
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1985 Proceedings International Conference on Information Systems
(ICIS)

1985

Using Expert Knowledge in Database-Oriented
Problem Solving
Jiawei Han
University of Wisconsin

Larry Travis
University of Wisconsin

Follow this and additional works at: http://aisel.aisnet.org/icis1985

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1985 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Han, Jiawei and Travis, Larry, "Using Expert Knowledge in Database-Oriented Problem Solving" (1985). ICIS 1985 Proceedings. 2.
http://aisel.aisnet.org/icis1985/2

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1985%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985/2?utm_source=aisel.aisnet.org%2Ficis1985%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Using Expert Knowledge in Database-Oriented
Problem Solving

Jiawei Han and Larry Travis
Computer Science Department

University of Wisconsin
Madison, Wisconsin 53706

Abstract
Database-oriented problem solving often involves the processing of deduction rules whichmay be recursive in relational database systems. In this kind of problem solving, expertknowledge plays an important role in the guidance of correct and efficient processing. Thispaper presents a modularized relational planner RELPLAN, which develops a knowledge-directed in ference and planning mechanism for efficient processing of deduction rules in rela-tional DB systems.

Introduction
Relational database technology provides us with a power- To effectively augment expert knowledge in relationalful tool for in formation processing. The conventional use DB system. a relational problem solving plannerof relational DB systems is aimed at the management and RELPLAN has been built. Similar to many expert sys-retrieval of stored data. With the emerging research on tems, expert knowledge is encoded in RELPLAN in theexpert database systems, expert system technologies are form of rules and incorporated with queries in deductivebeing merged into relational database systems and the compilation to answer queries and solve problems. In ourapplication domains of relational DB technology are design, the modularization of a rule system and the com-being expanded to those that require knowledge-guided pilation technique are emphasized. A modularized ruleprocessing of both stored and derived data. system is built on top ofaconventional relational DB sys-

tem and RELPLAN uses these rules to transform user'sThis paper studies the application ofexpert knowledge in deductive queries into non-deductive query programs,DB-oriented problem solving. Problem solving is the functioning as a deductive front-end of the relational DBprocess of developing a structure of (in the simpiest case, system.
a sequence 00 actions to achieve a goal. Database-
oriented problem solving is the problem solving involv- Complex DB-oriented problem solving requiresplanninging targe databases, in our discussion, large relational technique, which develops a structure of query plansdatabases. As in many expert systems, DB-oriented (programs) for a problem before actually solving it byproblem solving is featured with deductive process. Our DB operations. The planning technique implemented indiscussion is more concentrated on the deductive process our project is the means-ends analysis technique whichwhich may involve recursive rules. develops hierarchical plans for complex queries based on

the modification of the original deductive module. TheTo efficiently implement such problem solving process in planning process is divided into two phases: the selectionrelational databases, two issues should be addressed. The of a planning strategy and the generation of the actualfirst one is the transformation of recursion into iteration plan. The selection of planning strategy is based on thein relational databases. Two recent research papers query provided by database user and the information&Hens 846 and &Ullm 856 deal with this problem from stored in the database.two differeni angles. &Ullm 856 develops query evalua-
tien techniques based on "capture rules" an a graph This paper first illustrates the architecture of the relation-representing clauses and predicates, while [Hens 84] at planner RELPLAN, then discusses the compilation ofpresents us algorithms which compile queries involving non-recursive and recursive queries using expen knowl-recursive rules into iterative programs. The second issue edge. A two-phase planning mechanism using planis how to use expert knowledge and planning techniques modules is introduced and the efficiency of knowledge-to guide efficient processing of recursion or iteration in directed inference and planning in database-orientedrelational databases. This is the topic of this paper. problem solving is also demonstrated in the paper.

178

The Architecture of the Relational ules. A query program is thus generated with all virtual
relations resolved and ready for further processing in

Planner-RELPLAN relational database systems.

