
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 1999 Wirtschaftsinformatik

February 1999

CREWS: Towards Systematic Usage of Scenarios,
Use Cases and Scenes
Matthias Jarke
RWTH Aachen, jarke@informatik.rwth-aachen.de

Follow this and additional works at: http://aisel.aisnet.org/wi1999

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 1999 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Jarke, Matthias, "CREWS: Towards Systematic Usage of Scenarios, Use Cases and Scenes" (1999). Wirtschaftsinformatik Proceedings
1999. 25.
http://aisel.aisnet.org/wi1999/25

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi1999%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi1999?utm_source=aisel.aisnet.org%2Fwi1999%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi1999%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi1999?utm_source=aisel.aisnet.org%2Fwi1999%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi1999/25?utm_source=aisel.aisnet.org%2Fwi1999%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Electronic Business Engineering / 4. Internationale Tagung Wirtschaftsinformatik 1999.
Hrsg.: August-Wilhelm Scheer; Markus Nüttgens. – Heidelberg: Physica-Verlag, 1999

CREWS : Towards Systematic Usage of
Scenarios, Use Cases and Scenes
Matthias Jarke
RWTH Aachen (jarke@informatik.rwth-aachen.de)

Contents

1 Introduction

2 The Role of Scenarios in Change Management

3 Scenario Research and Practice

4 The CREWS Tools

4.1 Requirements Elicitation and Validation Based on Text Scenarios
4.2 Requirements Traceability and Change Envisionment Based on

Multimedia Scenes

5 Summary and Outlook

470 M. Jarke

Abstract

In the wake of object-oriented software engineering, use cases have gained
enormous popularity as tools for bridging the gap between electronic
business management and information systems engineering. A wide variety
of practices has emerged but their relationships to each other, and with
respect to the traditional change management process, are poorly
understood. The ESPRIT Long Term Research Project CREWS
(Cooperative Requirements Engineering With Scenarios) has conducted
surveys of the research literature and of the industry practice in scenario-
based requirements engineering as a basis to develop a framework of
approaches and research issues in the field. In two demonstrator prototypes,
one based on textual scenario representations, the other on multimedia
scenes, solutions to some of the most critical open problems from these
surveys are being explored. The project results, besides being integrated in
leading commercial software engineering environments, feed into a
component-oriented method server on the Internet.

1 Introduction

Object-oriented programming and design have gained great popularity in the
1990s. At the programming level, languages such as C++ and Java demonstrate
this trend, supported by the introduction of object-oriented and object-relational
databases. At the design level, this has been further strengthened by the effort of
a group of leading researchers and practitioners to establish an object-oriented
Unified Modelling Language (UML), in order to avoid fragmentation of notations
and to limit learning efforts. Despite the complexity of the overall UML
formalism, its uniformity -- meanwhile accepted by standardisation bodies as well
as by most leading vendors -- gives some hope that it might actually become used
as widely as the predecessor structured development methodologies.

UML is essentially a language for design, to be used by developers. It hardly
satisfies the demand for an adequate communications medium between users,
developers, and other stakeholders. Such a communications medium is not only
needed in requirements engineering at the start of the project, but also for main-
taining user and stakeholder involvement throughout the systems lifecycle, as
requirements, solutions, and the environment change. Projects that have, for
example, started directly with developing class definitions often get lost in the
complexity of these definitions, leading to costly failures.

Among the early object-oriented approaches, only OOSE has addressed this issue
in a promising manner (Jacobson 1995). Consequently, Jacobson’s use-case
approach has been recently included in UML (Fowler and Scott 1997). Use cases
are graphical depictions which group collections of interaction scenarios between

CREWS 471

users and systems around one typical usage. In practice, these scenarios are
usually written as textual narratives or, more formally, as message sequence dia-
grams. In domains where situations are difficult to describe by text, people also
use multimedia scenes, in the form of videos, virtual reality, or interaction
games. These practices have their roots in early experiences by management
science and human-computer interaction, and are broadly summarised under the
label of scenario-based requirements engineering.

