additional 
information about the clusters. With the structural clustering (A) most of the clusters are well 
separated from the others. Only in the extremely dense center of the network the clusters seem to 
intermingle. In comparison, the content-based clusters (B) are more distributed over the entire 
network. The members of cluster C4 even belong to two unconnected components of the network. 
The overall content dissimilarity of each actor to its group members is expressed by the square error 
value: the sum of squared dissimilarities calculated from the cosine similarities of all actors’ content 
collections to the content collection of the medoid of their cluster. As the content-based clustering 
procedure identifies some smaller clusters and two large clusters with 30 (C5) and 48 (C6) members 
one would expect a larger square error. However, comparing the results from (A), 3.47, and (B), 
2.77, the content-based clustering solution identifies more similar clusters. 
 
The content dissimilarity as well as the average relationship strength of the structural clusters does 
not depend on the group size. Cluster S4 has about half the number of members as cluster S7 but the 
same content dissimilarity. That means the members of the larger cluster S7 have more similar 
content collections than those in the smaller cluster S4. Clusters S4 and S5 have almost the same 
size but the members in cluster S5 communicate over more different topics than those in cluster S4. 
Interestingly, the communicational content of the smaller clusters S1, S2 and S3 is far less similar 
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than that of the larger clusters S4, S6 and S7. The clustering coefficient is high for medium sized 
clusters and decreases with cluster size. But even in the largest, least dense cluster, S9, almost half 
of all contacts are connected themselves. 
 

A B
 

Figure 1: Structural versus content-based community detection. (A) Structural clustering: 9 clusters, square 
error: 3.47; (B) Content-based clustering: 12 clusters, 6 singleton clusters (light-grey), square error: 2.77. 
 
In contrast to the structural clustering obtained from the edge betweenness clustering algorithm the 
content-based clusters can contain more than one connected component and sometimes, as with 
clusters C4 and C6, also include entirely unconnected actors (singletons). As the larger content-
based clusters are spread over the entire network the group density decreases with the group size 
whereas the communicational activity tends to increase. As with the structural clustering the 
clustering coefficient is high for medium sized clusters and then decreases. But again, even in the 
largest cluster many contacts are also connected themselves. The content dissimilarity uniformly 
increases with cluster size but the relation of content dissimilarity to cluster size decreases. Thus, 
the group members become more similar with increasing group size. 
 

Table 1: Overview of structural clusters and structural group membership stability. 
 

Cluster S1 S2 S3 S4 S5 S6 S7 S8 S9 

Color light  
green orange red cyan dark  

red  
dark  
blue magenta green yellow 

Members 2 6 8 10 11 15 18 20 22 
Square Error 0.23 0.29 0.24 0.18 0.52 0.20 0.18 0.76 0.87 
Density [%] 100.0 33.33 60.71 55.56 43.64 49.52 40.52 30.53 7.83 
Clustering Coeff. [%] - 0.00 68.18 66.39 67.92 62.88 49.04 44.21 46.34 
∅ Rel. Strength 1.00 10.80 10.00 71.60 21.08 18.94 10.94 9.97 30.30 
AGMS#1(a) 0.00 0.67 0.57 1.00 0.67 1.00 0.53 0.34 0.25 
AGMS#2(a) 0.00 0.42 0.17 0.47 0.36 0.55 0.35 0.24 0.28 

 
Comparing the AGMS#1(a) values some structural group members belong almost entirely to the 
same content-based cluster: cluster S2 is mostly included in cluster C4, cluster S5 mostly in cluster 
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C5, clusters S3 and S7 mostly in cluster C6. Some structural groups belong entirely to the same 
content-based cluster, namely cluster S4 to cluster C5 and cluster S6 to cluster C6. The two largest 
structural clusters S8 and S9 dissolve in several content-based clusters: cluster S8 in clusters C5, C6 
and some singletons, cluster S9 in clustersC2, C6, C3 and some singletons. These two clusters have 
also a higher content dissimilarity. Comparing the AGMS#2(a) values even if most or all members 
stick together they now belong to larger groups with several new members. The average group 
membership stability for the whole network is 0.56 for GMS#1(a) and 0.34 for GMS#2(a). That 
means, for each actor more than half of the structural group members are in the same content-based 
cluster and about one third of the structural clustering structure (group size and group membership) 
stays the same. 
 