Here we present the architecture of RELPLAN, a prob-
lem solving planner for a relational DB system in Figure The Compilation of Non-Recursive
1. The motivation of the development of such a relational
planner is at introducing a modularized rule system and Database Queries
knowledge-guided problem solving to relational DB sys-
tems. Vittual relations are introduced in RELPLAN and the

transformation of queries which involve virtual relations
RELPLAN uses expert knowledge to transform user's is based on the deductive queo compilation technique
deductive queries into non-deductive query programs. developed in logic and database research [Reit 78] [Chan
Expert knowledge is coded in the form of rules and 81][Keli 81] and the que,y mod(fication techniques
entered into a rule base which consists of global rules and developed in database research [Ston 75][Cham 75]. The
local rules. The global rules are available for all scopes compiled approach delays the database accessing in the
of deductive queries, while local rules are confined in deductive process until all intensional components (those
deductive and plan modules to incorporate the queries reference to virtual relations) are resolved to the access
which reference these modules. The transformation of of extensional database (which contains base relations
deductive query into non-deductive query program is only).
based on the resolution principle and query modification
techniques. The output query program of RELPLAN can The following example shows the compilation of a non-

be sent to query optimization routines to generate query recursive deductive query.
access plans for database accessing.

The transformation process can be divided into steps. (1)
The RELPLAN software is written in C language using For each variable which references a virtual relation. e.g.
YACC (a compiler-compiler) running under UNIX "c" in Example 1. , follow the query tree up to find or
(VAX/11-750). The RELPLAN grammar is specified in node or where root, as the rule augmentation point. (2)
appendix using the extended BNF grammar. Substitute the variable by its rule definition, combine the

query with the rule definition at the 'rule augmentation
Like other relational database languages, RELPLAN point to form a combined query tree, and rename the
contains data definition part and data manipulation overlapped variable names if any, e.g. rename pl to p hf
(query) part. To ensure a high level query interface, in Example 1. (3) The merging, conflict removing and
RELPLAN query language is defined the same as con- collapsing process can be performed on the combined
ventional relational query language QUEL, except that query tree to simplify it. For example, in Example 1, the
the tuple variables that queries reference may also be medium part in the categoo rule conflicts with taU uncle
deductive modules. The data definition part, where rules in the query and is thus collapsed. The same happens in
and modules are specified, is the major enhancement thefemate part, which confiicts with the rule brother def-
comparing with other relational languages. Rules are inition. Only the male subtree of the mU part in the cate-
specified as virtual relations, search constraints and other gory rule is augmented with the user's query. The col-
stereotyped rules (such as start, iteration, bound, etc.) in lapsing technique is a kind of query optimization. (4) The
deductive modules. The deductive module contains (i) above process is repeated for every virtual variable in the
the specification of local schemas (for temporary generic modified query until all virtual relation references are
relations during problem solving process) and local resolved. To concentrate our discussion on recursion, the
rules, (ii) stereotyped rules, and (iii) an optional planning details of non-recursive compilation algorithm are omit-
section which contains local specification and planning ted here.
steps. Each planning step contains planning rules which
append, delete or modify the corresponding stereotyped
rules in the deductive module.

Knowledge Augmentation for
When processing a query which references a deductive
module, RELPLAN uses the information provided in Recursive Database Queries
user's query and rules in the deductive module to decide
which planning strategy should be adopted and what con- Most database queries involving recursive rules can be
straints should be augmented during problem solving transformed into iterative query programs using compila-

process. The query is then resolved by using the knowl- tion techniques [Hens 84]. This paper discusses how to
edge provided in the rules base and/or deductive mod- augment expert knowledge in compilation.