However, as discussed below, the practice of scenario usage and management
differs widely and little advice is available what techniques to use when, how to
support them, and how to integrate them with the rest of the object-oriented soft-
ware development process. In 1996, the European Community has therefore
started a Long-Term Research project called CREWS (Cooperative Requirements
Engineering With Scenarios) intended to address these problems. In order to
accomplish these goals, the project undertook a number of activities whose results
will be summarised in the remainder of this paper. These activities are listed
below, together with pointers to publications in which individual details of the
project are described:

• Section 2: Through an interdisciplinary workshop held at Dagstuhl Castle in
early 1998, a general framework for integrating scenario-based techniques in
model-based processes of continuous change management has been
established (Jarke et al. 1998).

• Section 3: A comprehensive survey of the state-of-the-art in research has been
conducted (Rolland et al. 1998) and contrasted with the analysis of about 25
industrial projects in which use cases, scenarios, and scenes were used with
varying degrees of success (Arnold et al. 1998, Weidenhaupt et al. 1998).

• Section 4: Two prototypical requirements engineering environments ad-
dressing key problems identified in the empirical studies have been designed,
implemented, and empirically evaluated (the evaluation is still ongoing at the
time of this writing). One addresses requirements elicitation and validation
using textual scenarios, the other requirements traceability and change
envisioning based on multimedia scenes. Details of these tools and of related
developments by other research groups world-wide can be found in recent
Special Issues of the IEEE Transactions on Software Engineering (Jarke and
Kurki-Suonio 1998) and of the Requirements Engineering Journal (Jarke
1998).

More guidance for scenario-based requirements engineering and for the inte-
gration with object-oriented software engineering is being encoded in an internet-
based server during the current, final phase of the project (section 5).

472 M. Jarke

2 The Role of Scenarios in Change Management

Change management research in fields such as management science, software
engineering, and human-computer interaction has traditionally followed a model-
based re-engineering cycle :

(a) formally re-construct the concepts and rationale behind the current system,

(b) specify the desired change at the conceptual level,

(c) implement the changed concepts to reach the new system while

(d) taking the legacy context into account.

In the context of object-oriented software engineering, the conceptual models are
represented in UML. The “system” usually comprises both humans and com-
puterised components interacting with each other and with their environment.

With the deeper immersion of IT usage and impact in everyday life, formal
models often prove clumsy to develop and hard to understand, especially when
multiple stakeholders are involved who have little IT expertise and who have
difficulties to imagine how their life might change due to the planned system.
Even where initial shared understanding exists, the above procedure describes but
one step in a continuous change process which is hard to trace without strong
linkage to reality.

A scenario describes (textually or graphically) a possible set of events that might
reasonably take place; a scene captures the same in some form of multimedia. Its
purpose is to stimulate and document thinking about current problems, possible
occurrences, assumptions relating these occurrences, action opportunities and
risks. Results from cognitive psychology (Carroll 1995) indicate that scenarios
offer a middle-ground abstraction between models and reality, serve as a univer-
sally understood medium for participatory design, and facilitate reuse of design
knowledge:

1. Scenarios focus design efforts on use first and foremost. What people can do
with the old/new system, and the consequences for themselves and for their
organisations, is described and analysed prior to detailing the system
functions and features that enable this use.

2. Scenarios suspend commitment but support concrete progress: They vividly
explain why a system is needed by showing what it is used for, but they also
facilitate an analysis of design alternatives how it is used.

3. Scenarios provide a task-oriented design decomposition that can be used
from many perspectives, including usability trade-off’s, iterative
development, and manageable software design object models.

Consistent with these observations, information systems engineering employs
scenarios as intermediate design artefacts in an expanded change process, as
shown in figure 1 (Jarke et al. 1998). During early requirements elicitation,
scenarios focus on problems with the current system. They thus help to discover
change goals and elaborate them into more detailed requirements. Once require-

CREWS 473

ments for a future system have been specified, future-state scenarios can be gen-
erated to validate requirements against reality and higher-level goals, but also
help refine requirements for the handling of exceptional situations.

