
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

WHICEB 2019 Proceedings Wuhan International Conference on e-Business 

Summer 6-26-2019 

Mining the Impact of Investor Sentiment on Stock Market from Mining the Impact of Investor Sentiment on Stock Market from 

WeChat WeChat 

Haiyuan Zhao 
School of Government, Beijing Normal University, China 

Dannuo Wang 
School of Government, Beijing Normal University, China 

Mingyan Wang 
School of Government, Beijing Normal University, China 

Xinrui He 
School of Government, Beijing Normal University, China 

Jian Jin 
School of Government, Beijing Normal University, China, jinjian.jay@bnu.edu.cn 

Follow this and additional works at: https://aisel.aisnet.org/whiceb2019 

Recommended Citation Recommended Citation 
Zhao, Haiyuan; Wang, Dannuo; Wang, Mingyan; He, Xinrui; and Jin, Jian, "Mining the Impact of Investor 
Sentiment on Stock Market from WeChat" (2019). WHICEB 2019 Proceedings. 61. 
https://aisel.aisnet.org/whiceb2019/61 

This material is brought to you by the Wuhan International Conference on e-Business at AIS Electronic Library (AISeL). 
It has been accepted for inclusion in WHICEB 2019 Proceedings by an authorized administrator of AIS Electronic 
Library (AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/whiceb2019
https://aisel.aisnet.org/whiceb
https://aisel.aisnet.org/whiceb2019?utm_source=aisel.aisnet.org%2Fwhiceb2019%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/whiceb2019/61?utm_source=aisel.aisnet.org%2Fwhiceb2019%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


The Eighteenth Wuhan International Conference on E-Business－Big Data and Analytics                    45 

Mining the Impact of Investor Sentiment on Stock Market from WeChat 

 

Haiyuan Zhao, Dannuo Wang, Mingyan Wang, Xinrui He, Jian Jin
*
 

School of Government, Beijing Normal University, China 

 

Abstract: In this study, the CSI 300 Index in China mainland and original articles from authoritative stock WeChat public 

accounts are investigated regarding their relations. First, a sentence-level sentiment classification approach for analyzing 

investor sentiment polarities in text corpus is proposed by expanding synonyms. Then, the Granger causality test is utilized 

to examine the impact of sentiment index on the stock price and volume-values. It shows that the influence of overall 

investor sentiment on volume-values is more rapid than that on stock price and the impact of positive sentiment is found to 

be more lasting than the negative in both stock price and volume-values. Furthermore, it is worth noting that there is a 

dual-stage phenomenon in the impact of positive sentiment on volume-values, which indicates that some investors react to 

positive information immediately while others may choose to wait and follow the trend. 

 

Keywords: investor sentiment, sentiment analysis, stock market, investor reaction, WeChat 

 

1. INTRODUCTION 

Classical financial theory argues that the asset transaction price is the reflection of all information, and 

investors can evaluate the value of assets rationally. However, due to subjective factors such as knowledge and 

individual preferences, investors may not perform rationally when making complex decisions involving 

uncertain factors. Recent studies show that investor sentiment may affect investors' decision-making to a certain 

extent and further affect stock price trend 
[1]

. Some studies investigating the impact of investor sentiment based 

on Internet information on the stock market also supported this result 
[2-5]

.  

However, few research concerns were paid on analyzing original articles in WeChat, which becomes one of 

the most popular information platforms in recent years in China mainland. Compared with other platforms, 

WeChat information spreads faster with a huge number of users and user stickiness is stronger. Thus, mining 

investor sentiment from WeChat becomes a new choice. Accordingly, in this study, relations between original 

articles from the authoritative stock WeChat public accounts and the CSI 300 Index are investigated. Based on 

some previous studies, two hypotheses are proposed. 

Hypothesis 1: The influence of investor sentiment on stock volume is more rapid than on stock price. 

Some study shows that stock price changes are affected by many factors 
[6]

. In contrast to stock prices, 

stock volume-values are directly affected by investor decisions. Some studies investigated the correlation of 

trading volume and trading prices. They argued that price changes are more complex than those of volume 

changes 
[7]

 since price changes can be triggered by multiple elements while the volume is affected mainly by 

subjective elements. Thus, the influence of investor sentiment on stock volume is more rapid than on stock 

price. 

Hypothesis 2: The influence of positive sentiment is more lasting than negative sentiment on stock 

market. 

Some study shows that, given positive and negative information, people may react differently 
[8]

. Some 

study also shows that positive emotions have a more significant impact on the stock market than negative 

emotions in the long term 
[9]

. Meanwhile, investors are often overconfident in their estimates of returns, so they 

are more willing to believe in good news 
[10]

.
 
