
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

WHICEB 2019 Proceedings Wuhan International Conference on e-Business 

Summer 6-26-2019 

How to Price Your House: Exploring Price Determinants of Online How to Price Your House: Exploring Price Determinants of Online 

Accommodation Rental Accommodation Rental 

Yating Zhang 
Schoool of Economics and Management, Tongji University, Shanghai, 200000, China, 
zhangyt@tongji.edu.cn 

Yu Zhang 
Schoool of Economics and Management, Tongji University, Shanghai, 200000, China, 
1650113@tongji.edu.cn 

Shan Qian 
Schoool of Economics and Management, Tongji University, Shanghai, 200000, China, 
qianshan98@126.com 

Follow this and additional works at: https://aisel.aisnet.org/whiceb2019 

Recommended Citation Recommended Citation 
Zhang, Yating; Zhang, Yu; and Qian, Shan, "How to Price Your House: Exploring Price Determinants of 
Online Accommodation Rental" (2019). WHICEB 2019 Proceedings. 62. 
https://aisel.aisnet.org/whiceb2019/62 

This material is brought to you by the Wuhan International Conference on e-Business at AIS Electronic Library (AISeL). 
It has been accepted for inclusion in WHICEB 2019 Proceedings by an authorized administrator of AIS Electronic 
Library (AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/whiceb2019
https://aisel.aisnet.org/whiceb
https://aisel.aisnet.org/whiceb2019?utm_source=aisel.aisnet.org%2Fwhiceb2019%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/whiceb2019/62?utm_source=aisel.aisnet.org%2Fwhiceb2019%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


The Eighteenth Wuhan International Conference on E-Business－Big Data and Analytics                    37 

How to Price Your House: Exploring Price Determinants of Online 

Accommodation Rental 

 

Yating Zhang
*
, Yu Zhang, Shan Qian 

1
Schoool of Economics and Management, Tongji University, Shanghai, 200000, China 

2
Schoool of Economics and Management, Tongji University, Shanghai, 200000, China 

3
Schoool of Economics and Management, Tongji University, Shanghai, 200000, China 

 

Abstract: Tourism and hospitality have emerged as one of the pioneering sectors of sharing economy. However, 

homeowners who lack knowledge background are confused with pricing. Traditional hotel pricing and rental pricing 

methods may be not suitable for online accommodation rental. Therefore, CRISP-DM, the data analysis framework, is used 

to solve this problem. The price prediction model is established via the house data from the Airbnb.com. Finally, 33 

determinants closely related to the price are found, and the most important 10 determinants are sorted. The study also finds 

several interesting rules: (1) the basic situation of housing is an important determinant, (2) online rental houses with more 

convenient transaction conditions have higher price, (3) providing more facilities and services can increase the price, (4) 

some determinants in traditional hotel pricing are not efficient in sharing houses. These findings can help the homeowners to 

understand customers and improve their own house and pricing. 

 

Keywords: sharing economy, price determinants, data analysis framework, house, prediction model 

 

1. INTRODUCTION 

In recent years the sharing economy (SE) is seen as a disruptive innovation, made possible by new 

technologies - mainly the Internet, which is transforming economies and the way business is done. The SE is 

broadly characterized by peer-to-peer exchanges for renting goods or services utilizing Internet platforms. The 

SE platforms focus on peer-to-peer economic transactions by facilitating the sharing or renting of space, assets, 

and labor in real time. Industry practitioners speculatively estimate that sharing economy will potentially 

increase to 335 billion by 2025 compared with 15 billion in 2015
[1]

. With its rapid development, many scholars 

have studied SE from different perspectives. The SE literature includes three broad areas in general: (1) SE’s 

business models and its impacts, (2) nature of SE, and (3) SE’s sustainability development as well as two areas 

of foci in tourism and hospitality specifically: (1) SE’s impacts on destinations and tourism services (2) SE’s 

impacts on tourists
 
.We can see that tourism and hospitality are important developing directions for SE. 