The number of possible scenarios for a change situation is even greater than the
number of possible conceptual models. The choice and elaboration of scenarios
and scenes must therefore be guided by the change goals expressed by the users
and other stakeholders. Conversely, stakeholders obtain an elaboration of goals
into more detailed requirements through the analysis and discussion of scenarios
and scenes. In other words, we claim that a scenario-based approach, at least for
large projects, is inextricably linked to explicit capture of a goals/requirements
hierarchy. The actual conceptual models (class diagrams etc.) are then derived by
considering both the elaborated scenarios and the goal/requirements hierarchy.
Indeed, some of the more advanced requirements engineering tools, such as
Rational’s Requisite Pro, support hierarchical structuring of (textual) require-
ments. More sophisticated goal modeling techniques, together with approaches to
map goals to process and object models, can be found in the research literature
(e.g. Kaindl 1998; Mylopoulos et al. 1992).

animate

capture

initial
model
initial
model

new
model
new

model

existing
system
existing
system

new
system

new
system

change
specification

reverse
analysis

legacy
integration

change
implementation

future
scenario

future
scenariocurrent

scenario
current

scenario

change
envisionment

goal/requirementgoal/requirement

refinement/negotiation

scenario generation
for validation/

refinement
observation focus

for elicitation/
goal discovery

Figure 1: Change process with goals and scenarios

3 Scenario Research and Practice

The CREWS project has conducted surveys of scenario research and practice,
with an emphasis on the requirements engineering task within software and sys-
tems engineering. To structure the analysis, the project followed an approach
which perceives an information system to comprise four interacting basic per-
spectives or ”worlds” (Jarke et al. 1992). As a product (figure 2), an information

474 M. Jarke

system can be modelled as a human-machine system which provides users infor-
mation or control over a subject domain (often called Universe of Discourse)
which is denoted by the information objects. Users can be studied in two comple-
mentary roles: as individuals with cognitive problems of understanding, and as
social organisations exploiting the information system as a communication and
coordination medium to support their tasks, interests, formal roles, etc.

System
World

Subject World

Usage World

Referential
aspects

denotes

Social
aspects

Individual /
ideational aspects

Figure 2: Conceptualization of an information system

This product triple <system world, usage world, subject world> is subject to an
evolutionary change process in the development world. The development world is
best understood as a meta-level change information system (figure 3). It controls
the product information system as its subject domain, has the development team
as its users and the development environment with its intermediate artefacts as
the system itself. Scenarios are a particular kind of design artefact in the
development world, intended to facilitate shared understanding of the target
system, its interaction with users and subject domain, and its larger context.

A review of the scenario literature (Rolland et al. 1998) showed that this frame-
work also provides a good starting point for classifying scenario-based ap-
proaches. Looking at the work activity as the subject domain and scenarios as one
kind of development system artefact, we obtain four views (figure 4):

• What part of the work activity is captured in a scenario (content view) ?
• How is it represented in the development environment (form view) ?
• For what usage in the design process is it captured (purpose view) ?
• How is it developed and evolved (life-cycle view) ?

CREWS 475

This framework also serves as a basic structure to manage knowledge about sce-
nario-based approaches in a method repository (cf. section 5, below). In (Rolland
et al. 1998), each of these four basic views is further elaborated into detailed
facets. The framework has been applied to classify more than a dozen well-
known proposals in the literature, including, for example, Jacobsen’s initial Use
Case approach and various proposed extensions.

?
System
World

Subject World

Usage World

Social
aspects

Individual /
ideational aspects

?

 1+1+

1+

2+
1+

Usage WorldChange Activity

Work Activity

?

Subject World?

Social
aspects

Individual /
ideational aspects

System
World

Figure 3: Change management as a meta information system

The framework of figure 4 was also elaborated in a set of questionnaires and
semi-structured interviews used to determine the state-of-practice in scenario-
based software engineering (Weidenhaupt et al. 1998). More than 25 projects,
studied in part by the CREWS partners themselves, in part jointly with the RE
group within the German GI (Arnold et al. 1998), were investigated this way,
covering a variety of project sizes and application domains. The results show
insufficient overlap between research and practice, asking for re-orientation on
both sides.