179

Example 1. Find Mary's tall uncle(s) who is (are) older than her father.

schema person (name, age, sex, fa, mo, height)
mmge ofpl, p2,p3 is person
ddine virmal relation b: brother(name = pl.name, bro = p2.name)

where pl.ja = p2.ja andpl.mo = p2.mo andp2.sex = "male"
dejine virtual relation pa: parent(ch = pl.name, pr = p2.name)

where pl.fa = p2.name or p1. mo = p2.name
de/inf virtual relation u : uncle(name = pl.name, unc = p2.name)

where pl.name = pa. ch andpa.pr = b. me andb.bro = p2.name
dejine virtual relation c: category(name, scale)1

where c.name = pl.name and
((c. scale = "tall" and (pl.sex = "male" andpl.height > 6)

or (pl.sex = "female" andpl.height > 5))
or (c.scale = "medium" and(pl.sex = "male" andpl.height < =6 andpl.height>5)

or (pl.sex = "female" andpl.height < =5 andpl .height >4) »

User's query:

range ofx is uncle
retrieve (x.name, x. unc) where

x. name = "mary" andx. unc = c. name andc. scale = "tall" mdx. name = pl.name
and x.unc = p3.name andpl.fa = p2.name andp2.age < p3.age

The resolved query by RELPLAN preprocessor:

range ofpl is person

range ofphf is person
retrieve (pl.name , p3.name)

where pl.name = "mary" and p2.age < p3.age and p2.name = pl.fa
and p3.height > 6 and (pl. fa = p hf.name or pl.mo = p.hf. name)
and p hf.fa = p3.fa and p hf.mo = p3.mo and p3.sex = "male"

1 In Prolog the "category" rule can be written as,

category (Name, tall) :-
person (Name, -, Sex,, 1 Height),
((Sex = male, Height > 6); (Sex = female, Height > 5)),

category (Name, medium) :-
person (Name, , Sex, , , Height),
((Sex = male, Height S i, Height = < 6);
(Sex = female, Height > 4, Height < 5)).

180

Database Structure and Expert Knowledge

Schemas
Rules

User's Modules
Deductive -- >
Query Local Schemas I

Local Rules I
Stereotyped Rules I
Plans I

RELPLAN Transformation

Non-Deductive Query Program

Figure 1

The architecture of the relational planner RELPLAN

SEARCH CONSTRAINTS AND example, the customer may require that the total flight
EXPERT KNOWLEDGE time should be less than certain hours, the arrival time or

the fare should be within some range, etc. The air-flight
Combinatorial explosion is the major challenge in both administrator may have some regulations such as that the
AI and DB-oriented problem solving. Most AI problem interval of transfer should be within some range, etc. The
solvers use various kinds of heuristics to reduce large travel agency may have some heuristic rules such as that
search space. DB problem solvers search an even larger each flight should be in the same direction as that from
search space in general than AI problem solvers, due to the initial departure to the final destination, etc.
the breadth-first search flavor of database operations in
exploring all possible paths in the database. Obviously, In general, the more knowledge augmented, the more
the augmentation of search constraints is critical in DB- precise search. The key is how to incorporate with expert
oriented problem solving. This can be seen from a prac- knowledge appropriately.
tical example.

It is nontrivial in the augmentation of constraints for
Example 2. The air-flight reservation problem: Suppose iterative processing of database queries. The first prob-
there are two relations.#ight and ai,port in the database. lem is termination problem for iterative process. In our
To schedule a flight from one airport to another distant example if there is no restrictive on connecting consecu-
airport, one step retrieval is generally inadequate and the tive flights, new flight will be generated infinitely. (It
problem solver must connect individual flights appro- could even fly around the globe many times!) A simple
priately to form consecutive flights, which involves itera- constraint such as the fare must be less than $1000 can
tion or recursion on large data relations. terminate the iteration. Clearly, the upper bound offare

or airtime ensure the termination of the iterative process.
There are various kinds of constraints which could be This is the general case for recursive definitions which
augmented during the problem solving process. For contain functions whose values increase/decrease mono-

181

Example 2

The new flight (derived by connecting two consecutive flights) could be written in Prolog as,

new flight (Flight No, Departure, Arrival, Departure.Time, Arrival_Time, Fare) : -
flight (Flight No, Departure, Arrival, Departure Time, Arrival.Time, Fare).