Thus, the influence of positive sentiment is more lasting than 
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negative sentiment on stock market. 

In this study, two hypotheses will be evaluated by analyzing online investment information in WeChat 

public account articles. Categories of experiments will be conducted, and analytical discussions will be made. 

The rest of this paper is organized as follows. Section 2 elaborates recent studies about the correlation 

between investor sentiment and stock market. Section 3 introduces the daily CSI300 index and WeChat dataset. 

Also, the approach of sentiment analysis and Granger causality test are explained; Section 4 presents the results 

of Granger causality test and some interesting finding are presented. Section 5 summarizes this study. 

 

2. RELATED WORK 

2.1 Research on the Construction of Investor Sentiment Index 

Generally, studies about investor sentiment indicators can be divided into two categories. One is to use 

financial market indicators, economic index indicators as proxy indicators. For example, Zheng and Lin 
[11]

 

selected the discount rate of closed-end funds. Lu and Leng 
[12] 

adopted the consumer confidence index. The 

other is to analyze emotions of financial news, reviews and articles to obtain the time series of investor 

sentiment. For instance, Tanya et al. directly utilize the company-specific news sentiment data provided by 

Thomson Reuters News Analytics 
[13]

. Yan et al. 
[14]

 constructed a comprehensive stock emotion dictionary for 

incomplete emotional dictionary and one-sided sentence analysis in stock text emotional analysis, and then 

analyzed stock text emotions from sentence tendentiousness, degree and relevance. 

 

2.2 Research on the Relevance between Investor Sentiment Index and Stock Market  

Studies on the correlation between investor sentiment index and stock market can be divided into three 

categories.  

The first are to employ financial models to analyze the sequence of investor sentiment and stock market 

index. Some researchers get the time series of investor sentiment and market trading indicators and then a 

regression analysis is made to study the predictive ability of investor sentiment on stock market. For example, 

Yu et al. 
[3] 

selected 300 listed companies, extracted the financial news data of each company from the China 

Securities Network, and constructed a time series of weekly news emotional indicators by word segmentation. 

Then, different portfolios were divided to make CAPM, FF3, FF4, FF5 regression for each company's news 

sentiment index sequence and stock return sequence. It is found that positive news sentiment can effectively 

predict the rise of stock returns in the next week. Smales 
[15] 

constructed emotional indicators by using news 

sentiment data by Thomson Reuters News Analytics. Through Fama-French factor asset pricing model 

regression, it was found that there is a significant correlation between news sentiment and stock returns and the 

correlation is closely related to the industry. Oliveira et al. 
[16]

 analyzed Twitter's user messages, and further 

explored the diversity of traditional emotional indicators using four regression methods and statistical tests. 

The second are to use time series analysis methods and establish an ARMA-GARCH family model and a 

VAR model for investor sentiment sequence and transaction index sequence, and the impulse response function 

analysis is carried out to study their interactions. Meng et al. 
[2]

 collected reviews of six high-profile stocks in 

Eastern Fortune Internet Stock Bar and got individual stock sentiment index by an emotional dictionary and the 

naive Bayesian sentiment classification. Then, an ARMA-GARCH family model was built to analyze emotional 

index and individual stock return. Network sentiment was found to present a certain predictive effect on stock 

return in the short term, and in most cases, the impact of stock return on network sentiment has a long-time lag. 

The third are conducted from the perspective of causality, which mainly apply the correlation analysis and 

different types of Granger causality test to explore the interaction between investor sentiment and the stock 

market. According to the Chinese financial news related to listed companies on Taiwan Stock Exchange, Wei et 
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al 
[17]

 constructed a comprehensive news sentiment index. Through the Granger causality test, correlation 

between the index and earnings, transaction value, turnover rate and volatility index was analyzed. It shows that 

the weekly and monthly comprehensive news sentiment index has a certain predictive effect on market returns 

and provide theoretical support for portfolio decision-making. Bu 
[4]

 extracted the East Fortune Internet stock 

bar posts and used the Naive Bayesian approach to establish the index of investor sentiment. Through Granger 

causality test and instantaneous Granger causality test, it is found that the formation of investor sentiment 

depends on the pre-market returns. Investor sentiment has no predictive ability on stock market returns, trading 

volume and volatility, but has a current impact on stock returns and trading volume. Xu et al. 
[6] 

extracted the 

time series of network emotion from Sina Weibo texts. Using the mean Granger causality test and the quantile 

Granger causality test, whether there is a causal relation between network emotion volatility and stock market 

returns was explored. In some specific quantile intervals, network emotion volatility has a significant causal 

relation with stock market returns, and it provides evidence for the predictability of stock market returns under 

specific conditions. 