476 M. Jarke

While researchers, focusing on the form view, investigate scenarios as formal
mediators between detailed traces and class-level specifications (Hsia et al. 1994),
practitioners rarely use formal scenario representations. However, they would like
to treat textual scenarios more formally and complain about a lack of guidance in
authoring text scenarios.

Purpose

Contents

Scenario

Lifecycle

Form
Why use a
scenario ?

What is the knowledge
expressed in a scenario ?

In which form is a
scenario expressed ?

How to manipulate
a scenario ?

evolves

aims at

has

expressed
under

Figure 4: The CREWS framework for describing scenario-based approaches

Figure 5 gives an overview concerning the content view. Scenarios can address
an organisational work context (C), they can represent the internal interplay of
components within the current or future system (A), or – the most frequent case –
they can focus on the interaction between the system and its environment (B).
Interaction scenarios, in turn, can be studied in an in-bound direction (what
constraints does the environment place on the system?) or in an outbound
direction (what impact has the system on its environment?). Inbound interaction
scenarios are called blackbox scenarios if they do not consider system internals;
combinations of interaction with internal scenarios are called whitebox scenarios.

Scenario purpose and impact showed much more variation than expected from
the research literature. While researchers discuss the application of scenarios for
making abstract models understandable, to reach partial agreement and con-
sistency, practitioners in the survey also reported scenario usage for task decom-
position in complex projects, as a linkage between development phases, and as
design aids and boundary conditions for object models.

CREWS 477

A System internal scenarios
 no consideration of external

context of system

B Interaction scenarios
 direct system interactions of

actors and other systems

C Environmental scenarios

 B + system environment

system

goals,
resources,

business proc.
etc.

 other
stakeholder stakeholders

A

B

C

other
systems

Figure 5: Types of scenario content

Consequently, the life-cycle of scenarios found in practice is much more involved
than addressed by current research. The framework in figure 1 covers a broad
variety of possible methodologies. Many software companies follow an informal
development cycle that contains just general goals and future scenarios, but no
conceptual models. On the other extreme, formal scenario techniques in man-
agement science often abstract reality to the values of a few key variables and
strategic events. In between, UML has adapted Jacobsen’s (1995) approach,
which groups a collection of inbound interaction scenarios (expressed as
message trace diagrams or collaboration diagrams) into a use case for
manageability. However, as figure 2 shows, this definition of scenarios is clearly
too narrow. For example, practitioners also employ use cases for managing
internal scenarios of technical systems, e.g. in telecommunications.

Many large projects consider scenario selection, structuring and evolution as key
unresolved issues. Multiple views on scenarios (e.g. developer, user and manager
view on the same scenario) and the traceability of scenarios across project phases
(e.g. interplay between scenarios and prototypes, elaboration of scenarios into test
cases) still await solid solutions. Finally, methodological advice when to embed
what kind of scenario technique into traditional methods, based on sound cost-
benefit analysis of scenario usage, is one of the most crucial topics to be
addressed when the vision of scenario-integrated methodologies such as
promoted by UML is to become a reality. In the remainder of this paper, we
discuss how the CREWS project has addressed these issues.

478 M. Jarke

animate

capture

initial
model
initial
model

new
model
new

model

existing
system
existing
system

new
system

new
system

change
definition

reverse
analysis

legacy
integration

change
implementation

future
scenario

future
scenariochange

envisionment

goal/requirementgoal/requirement

refinement/negotiation

validation scenario
generation/

requirements refinement

C1

C3

C4

scene selection/
goal discovery

scenario abstraction/
goal discovery

C2

current
scenario
current

scenario

Figure 6: Positioning the CREWS method/tool components
in the framework of figure 1

4 The CREWS Tools

Following the empirical studies, the CREWS project has developed prototypical
solution components for some of the most pressing issues identified in industry.
Four such components have been developed. The first two focus on requirements
elicitation, the last two on requirements validation (cf. figure 6 for an overview):

1. Scenario-extended traceability: In model-based approaches such as UML,
the background information on which modeling decisions are based is
quickly forgotten. Moreover, traceability of scenarios throughout the lifecycle
was identified as a critical issue by almost all industry projects. The C1 com-
ponent extends traceability support in a process-integrated development
environment back to the requirements sources. It includes an editor for real-
world scenes captured in multimedia, and links the capture of these scenes to
the goal/requirements hierarchy in a kind of FMEA infrastructure (Haumer
et al. 1998). At the product level, the linkage from scenes to more formal
scenario descriptions is provided by an advanced editor for message sequence
diagrams.