new flight (Flight No, Departure, Arrival, Departure Time, Arrival Time, Fare) :-
new flight (Flight-Not, Departure, Intermediate, Departure Time, Arrival Time, Farel),
flight (Flight-N02, Intermediate, Arrival, Departure-Time, Arrival.Time, Fare2),
Fare is Farel + Fare2.
FlighlNo is Flight-Nol $ Flight-N02.2

2 $ is an operator which forms a virtual flightno Flight No from Flight Not and Flight N02.

iterative process, it is necessary to specify upper or lower makes the problem solving process focus on a small
bounds. group of rules, which does not reduce the search effort

in rule invocation but also minimizes the interaction
The second problem is the augmentation of a query con- among different rules and goals.
straint at each iteration. Some query constraint should be
augmented at each iteration, while some should not. For The deductive module itself can be viewed as a virtual
example, if the fare that a user likes to pay from Madison relation by a database user. The name of the module is
to Tokyo is between $800 to $1000, the $1000 maximum the same as either an extensional or intensional relation.
fare must be augmented to terminate those flights with If it is of the same name of an extensional (base) relation,
accumulated fares exceeding $1000. But the $800 mini- the module represents the "closure" of the data relation
mum should not be augmented until at the jinal stage, which can be generated by the operations specified inside
otherwise most of the possible answers would be cut-off the module. If it is of the same name of a virtual relation,
at early iterations. it defines the procedures in the module that specify how

to obtain the named virtual relation.
The augmentation of constraints in DB problem solving
needs expert knowledge. To automate the problem solv- The reference rule of RELPLAN follows a scope rule
ing in deductive database system, expert knowledge which is similar to the scope rules in conventional pro-
should be entered and used appropriately. One approach gramming languages. Rules, schemas and queries de-
is to classify and modularize knowledge to make different fined inside the module can be referenced and executed
constraints play different roles in constraint augmenta- only by rules and queries inside the same module. User's
tion and isolate the interaction of different rules. With the queries which reference the module relation treat the
help of a modularized rule system, the expert may ap- module as a virtual relation. No individual rule or rela-
pend, delete or modify rules and constraints easily and tion inside the module can be referenced by user's query.
the system may have an exact control on the deductive The rules outside the module cannot reference the rules
process. That leads to the design of deductive modules in inside the module. The rules inside the module can refer-
RELPLAN. ence the rules in the global rule space but not those in

other modules. A module variable can be declared and
used inside the module which reference the entire visual

THE DEVELOPMENT OF (module) relation.
DEDUCHVE MODULES

To facilitate the iterative rule processing, which is a
The deductive module is a module that consists of a group major motivation of the design of a deductive module, a
of rules, schemas and queries which form a problem sequence of stereotyped rules are defined inside the de-
solving package. It modularizes the rule system and ductive module. It specifies start condition, iteration,

182

Example 3. The deductive module flight for air-flight reservation.

Constraint and heuristic rules posed by air-flight manager are considered as query independent

knowledge which should be specified inside the modulel, while user's queries are considered as

dynamic requirements which should be specified outside.

schema fligh« fno, dpt, arr, dpttime, arrtime, fare)
airpor«port, lat, long, size) /* lat: latitude, long: longitude */

module flight

schema new_fligh« fno, flno, nno, dpt, arr, dpttime, arrtime, fare)

range ofmf is module flight
range «ff is flight
mng, ofn is newflight
mnge ofPO, pl, p2, p3 is airport
define constraint s : same.direction(dptl,arrl,dpQ,arr2) is