 

3. DATA AND APPROACH 

3.1 Data description 

In this study, an article dataset and a stock dataset will be explored. 

In the article dataset, WeChat public accounts’ articles were extracted from Qing-Bo big data platform, 

which is a WeChat data website. In order to demonstrate the overall sentimental tendency of the WeChat public 

media, top 50 public accounts in the stock section leaderboard were selected according to the activity index 

ranking. Totally, these public accounts have more than 13 million hits per month. Thus, articles published by 

them have a huge impact on the sentiment of most investors. 21,353 articles from November 2016 to November 

2018 were finally gained with filtering out irrelevant ones. For each article, timestamp, author, title and abstract 

are recoded. 

In the stock dataset, considering that current major financial markets are concentrated in Shanghai and 

Shenzhen in China, stock data was extracted from daily CSI300 Index. It mirrors the fluctuations of Chinese 

stock market more comprehensively. The stock dataset includes closing-values and volume-values of CSI300 

from November 1, 2017 to November 19, 2018 (involving 502 trading days). 

 

3.2 Sentiment analysis 

It is difficult for investors to distinguish the real information from noises. In this case, when an individual 

investor makes decision, he/she is assumed to refer to a clear-cut statement or imitates the behavior of other 

popular groups and his/her investment sentiment is more likely to be influenced by opinions from WeChat 

public accounts’ articles. Hence, the sentimental tendency of articles is used to evaluate investor sentiment in 

this study. 

However, the challenge is that, compared with manual judgment, many public tools for sentiment analysis 

usually return a deviated result. Table 1 shows that some examples of fallacious results given by TencentNLP 

and SnowNLP, which are two famous tools for analyzing the sentiment polarity of Chinese corpus. As presented, 

some sentences, which are easy to judge by humans, are assigned to incorrect results by these two tools. 
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Table 1.  Examples of fallacious result 

Examples Tools Returned result Manual Judgment (ground truth) 

连续两日大涨，市场人气明显回升 

(The market has risen sharply for two consecutive days.) 

TencentNLP negative positive 

受消息刺激，继续上涨 

(The stock price is stimulated by the news and continues to 

rise) 

SnowNLP negative positive 

全球股市暴跌！周期的宿命！ 

(Global stock market plunged! The fate of the cycle!) 

SnowNLP positive negative 

To improve the performance of sentiment analysis, similar with the approach in Meng et al. [1], a 

dictionary-based method is proposed in this study. First, some sentiment words with obvious bullish and bearish 

sentiment were selected by term frequency and expert screening. All seed words are listed in Table 2. 

Table 2.  Seed sentiment words 

Bullish sentiment words Bearish sentiment words 

暴涨 (skyrocketing), 牛市 (bullish), 反弹 (rebound), 利好

(good), 利多(profitable) 

暴跌(plunge) , 熊市(bearish) , 探底(bottom) , 利空(loss) , 回落(fall 

back) 

 

On the basis of seed words, a Chinese Synonym tools named Synonyms was used to expand our sentiment 

dictionary. Synonyms returned 10 synonyms and their cosine similarity distances with each seed word. 

Afterwards, the weight of each seed word was assigned to 1, and weights of their synonyms were assigned to the 

cosine similarity with seed sentiment words. Due to that a sentiment word can be the synonyms of many seed 

words, the highest value was taken as its weight. Finally, 44 sentiment words were selected after irrelevant 

synonyms are filtered out. In Table 3, some exemplary sentiment words as well as corresponding weights are 

listed.  

Table 3.  Some exemplary sentiment words and their weights 

Bullish sentiment words Bearish sentiment words 

暴涨(skyrocketing) 1.0 暴跌(plunge) 1.0 

涨停(raising limit) 0.8381 跌停(limit down) 0.8202 

飙升(soaring) 0.7042 下跌(fall) 0.7761 

激增(surge) 0.5714 震荡(wild swings) 0.5559 

强力(strong) 0.4694 停滞(stagnant) 0.4464 

 

For the sentiment polarity of one article, all words in it are checked through the sentiment dictionary. The 

bullish sentiment index        is then defined as the sum of all bullish sentiment words’ weights   
    , and, 

similarly, the bearish sentiment index        is defined as the sum of all bullish sentiment words’ weights 

  
    . If        is greater than       , then this article is assumed to be bullish, vice versa. 