2. Authoring support for text scenarios: Users of object-oriented approaches
complain about lack of authoring guidelines (content guidelines as well as
style guidelines) for writing use cases and scenarios. By a combination of
authoring patterns and interactive natural language understanding, the C2
component (nick-named L’Ecritoire after the famous student cafe at
Sorbonne university) supports not only the structured text presentation of
scenarios but also their content analysis. This process leads to a formal

CREWS 479

knowledge base of models, but also to the discovery of new goals in the text
of the scenario (Rolland and Ben Achour 1997).

3. Systematic generation of validation scenarios: Another critical issue is the
question of coverage: how many scenarios are enough to characterise the
requirements to a system? This question can only be answered with respect to
reference domain knowledge. However, typical reference models focus on the
normal case, plus maybe a few most likely exceptions (e.g. Scheer 1994). In
contrast, the exploration of relevant exception scenarios is one of the most
important tasks of risk analysis in requirements engineering. The CREWS-
SAVRE toolkit (component C3) has synthesised the literature on non-
functional requirements (performance, reliability, security, user-friendliness,
...) into small reusable patterns of possible exception scenarios which can
perturb normal-case scenarios, thus stimulating new requirements. The
collections of possible exception scenarios, each linked to typical recovery
mechanisms, are delivered as Excel spreadsheets which allow what-if
analysis concerning the occurrence and treatment of each exception type.
The resulting requirements are then stored in standard RE tools such as
Requisite Pro. This way, not only inbound scenarios of system usage and
system environment but also outbound analyses of system impact can be
conducted (Sutcliffe et al. 1998).

4. Cooperative animation as a validation tool for distributed systems: In
complex distributed systems with many overlapping scenarios, traditional
scenario delivery mechanisms do not give an adequate overall picture of
system behavior and impact since they neglect the interference effects. The
C4 component offers a management-game like animation for the
specification of distributed work scenarios defined in the formal
requirements modeling language Albert. Albert can be understood as an
agent-oriented extension to UML. The cooperative animation helps
stakeholder groups identify problems in their specification and better
envision the planned change (Dubois and Heymans 1997). Guiding the
animation requires, in principle, complex theorem-proving based on
temporal logic. However, careful domain analysis enabled us to replace
general theorem provers largely by pattern-based checking mechanisms
which focus specifically on problems typically found in distributed
cooperative work applications.

Industrial evaluation of all four components is underway. In addition, the four
tools are being grouped into two larger-scale demonstrators. One shows a text-
based requirements elicitation and validation cycle based on the components C2
and C3 – a direct extension of the Use Case approach in OOSE (Jacobson 1995).
The other demonstrates a multimedia-based cooperative elicitation and validation
approach, based on components C1 and C4. In the following subsections, we
briefly sketch both these demonstrators.

480 M. Jarke

4.1 Requirements Elicitation and Validation Based on Text
Scenarios

This demonstrator closes a gap in the object-oriented software engineering
approach initially proposed by Jacobson (1995) and now being brought into the
UML effort. This gap is fourfold:

• The process by which use cases are selected, and by which scenarios are
developed from them, is only vaguely defined.

• Systematic guidance what specific scenarios to elaborate within a given use
case is completely missing.

• There is no systematic procedure how to validate the use cases and scenarios
against the requirements, and how to feed the results back in order to expand
the scenarios, and to refine or correct the requirements.

• Use cases and scenarios are hardly supported by present UML-oriented tools.