(pO.lat - pl.lat)* (p2.lat - p3.lat) > 0 and 10.long - pl.long)* (p2.long - p3.long) > 0
where
s.dptl = pO.port and s.arrl = pl.port mds.dpe = p2.port and s.arr2 = p3.port

start - > retrieve into new flight (f.fno, 0, f.fno, f.dpt, f.arr, f.dpttime, f.arrtime, f. fare)
where f.dpt = mf. dpt

iteration - > retrieve into
new.flight (n.fno $ f. fno, n.fno, f. fno, n.dpt, f. arr, n. dpttime, f. arrtime, n.fare + f. fare)

constraint -> n.arrtime + 3 > f.dpttime and n.arrtime + 1 < f.dpttime

constraint for iteration -> same.direction(f. dpt, f.arr, mf.dpt, mf. arr)

upper bound-> (1) mf. fare (2) mf.arrtime

end module

3 Rules inside the module can also be modified, added or deleted by experts using primitives similar,to plan rules. This
feature is not hard to be added but simply ignored in our prototyped implementation.

183

final condition, search constraints and upper. and/or hours. Could we list the suitable flights (departure time,
lower bounds. arrival time and fare) for him?

Example 3. The deductive module flight for air-flight In the output query program, the constraint rule same
reservation. direction is resolved, the user's query is properly aug-

mented and the program will terminate when no tuple is
Constraint and heuristic rules posed by air-flight man- obtained in the generic relation newjight.
ager are considered as query independent knowledge
which should be specified inside the module'' while The transformation process proceeds according to the
user's queries are considered as dynamic requirements following algorithm.
which should be specified outside.

Algorithm 1. The transformation of a deductive query
The moduleflight contains several different components: using a deductive module.
(1) a local generic relation new,#ight, (2) the specifica-
tion of local rules, e.g. theconstraint rule same direction, (1) The selection of the deductive module.
and (3) a sequence of stereotyped rules to specify initiali-
zation, iteration, final states, constraints and bounds. ' A deductive module, viewed by database users as

a virtual relation, is selected when user's query
The generic relation newjUght is used to iteratively gen- references the module relation. (e.g. Module
erate the consecutive flights during the problem solving fight is selected by query: range ofx is/light re-
process. The local rules such as same direction is used for trieve (x.dpttime,. .)where..).
performing inference inside the local module. The (2) Initialization:
stereotyped rules includes (1) general constraints, e.g.,
the transfer time between two fjights should be between (1) Retrieve the data that stored in the database.
l t 0 3 hours (n.arrtime +3> .f*mme and n. arr- (2) Initialize the iterative process by augmenting
time +1<f *ttime), and constraints for iteratively start rule with the constraints and user's query
connnecting the consecutive flights, e.g. flying in the appropriately. (The unbounded part of the user's
same direction as the initial departure and the final arrival query is not augmented at this stage, e.g.
posed in query, i.e., same direction#.dpt, f.arr, mf. dpt, x.fare > 800).
mf.arr)(2) initial state: which is the portion of the base
relation night which has the same initial departure as the (3) Iteration:
user's query. (3) iteration rule: iteratively connecting the
flights to obtain new fight where the departure of the If the iteration part is missing in the deductive
tuples inflight is the same of the arrival of the tuples in module (possibly by deletion), the module is non-
generic relation new,#ight, and (4) bound rules: which iterative and there is nothing generated in itera-
are used for terminating the iteration and implicit control tion part.
of constraint augmentation. In our case, we specify that
there must be upper bound rule for fare or arrival time. The iteration part will be enclosed in a loop . . end

loop statement for iterative processing.

THE TRANSFORMATION OF i) Take the iteration rule specified in the module
QUERIES USING A DEDUCTIVE as the center rule, where the new generic relation
MODULE is generated by using base relations and the old

generic relation with constraints appropriately
The algorithm for module transformation can be derived augmented. The bounded part of the user's query
by studying the air-flight reservation example. is also augmented with iteration rules.