                                         
    

                                      (1) 

                                         
    

                                     (2) 

To further illustrate the applicability of this approach, an evaluation was conducted through random 

sampling. The other two current tools, SnowNLP and TencentNLP, were used as competitors of this proposed 

method.  

Due to that the task of sentiment analysis was generally considered as a classification task, some metrics, 

such as Jaccard similarity, recall, precision and F1 score, are used to evaluate the overall performance. 3 random 

sampling were conducted. For each sampling, 500 samples were taken as test sets for each validation and these 
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samples are manually labeled. In Table 4, the average values of all these metrics regarding 3 validations are 

presented. It shows that the proposed approach outperforms both the SnowNLP and the TencentNLP by a 

significant margin except recall. One major potential reason is that the proposed approach can identify explicit 

emotional semantics precisely but fail to judge implicit semantics. The superiority of the proposed approach in 

precision helps to improve the performance of sentiment analysis in this study. 

Table 4.  Test performance of each approach 

 Jaccard similarity Precision Recall F1 score 

SnowNLP 0.5710 0.6274 0.7327 0.6754 

TencentNLP 0.6211 0.7456 0.5798 0.6506 

Our approach 0.6858 0.9007 0.5450 0.6772 

 

The proposed approach is then used to analyze the title and abstract of each article in the article dataset. 

Given that there will be multiple articles published on the same day, the positive sentiment   
        

 in the  -th 

day is the sum of the bullish sentiment index    
     of all the articles and the negative sentiment   

        
 in 

the  -th day is the sum of the negative sentiment index    
     of all the articles.  

  
        

     
    

                                     (3) 

  
        

     
    

                                    (4) 

To mirror the sentiment of all investors, the overall sentiment index       was defined for a single day. 

Both positive and negative sentiment in the  -th day was integrated by      . To reduce the absolute value, 

the logarithmic transformation is used in the ratio. If      >0, then the overall investor sentiment is bullish. If 

     <0, the overall investor sentiment is bearish. 

          
    

        

    
                                           (5) 

 

3.3 Granger causality test 

The Granger causality test was applied to identify the causality relevance of investor sentiment tendency 

and stock market variation, particularly CSI300 index closing-values and volume-values. The test rests on the 

assumption that, if a variable X causes Y, then changes in X will systematically occur before changes in Y. The 

result shows that lagged values of X will exhibit a statistically significant correlation with Y. However, 

correlation cannot derive causality. The Granger causality analysis is not to test actual causation but whether the 

time series has predictive information about the other or not. 

To analyze the variation of stock market, the change rate of closing-values and volume-values was 

calculated at first. On this basis, both the sentiment time series and the stock time series are normalized. For the 

time series, the normalization is affected by the time span significantly. Accordingly, the normalization method 

developed by Bollen et al. 
[9] 

was taken in this study, in which a sliding window of k days before and after a 

given day is established. Specifically, the z-score of time series   , denoted    
, is defined as, 

    
 

           

       
                                     (6) 

         and         represent the mean and standard deviation within the period [t-k, t+k]. This 

normalization induces time series to be expressed on a scale around a zero mean and one standard deviation. In 

this study, the parameter k was set to be 5. 

In addition, the Ganger causality test is greatly affected by the number of lag days and, that is, the news 

before different days have different effects on the stock market. Thus, the results of different lag days were 

considered in present study. 
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4. EXPERIMENT RESULT 

4.1 Results 

In this section, the article dataset and the stock dataset are integrated. Both stock time series and investor 

sentiment time series were calculated by the proposed approach in Section 3. Specifically, the stock time series 

involves the change rate of closing-values and volume-values. The Granger causality test was conducted on the 

time series of stock and investor sentiment. 

4.1.1 Impact on the change rate of closing-values 

The change rate of closing-values was examined with overall sentiment index, positive sentiment index and 

negative index and the p-value is utilized to analyze the Granger causal relationship. P-values of different lag days 

are listed in Table 5 and different level causality confidence markers are marked. 

As shown in Table 5, the overall sentiment index was significant between 2 and 5 lagging days. This 

indicated that the impact of investor sentiment on change rate of closing-values is not immediately. It shows that 

there is a certain lag for stock price in the react to investor sentiment. Also, the positive sentiment index is found to 

be significant between 3 and 6 lagged days. It implies that the impact of positive sentiment, though lagging, affect 

the stock price in the long run. Comparatively, the negative sentiment index is found to be significant between 2 

and 3 lagged days, which presents that the negative has a faster and more transient impact on the stock price. 