Our solution to these issues is shown in figure 7. It relies heavily on several
hundred knowledge patterns of different kinds. Coherent with the framework in
figure 1, it starts with a set of high-level goals/requirements represented in a hier-
archical structure such as offered by standard RE tools such as Requisite Pro.

requirements validator

3. automatic
scenario

generation

2. specification of
use cases

1. acquire
requirements

5. change
requirements

4. walkthrough
scenarios

patterns for automatic
requirement checking

MS-excel presenter
download interactive
MS-Excel worksheetsRequisite Pro

CREWS-SAVRE method
modeling use cases and

environment

Ecritoire interface

CREWS-SAVRE
method

event/information
analysis, reuse

generic reqts linked to
NATURE OSMs

natural language use
case description

Figure 7: Text-oriented scenario-based requirements elicitation and validation

Following the guidelines provided by L’Ecritoire, initial use cases are developed
from the initial goals in natural language. The integration of pre-existing use
case texts is possible with some more effort; yet another option would be the
adoption of standard scenarios from a business process reference model in the
domain in question. The analysis of these texts is guided by patterns of structured

CREWS 481

natural language (case frames), as well as of domain knowledge (object system
models and goal models). The result is not only an initial set of normal-case base
scenarios but also their internal representation in the mentioned formalisms.

This internal representation of a scenario, typically comprising a few dozen steps,
is now reflected against patterns of exception types gained from the literature on
non-functional requirements such as performance, reliability, user-friendliness,
and the like. Based on the user’s judgement, and possibly further stored domain
knowledge, about the relevance of specific non-functional requirements in the
given application, a family of exception scenarios is generated for the use case,
and stored for (a) validating and refining the present set of requirements and (b)
regression testing during future requirements changes.

For the validation walkthroughs, a compact representation of the resulting
scenario family can be downloaded onto an Excel spreadsheet, annotated with a
suggested walkthrough method (again based on patterns) which helps the
developer compare the scenarios systematically with the existing requirements.
The resulting requirements changes are stored back into the requirements tool,
together with traceability to the scenarios that caused these changes.

This approach has been successfully applied to requirements processes within
several companies including DHL and GEC-Marconi.

4.2 Requirements Traceability and Change Envisionment
Based on Multimedia Scenes

In technical or media-oriented domains with complex system interfaces such as
found in computer-integrated engineering and manufacturing, white-box or even
black-box interaction scenarios involve several different users and system com-
ponents. It is very hard to understand the interplay between these agents from a
formal specification or even from the interaction scenarios of a single user with
the system, as described in the use case approach.

An animation of the specification, as supported by component C4 above, is an
important first step to improve understanding and facilitate validation in the
stakeholder group. However, unless such an animation is very much tailored and
thus expensive, it will still be rather abstract with respect to the present reality
experienced by stakeholders. The CREWS-EVE demonstrator therefore links the
animation environment with the C1 component that provides traceability back to
real-world scenes captured in multimedia.

482 M. Jarke

Existing reality

Real-World Scenes

Real-World Examples

Goal Model

Goal Model ´

Conceptual Model

capture

structuring

abstraction
of indicative
properties

extension with
optative properties operationalisation

Animation Traces

validation
by animation

trace analysis

Environment
Existing system

extending optative prop.
operationalisation

traditional modelling

component-internal

added through integration

backtracking
explanation

backtracking
explanation

backtracking
explanation

model
improvement

Figure 8: Functionalities of the CREWS-EVE scene-oriented demonstrator

Figure 8 displays the services gained from this integration in the context of the
framework of figure 6. In the left dark box, the C1 components assists in the
goal-oriented, cooperative and traceable abstraction of requirements and scenario
structures from captured real-world scenes. In the right box, C4 offers animation
of cocneptual models. In between, existing goal-oriented modelling techniques
such as proposed by (Mylopoulos et al. 1992) are used for mapping goals to con-
ceptual solution models, and for evolving the current-system goals towards the
new system goals by adding desirable properties and deleting unwanted aspects.
The dashed lines indicate the specific, explanatory services offered by the inte-
gration of both components. Positive experiences with a process along these lines
(with somewhat simpler hypertext tool support) have recently also been reported
in (Kaindl 1998).