Actually, since the start of SE, tourism and hospitality have emerged as one of the pioneering sectors for its 

growth as SE allows for tourists and residents to share diverse contents — their homes, cars, four course meals, 

and expert local knowledge (e.g. locals being tour guides), and Airbnb becomes a popular example of SE. 

Merely providing online accommodation rental information, Airbnb is a typical Commission-Based Platform. 

The Commission-Based Platforms are dominated by (at least) triadic relationships amongst providers, 

intermediaries and consumers with a utility-bound revenue stream. These business models enable their 

customers to switch between provider and consumer roles by creating and delivering the value proposition. The 

platform mainly takes commissions for successful matching and executing trade 
[2]

 and let providers and 

consumers themselves to decide the rest. 
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However, these online accommodation rental platforms also bring some difficult problems such as pricing 

the house to providers while giving great freedom to providers and consumers. As it is easy to start a tourism 

business at a relatively low start-up cost, more and more providers with no related knowledge background will 

participate in house-sharing and face this problem. For traditional accommodation industry, pricing is widely 

acknowledged to be one of the most critical factors determining the long-term success of the accommodation 

industry. Many studies have been conducted on pricing strategies in the hospitality industry from both the 

demand side 
[3, 4, 5] 

and the supply side 
[6, 7]

. However, only a few researchers have investigated the factors 

determining the price of online accommodation rental. 

We decide to use CRISP-DM, a data analysis framework, to find meaningful determinants of online 

accommodation rental price and interesting mode in the house sharing. Through preprocessing the data, building 

prediction model, we get the determinants of price and sort them by the importance. Not from the demand side 

neither the supply side, we choose real data from Airbnb.com and let data tell us the pricing rules under such a 

new sharing age. 

 

2. LITERATURE REVIEW 

In different product markets, there are various methods to fix a price. Though, there is little theory to help 

us fix online rental house’s price. Online accommodation rental has dual attributes of hotel and housing. 

Therefore, we can get help from the existing theories on hotel room pricing and housing pricing. These factors 

can be divided into three aspects: external factors, the property of the house itself and customers’ preferences. 

External factors refer to uncontrollable objective factors such as economy development condition and 

tourism seasonality. Hotel price is closely related to the seasonality of tourism
 [8]

. Hotel accessibility also affects 

the price level. Low market accessibility (high flight cost) leads to lower hotel prices. The effect of sea view to 

room rates exhibited a significant spatial variability, indicating that local natural and/or tourism resources may 

have a substantial role in aesthetic values
 [9]

. 

Housing attributes refer to the size, grade, service types and some other attributes that determine the quality 

of housing. These factors are the most basic information to consider when pricing a house. Some scholars have 

revealed how the properties of housing sites, such as swimming pool, spa and free breakfast, affect house prices, 

and found the spatial relationship between house prices and hotel attributes, such as size, age, grade and service 

quality. 

The third kind of factor comes from the demand side, customers, whose special preferences also affect 

pricing. Customers also appreciate some types of hotels, such as boutique, quaint or trendy hotels, but view 

others negatively, such as family-friendly or business hotels
 [10]

. High-star hotels and chain hotels are also 

favored by consumers. 

Some factors related to online platforms and trading parties emerge to influence prices and transaction rates. 

Under the mode of shared economy, people can be both providers and consumers, and play an increasingly 

important role in transactions. The degree of discrimination in the rental market has been significantly reduced, 

but some scholars have found that Airbnb's current design choices help promote discrimination 
[11]

. Some 

scholars also found that customers will consider the appearance of the owner when selecting a house online. We 

can see from the photos that the more trustworthy the owner is, the higher the listing price is, the greater the 

possibility of being selected. The reputation of the owner, conveyed through his online comment score, has no 

effect on the listed price or the possibility of consumer booking
 [12]

. But it’s also found that there is a significant 

relationship between online consumer reviews and hotel performance
 [13]

. 