Table 5.  P-values (change of closing-values & news sentiment)  

Lag Sentiment Positive Negative 

1 day 0.5178 0.8509 0.2988 

2 days 0.0009*** 0.3419 0.0011** 

3 days 0.0021** 0.0991* 0.0016** 

4 days 0.0058** 0.0624* 0.3268 

5 days 0.0007*** 0.0004*** 0.1326 

6 days 0.1939 0.0114** 0.2593 

7days 0.6529 0.3033 0.3525 

(p-value < 0.001: ***, p-value < 0.05: **, p-value < 0.1: *)  

Overall, the positive sentiment index is found to have more significant causal explanation for the change 

rate of closing-values. In Figure 1, the positive sentiment index is compared with the change rate of 

closing-values. It shows that trends of the stock market price and the positive sentiment series are similar, and 

the investor sentiment is found to present a strong causing relation with the stock price time series. 

 

Figure 1.  comparison of positive indicator and change rate of closing-value 

4.1.2 Impact on the change rate of volume-values 

Similarly, the Granger test relation between the change rate of volume-values and the sentiment index was 

studied. In Table 6, p-values of different lag days in 3 types of sentiment index are listed. 
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Table 6.  P-values (change of volume-values & news sentiment)  

Lag Sentiment Positive Negative 

1 day 0.0050** 0.0170** 0.1398 

2 days 0.1988 0.1344 0.8624 

3 days 0.5335 0.6076 0.3835 

4 days 0.3476 0.1572 0.5829 

5 days 0.0600* 0.0005*** 0.9192 

6 days 0.0183** 0.0050** 0.2335 

7days 0.9628 0.6890 0.2594 

(p-value < 0.001: ***, p-value < 0.05: **, p-value < 0.1: *)  

As shown in Table 6, both overall sentiment index and positive sentiment index are significant in 2 

different periods. It indicates that the significant influence of positive sentiment on the public has two stages. 

The first influence may be caused those who is sensitive to positive messages and they respond to these 

messages quickly, so the positive sentiment index was significant in lagging 1 day. The other influence may be 

caused by some who choose to wait a period of time, and then follow the trend to buy stocks, affecting the stock 

market. It is the potential reason that positive sentiment index is found to be significant between 5 and 6 lagging 

days. The negative sentiment is shown not to be significant in the whole 7 lagging days. In contrast to positive 

sentiment index, the negative sentiment does not present to affect the volume-values. 

To visualize this phenomenon, p-values are illustrated in Figure 2. It shows that the Granger test relation in 

positive sentiment index is presented by an "inverted U-shaped" distribution and there is one peak within a dual 

significant period. 

 
Figure 2.  p-values (change rate of volume-values) 

 

4.2 Discussion 

According to the above results, some interesting findings are as listed. 

 The influence of investor sentiment on stock price and volume-values is different. According to the 

Granger test, the impact of investor sentiment on volume-values is more rapid than that on stock price. One 

potential reason is that the volume-values and investors’ decision are directly related. Investor sentiment 

affects volume-values by influencing decision making. 

 The influence of positive information is more lasting. The positive sentiment has a more significant 

Granger test relation with both stock price and volume-values and it has a longer impact than negative. It 

shows that when people receive positive information, they are more likely to react and enter the market. 

 In the react to positive information, there are two kinds of people in the market, one is to directly 

react to the news, and the other is to wait. According to the previous analysis, it shows that the Granger 

test relationship is significantly "inverted U-shaped" distributed with a single peak within a dual significant 
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period. It indicates that there is a dual-stage impact on investors’ decision when positive information is 

received. The first influence may be caused by someone who is sensitive to news sentiment and they 

respond to the news sentiment quickly. The other influence may be caused by some people who choose to 

wait a period and then follow the trend to buy stocks, which affect the stock market later. 

 

5. CONCLUSION 

This study indicates that the influence of investor sentiment on stock price and volume-values is different, 

and the positive information has a long-term impact on the stock market, corresponding with some preliminary 

results obtained in other studies. Nevertheless, in this study, some results which are inconsistent with previous 

studies are also presented. For instance, the significance of the Granger causality test presents the "inverted 

U-shaped" distribution within different number of lagging days, which shows that some stock investors are 

immediately active followers while others may be the wait-and-see followers. 

This study complements many studies on investor sentiment and stock market in China mainland from the 

perspective of WeChat public account articles, which demonstrates to be an effective verification of behavioral 

finance in the era of big data. This study also shows that WeChat public platform can be used as an effective 

research object for analyzing the stock market in China mainland. Managers can gain public opinions of the 

stock market by analyzing WeChat public account, so as to take corresponding measures and guide investors to 

invest rationally. 
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