The screendump in figure 9 offers an illustration how CREWS-EVE actually
supports these options, taken from a trial application in the ADITEC gear factory
at RWTH Aachen. The task is to validate one of the goals in the annotated goal
tree (upper left of the figure) by animating the conceptual model derived from it
(a distributed system specification partially visible in the right upper box). When
several stakeholders cooperatively play this animation, they hit a surprising new
feature they do not remember from their experience with the old system. They
therefore invoke the traceability to the real-world scenes underlying the devel-
opment of this system feature (via the goals). One of the three relevant real-world
example fragments (video clips excerpted from the real-world scenes during the
initial analysis) reveals that a worker actually missed this feature in the system,
and lost valuable time through a manual work-around. This justifies the

CREWS 483

surprising extension of requirements whose consequences became visible in the
animation.

R
(+):1

(-):3

S

3

2

4

1

G3.2
Measurements are

reported to central sys.

G0
Support information exchange

for production management

(+):

(-):

R SG1
Support production

order transfer

(+):

(-):

R SG2
Support production

time reports

R
(+):5

(-):1

S

1
6

5
G1.2

Orders are distributed
to production

(+):

(-):

R SG3
Support quality
data exchange

G3.1.1
Target measures are provided

with production order

G3.1.2
Measures are distributed

for production lines

Real World Examples related: 6 R(+):5

(-):1

S
G1.1

Orders are scheduled 1
6

5

R
(+):4

(-):2

S

1

G1.3
Orders are retrieved

by worker 3

2

R(+):3

(-):2

SG2.1
Production times

are measured 6

5

5

3

R
(+):3

(-):0

S

2

1
G3.1

Provide production
with target measures

1

R(+):1

(-):2

SG2.2
Production times are

received by central sys. 2

1

3

1

Figure 9: Screendump of the CREWS-EVE demonstrator including multimedia
editor, goal editor, and animation guidance tool

The status of stakeholder agreement about goals, the availability of real-world
scene evidence for and against goals, and the process status of the goal itself
(proposed, reviewed, agreed, ...) are all visible in the coloured annotations shown
in the individual goals of the goal editor in the upper left. This focuses man-
agement attention on those goals where either further work or explicit decision-
making is needed. The linkage of scenes and scenarios directly to goals, rather
than indirectly via conceptual models, has proven more flexible and work-
efficient in our experiences and once more highlights the need to complement
object-oriented IS engineering techniques by a systematic requirements
engineering approach which goes beyond the simple listing of use cases and
interaction scenarios.

5 Summary and Outlook

In this paper, we hope to have demonstrated that the applicability of scenario
techniques extends far beyond what is covered by the standard use case approach
in object-oriented systems engineering. We presented a framework in which these
different uses can be positioned at the rough level. The CREWS project has used

484 M. Jarke

this framework for a comprehensive study of literature and practice in scenario-
based requirements engineering even though space restrictions forced us only to
sketch the main results here.

Retrieve
examples from

goal

Animate by
replaying real-
world example

Goal

Current State Model

Validate goal using
real world example

real world examples

real world
examples

real world
examples

Explain
animation step

with real world
example

uses

uses

Animate by
avoiding real-
world example

Capture real
world example

Improve current
state goal model

Check
abstraction of
current state
goal model

Improve goal
operationalisation

Improve Albert
model

Change requests

Change requests

Animation trace

Animation trace

Figure 10: Composite method chunk describing the usage
setting demonstrated in figure 9

For some of the most critical unsolved problems, the CREWS project has
developed prototypical methods and tools which are currently undergoing
industrial trials. Early experiences indicate that significant progress over the
present state-of-the-art is indeed possible with reasonable effort, and there is
strong commercial interest in some of the tools, as indicated above.

To make the methodological part of the experiences available beyond individual
demonstration or industrial uptake, an additional effort is required. Using the
requirements engineering process model developed in the NATURE project
(NATURE Team 1996), an Internet-based method server is set up which
describes important chunks of scenario-oriented process experience and linka
them to the basic process model offered in OOSE textbooks. A first set of about
40 such process chunks is reported in (Plihon et al. 1998). Figure 10 shows a
simplified version of such a process chunk, describing the method behind the
example in figure 9. This method server, following a component-based approach,
will also be open to other groups doing research in scenarios, thus assisting

CREWS 485

cumulative and experience-based systematisation of our knowledge how scenarios
can used effectively and efficiently in information systems engineering.