Remove customers’ preferences which are dynamic and intersect with other factors, and we can summarize 

the factors affecting the price of online accommodation rental into three categories: external uncontrollable 



The Eighteenth Wuhan International Conference on E-Business－Big Data and Analytics                    39 

factors, self-attributes and platform related factors. The three classes of factors come from the summary of 

previous literatures. These studies were mainly developed from one city’s data and with limited variables and no 

one have made a comprehensive survey of these factors. It’s necessary to use a larger dataset with abundant 

variables to explore the price determinants of online accommodation rental. So, we started our research with a 

large 

 

3. DATA ANALYSIS 

3.1 Variables and data 

Airbnb, an online market for accommodation, has reached a large global scale. We selected the housing 

data provided by the Kaggle data platform. The dataset includes detailed house information of six cities in the 

United States and has a total of 74.1k records, each record has 29 variables. The introduce of 29 variables is 

shown in Table 1. 

Table 1. The variable list 

Variable Name  Data type Definition 

Id  Numeric Serial number of house. 

Log_price Numeric Listed price per night on Airbnb.com. 

Property_type String The house's type: apartment, condominium, townhouse and so on. 

Room_type String The room's type: entire room, private room and shared room. 

Facilities and Services String Combined provided facilities and services.  

Accommodates Numeric The number of people  the house can hold. 

Bathrooms Numeric The number of bathrooms the house has. 

Bed_type String The type of the bed: real bed, futon, pull-out sofa and so on. 

Cancellation_policy String How easy to cancel an order. 

Cleaning_fee Boolean Whether to charge a cleaning fee or not. 

City String The city where the house is located. 

Description String Description of  the house. 

First_review String The date of the first review. 

Host_has_profile_pic String Whether to provide house pictures or not. 

Host_identity_verified String Whether the house's identity is verified. 

Host_response_rate String The rate of the households response. 

Host_since Date The data of the house was put on the platform. 

Instant_bookable String Whether can book the house instantly. 

Last_review String The date of the lase review. 

Latitude Numeric The house's latitude. 

Longitude Numeric The house's longitude. 

Name String The house's name. 

Neighbourhood String The house's neighbourhood. 

Number_of_reviews Numeric The number of the reviews. 

Rating String The house's rating given by customers. 

Zipcode Numeric The house's zipcode. 

Bedrooms Numeric The number of the bedrooms the house has. 

Beds Numeric The number of the beds the house has. 
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3.2 Data preprocessing 

 Correcting the rating 

The two variable "rating" and "number of commentators" are closely related. True and reliable ratings 

should not only be the average of multiple ratings, but also be adjusted according to the number of 

commentators. The more commentators there are, the more reliable the ratings will be. The ranking method of 

some ranking websites can be used to correct the rating. The method of Bayesian star rating is to constantly 

revise the prior probability by introducing the latest observation results, so as to obtain the final posterior 

probability. According to the calculation method of ranking websites such as Douban Movie Score, assuming 

that the initial rating of a house is the average score of all houses at present, the following revised formula can 

be deduced. 

                 
                                                                                     

                                                      
         (1) 

 Split variables 

The variable "Facilities and Service" is a description set of 77 types of facilities or services, such as {Air 

Conditioning, Tableware, Dryer, Cable TV}. In order to find out which types of services or facilities have a 

significant impact on price, this variable needs to be split up to 77 facilities and service variables in1 or 0. 

 Data cleaning 

Several variables have some missing variables and solutions are given in Table 2. Additionally, we find 

three records have abnormal value and delete them directly for data accuracy.  

Table 2. Missing variables and resolution 

Variable Name  Missing rate Resolution 

Neighbourhood 
9.273% 

The variable  city already contains the information of neighbourbood. Don't use 

this variable. 

Zipcode 1.304% 

The missing rate is acceptable. Delete the record that has missing value. 

Bathrooms 0.270% 

Host_has_profile_pic 0.254% 

Host_identity_verified 0.254% 

Host_since 0.254% 

Bedrooms 0.177% 

Beds 0.123% 

 

3.3 Data exploration 

After data cleaning, there are 99 variables and 55584 records in current data set. Variables can be classified 

as Table 3. 