Table 2: Overview of content-based clusters (non-singletons). 
 

Cluster C1 C2 C3 C4 C5 C6 

Color light green dark blue cyan orange red magenta 
Members 2 3 11 12 30 48 
Components (Singletons) 1 1 2 3 (1) 1 2 (1) 
Square Error 0.00 0.13 0.29 0.37 0.86 1.12 
Density [%] 100.00 66.67 34.55 24.24 20.69 12.50 
Clustering Coeff. [%] - 0.00 58.33 71.43 45.89 40.93 
∅ Rel. Strength 2.00 1.50 13.89 8.31 29.77 23.69 

 
In summary, the content-based clusters of the subsample of the Enron dataset still tend to cover well 
connected and somewhat separated regions of the network, like cluster S6, if they are established 
through similar content. But at the same time the clustering procedure groups together those actors 
from different parts of the network, like cluster C4, that are involved into similar topics without 
regarding their structural relationships. 
 

B.2B.1
 

Figure 2: Topic spread in content-based clustering. Node color: content-based cluster membership (light gray: 
filtered out), node label: database id. (B.1) Topic: ‘load curtailment’; (B.2) Topic: ‘Dynegy’. 
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Figure 2 provides a visual validation of the content-based clustering solution (B) in Figure 1 for two 
different topics. Network (B.1) shows all actors whose content collections contain the topic ‘load 
curtailment’, network (B.2) those whose content collections contain the topic ‘Dynegy’. ‘Load 
curtailment’ refers to reducing the energy demand peaks by load balancing, whereas ‘Dynegy’ 
refers to Dynegy Inc. which is a large energy company and has been a rival of Enron in the energy 
market. The actors not containing these topics are filtered out. For a better localization of the topic 
subgroups the inactive nodes and edges are presented in light gray. Both topic subgroups are spread 
over the entire network. Although the majority of actors involved in the topics belong to content-
based cluster C6, the first topic is better represented by the clustering solution as more actors from 
the second topic belong to other clusters (namely C3, C4 and C5). However, a clustering procedure 
establishes group memberships on properties that help to distinguish objects. Thus, if a topic is 
communicated by too many actors it is not meaningful enough to distinguish them and the groups 
are established on lesser used topics. The results from the content-based clustering can be used to 
classify topics and content objects in terms of relevance and distinction. Comparing the topic 
subgroup in (B.1) with the entire network and the structural clusters in (A) it becomes clear that a 
mere structural perspective on communicational activities fails to reveal the complex nature of 
collaborative content. 
 
7. Conclusion  
 
This paper introduces a content-based approach to clustering social networks. Similar to most 
previous studies in the domain of clustering, it could be noticed, that a main challenge is the 
definition of the number of clusters. Using a corporate dataset of e-mail communication, we could 
show that the method is able to produce a series of content-related clusters and thus to support the 
detection of content-based online communities. A comparison of structural and content-based 
clusters yielded the insight that significant differences between the results of both procedures could 
be identified. Especially if a topic is spread throughout the structural groups resulting into similar 
but disconnected actors, or if a structural group is very large, content-based analysis can add value 
to conventional structural analysis. These results motivate further inquiries into content-based 
detection of contribute to better algorithms to identify group-level properties of electronic networks. 
However, in content-based communities, better known as communities of practice or communities 
of interest, actors can be a member of more than one community joining them on basis of their 
(temporal) interests [25]. Therefore, we intend to focus on employing clustering-algorithms (such as 
cliques and n-clans) that allow for multiple cluster memberships. 
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