Acknowledgement

This work was supported by the European Commission via ESPRIT Long Term
Research project 21.903 (CREWS). Thanks are due to the task leaders Klaus
Pohl, Colette Rolland, Pierre-Yves Schobbens, Alistair Sutcliffe and to numerous
co-workers and members of the industrial advisory board.

References

Arnold, M. et al. (1998): Survey on the scenario use in twelve selected industrial
projects. Aachener Informatik Berichte 98-7 (submitted for publication).

Carroll, J.M. (ed.) (1995): Scenario-based design: Envisioning work and
technology in system development. New York: John Wiley and Sons.

Dubois, E./ Heymans, P. (1998): Scenario-based techniques for supporting the
elaboration and the validation of formal requirements. CREWS Report
98-15, Universite de Namur, Belgium.

Fowler, M./Scott, K., (1997): UML Distilled – Applying the Standard Object
Modeling Language. Addison-Wesley.

Haumer, P./Pohl, K./Weidenhaupt, K. (1998): Requirements elicitation and vali-
dation with real-world scenes. IEEE Transactions on Software
Engineering, Special Issue on Scenario Management, December 1998.

Hsia, P./Samuel, J./Gao, J./Kung, D./Toyoshima, Y./Chen, C. (1994): Formal
approach to scenario analysis. IEEE Software, March 1994, 33-41.

Jacobsen, I. (1995): The use-case construct in object-oriented software
engineering. In J.M. Carroll (ed.), Scenario-based design: Envisioning
work and technology in system development. New York: John Wiley,
pp. 309-336.

Jarke, M. (ed.) (1998): Special Issue on Interdisciplinary Uses of Scenarios,
Requirements Engineering Journal 3, 3/4.

Jarke, M./Bui, X.T., Carroll, J. (1998): Scenario management – an inter-
disciplinary perspective. Requirements Engineering Journal 3, 3/4.

Jarke, M. Kurki-Suonio, R. (eds.) (1998): Special Issue on Scenario
Management, IEEE Transactions on Software Engineering 24, 12.

Jarke, M./Mylopoulos, J./Schmidt, J.W./Vassiliou, Y. (1992): DAIDA – an
environment for evolving information systems. ACM Trans. Information
Systems 10, 1, 1-50.

486 M. Jarke

Kaindl, H. (1998): Combining goals and functional requirements in a scenario-
based design process. To appear, Proc. HCI 98.

Mylopoulos, J./Chung, L./Nixon, B. (1992): Representing and using non-
functional requirements: a process-oriented approach. IEEE Trans. Soft-
ware Eng.18, 6, 483-497.

NATURE Team (1996): Defining visions in context: models, methods and tools
for requirements engineering. Information Systems 21, 5, 566-592.

Plihon, V. et al. (1998): A reuse-oriented approach for the construction of
scenario-based method chunks. Proc. Intl. Conf. Software Process,
Chicago 1998.

Rolland, C./Ben Achour, C. (1997): Guiding the construction of textual use case
specifications. Data & Knowledge Engineering, to appear.

Rolland, C. et al. (1998): A proposal for a scenario classification framework.
Requirements Engineering Journal 3, 1, 23-47.

Scheer, A.-W. (1994): Business Process Engineering – Reference Models for
Industrial Enterprises. Springer-Verlag.

Sutcliffe, A.G., Maiden, N.M./Minocha,, S./Manuel, D. (1998): Supporting
scenario-based requirements engineering. IEEE Transactions on Soft-
ware Engineering, Special Issue on Scenario Management, December
1998.

Weidenhaupt, K./Pohl, K./Jarke, M./Haumer, P. (1998): Scenario usage in soft-
ware development: current practice. IEEE Software, March 1998, 34-45.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	February 1999

	CREWS: Towards Systematic Usage of Scenarios, Use Cases and Scenes
	Matthias Jarke
	Recommended Citation

	EF_22_WiB102.PDF