Table 3. Variable classification 

Variable classification Count Detailed information 

Self-attibutes 94 17 variables related to house's basic information and 77 variables of facilities and services. 

Platform related factors 5 Variables related to the platform and transaction. 

Total  99   

 

 Dependent variable 

The descriptive statistics of log_price are shown in Table 4, and the frequency histogram is shown in Figure 

1. It can be seen that the price distribution has a strong normality and is suitable for the prediction model.   
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Table 4. Descriptive statistics of log_price 

  Mean Variance Minimum Lower quartile Median Upper quartile Maximum 

Log_price 4.7535  0.6670  0 4.3175  4.7005  5.1648  7.6004  

 

 

Figure 1. Frequency histogram of log_price 

 

 Independent variable        

Firstly, from descriptive statistics, we can see that some variables have strong correlation. When modeling, 

we can only choose one variable from them or integrate them into a variable. For example, the number of 

accommodation, the number of bedrooms and the number of beds all reflect the number of residents. Most 

houses only provide one bedroom and one bed, which can accommodate two people, perhaps because the 

customers in these big cities are mainly for business travel rather than traveling with friends and family. 

Second, some fields are mutually exclusive and can only use one variable to model. For example, "Cable 

TV" and "Radio TV" both reflect whether the house provides the service of TV. We can combine the two 

variables into one variable. 

In addition, through descriptive statistics, we find that some variables are not divergent enough and include 

little information, so we can consider eliminating them when using prediction model. For example, the number 

of bathrooms and the bed type are relatively concentrated, most houses only have one bathroom, the type of bed 

is ordinary bed. Among the 77 facility service variables, there are also values that are not divergent enough and 

are concentrated in 1 or 0. Such variables are directly excluded and not used. 

We calculate the spearman coefficients of the correlation between all variables and housing price. After 

sorting, we select the variables whose absolute value of the spearman coefficients is above 0.1 for further 

analysis. 

 

3.4 Feature extracting 

We exclude variables which are not divergent enough and have low spearman coefficients. Finally, 33 

variables are extracted for modeling, including 29 self-attributes combined with 20 facilities and services 

variables and 9 basic self-attributes and 4 platform related factors. The variables are bedroom door lock, pets, 

TV, child-friendly, breakfast, air conditioning, smoke alarm, necessities, hangers, carbon monoxide detectors, 

elevators, shampoo, independent access, personal computer use space, self-help check-in, irons, hair dryers, 

washing machines, dryers, cable TV, city, registration time, postal code, attribute type, source type, bathroom 

number, bedroom number, immediate booking, whether there are house pictures, type of bed, cancellation policy, 

number of beds and accommodation number. 
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4. MODELING AND RESULTS 

4.1 Model selection 

 Before modeling, the data set is divided into test set and 

training set according to the ratio of 3:7. Second, the root 

mean square error (RMSE) is selected as the regression 

evaluation index. Third, we use one-hot method to code the 

value of all variables for a more accurate model. We select 

nine commonly used regression algorithms, adopt default 

parameters, and use 5-fold cross-validation to get the RMSE 

value to evaluate each model.  

Three models with RMSE less than 0.36 were selected 

for analysis: random forest regression, gradient upgrade 

regression and extreme random forest regression. Random 

forest regression can give the importance of each variable, and 

the top ten variable with high importance were obtained, as 

shown in Table 6. 

 

4.2 Feature construction 

After preliminary modeling, we use gradient lifting regression model (the result is 0.3392021064382331) 

to test the constructed features. We integrate some variables which have strong correlation and increase 

high-correlation variables’ proportion in the model via squaring their value. However, the accuracy of the model 

doesn’t be increased and the error reduced. It show that the variables already reflect the changes of housing 

price. 

 

4.3 Model fusion 

After Optimizing parameters including iteration times, maximum depth of decision tree and number of 

samples required for internal node re-partitioning, we fused the three models and adjust the specific proportion 

for a better result in Table 7. In summary, the final result of our prediction is 0.3298. 

Table 7. Model fusion result 

Random Forest Regression Gradient Boosting Regression Extra-Trees Regression Result 

0.7 0.15 0.15 0.3447  

0.6 0.3 0.1 0.3407  

0.26 0.64 0.1 0.3306  

0.15 0.65 0.2 0.3303  

0.2 0.7 0.1 0.3303  

0.3 0.6 0.1 0.3302  

0.25 0.65 0.1 0.3299  

0.225 0.65 0.125 0.3298  

5. DISCUSSION 

5.1 Result 

This study explores the determinants of online accommodation rental prices and sorts them by importance. 

Based on 99 variables, the online accommodation rental price is analyzed. Through preprocessing the data, 

modeling prediction model, 33 variables which can predict the price well are obtained: 29 self-attributes 

Table 6. Top 10 variable with high mportance 

Variable Name  Importance 

Bed_type 0.4066  

Property_type 0.1809  

Bedrooms 0.1243  

Instant_bookable 0.0720  

Beds 0.0390  

Air conditioner 0.0321  

Room_type 0.0148  

Host_has_profile_pic 0.0115  

Breakfast 0.0092  

Carbon dioxide detector 0.0068  
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combined with 20 facilities and services variables and 9 basic self-attributes and 4 platform related factors. 

Random forest model is used to rank the importance of variables, and 10 variables that have significant 

importance on price prediction are obtained.  

We find that the basic situation of housing is an important price determinant. Different from hotels’ 

standardized facilities and services, online rental houses has higher richness and diversity. However, only rental 

houses with comfortable beds, more bedrooms and more beds tend to have higher prices, indicating that 

customers always put comfort and sleeping environment in the first place when selecting a rental house. No one 

likes sleeping on a couch or a futon for a long time. Therefore, the type of bed has the most significant impact 

on the price.  

Secondly, this study show that online rental houses with more convenient transaction conditions have 

higher prices. Immediate booking and providing-pictures can increase the price. Immediate booking keeps with 

people’s fast-paced lifestyle and providing real-time booking service can shorten the distance between online 

and offline. Displaying real and reliable housing pictures on the website can provide more information for 

consumers to make decisions. 

Thirdly, we find that providing some facilities and services can increase the price of houses. Short rentals 

with air conditioning, breakfast and carbon dioxide detectors are more expensive. More facilities and services 

will undoubtedly be popular with consumers. In addition, it also shows that safety is a new factor that 

consumers attach increasing importance to. For example, carbon dioxide detectors can guarantee consumers' 

safety. 

Another finding is that the price determinants of online accommodation rental are different from those of 

traditional hotels, but similar to the price determinants of sale housing. Hotel star has significant impact on room 

price of traditional hotels, but rating, the similar variable in online accommodation rental, has little relevance 

with house price. It maybe because these two variables have different sources: the hotel star is assessed from 

many aspects and online rating only comes from the customers.  

These finding is not only more detailed and specific than previous studies 
[10, 14]

, but also has practical 

significance. It’s recommended that households make a price by assessing house self-attributes and platform 

related factors. Households can improve their house by choosing a comfortable bed and providing more 

facilities within budget, and attract more customers by setting immediate booking mode and unloading real and 

beautiful house pictures. 

 

5.2 Summary  

Using data sets of Airbnb from six cities in the United States, this study explores the price determinants of 

online accommodation rental. These findings provide a comprehensive understanding of the determinants of 

product prices under SE condition, and provide a perspective for stakeholders such as homeowners to improve 

house conditions and increase profits. In addition, this study also provide suggestions to online short-rent 

platforms to provide homeowners with pricing services based on current price determinants. 

Nevertheless, we acknowledge an important limitation of this study. Firstly, although this study considers 

the influence of geographical factors, the data used in this study are only rent data of Boston, San Francisco, 

Chicago, Washington, New York and Los Angeles, which have limitations. Secondly, the price difference caused 

by social or psychological factors is not considered. Therefore, it is very important to conduct qualitative 

research to explore the price decision under the influence of social and psychological factors. Finally, the 

exploration of the interaction between variables is not deep enough, so follow-up studies can explore the 

interaction between different variables. 
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