Example 4. The transformation of the deductive query ii) The tuples in the new generic relation which
using deductive modules for air-flight reservation. meet the user query requirements are retrieved

and deleted from the generic relation if they are
Suppose a user wants to book a ticket from Madison to not to be re-used in generating new tuples in the
Shanghai. The price range is asked between $800 and generic relation.
$1000 and the total travel time is required less than 30

184

Example 4. The transformation of the deductive query using deductive modules for
air-flight reservation.

Suppose a user wants to book a ticket from Madison to Shanghai. The price range is asked

between $ 800 and $ 1000 and the total travel time is required less than 30 hours. Could we lift the

suitable flights (departure time, arrival time and fare) for him?

A database user may write it in QUEL,

range ofx is flight
retrieve (x.dpttime, x. arrtime, x.fare)
where x.dpt = "Madison" and x.arr = "Shanghai"

andx.fare > 800 and x.fare < 1000 andx.arrtime - x.dpttime < 30

The [esolved query program by RELPLAN preprocessor is as follows,

range ofx a flight
rang, ofn is new-night

retrieve (x.dpttime, x.arrtime, x. fare)
where x. dpt = "Madison" and x.arr = " Shanghai" and x.fare > 800
and x.fare < 1000 and x. arrtime - x.dpttime < 30

retrieve into n : newflight (fno, fl no, f2no, dpt, arr, dpttime, arrtime, fare)
where n.fno = x.fno and n.flno = 0 and n.Qno = x.fno
and n.dpt = x.dpt and n_.arr = x.arr and n..dpttime = x.dpttime
and n .arrtime = x. arrtime and n .fare = x.fare
and x.dpt = "Madison" and n.fare < 1000
and n .arrtime - n.dpttime < 30

loop

range ofPO is airport
range ofpl is airport
range ofp2 is airport
range ofp3 is airport
retri,ve into n: new_flight (fno, flno, flno, dpt, arr, dpttime, arrtime, fare)

where n .fno = n.foo * 1000 + x.fno and n .flno = n.fno
and n..f2no = x.fno and n .dpt = n.dpt and n..arr = x. arr
and n_.dpttime = n.dpttime and n..arrtime = x.arrtime
and n..fare = n. fare + x.fare and n.arrtime + 3 > x.dpttime
and n.arrtime + 1 < x.dpttime and pO.port = x.dpt and pl.port = x.arr
and p2.port = x.dpt and p3.port = x.arr and n.fare < 1000
and n..arrtime - n..dpttime < 30
and (PO. lat - pl.lat)*(p2.lat - p3.lat)>0
and (PO. long - pl.long) * (p2.long - p3.long) > 0

retrieve (n..dpttime , n_.arrtime, n .fare) and de/m newflight
wheri n..dpt = "Madison" and n.arr = "Shanghai" and n..fare > 800
and n.fare < 1000 and n.arrtime - n.dpttime < 30

exii when newflight is empty

end loop

185

iii) The iterative process terminates when there is departure to its neighboring big port, then find flights.
no new tuple could be generated in an iteration. from this port to the big port near the final destination,

etc. Here we demonstrate the bottom-up approach in our
(4) Constraint augmentation: planning.

Constraints are augmented according to the
module specification. The specification includes TWO-PHASE PLANNING
constraint for certain kind of stereotyped rules
(e.g. ireration, start) and a general constraint. There should be different planning strategies for different

queries even in the air-flight reservation planner. lf a user
(5) Deduction rule transformation: poses a query asking to book a local flight, say, from

Madison to Chicago, the planner doesn't need to consider
The deductive components (rules referenced in any hierarchical algorithms. If a user books a flight from
user query and the augmented rules in the deduc- New York to Tokyo, the planner should just consider the
tive module) are resolved by using rule definition flight via big ports only. But if a user wants to book a
defined inside the module or in global rule space cheap flight from Los Angeles to any cities in northern
if there is no corresponding local rule definition. England, it is better to schedule both big and small ports

in northern England. A travel agent can easily deal with
such diverse queries because he has good knowledge on

Planning Using Expert Knowledge geography and airflights. For our poor planner, we even
don't know which planning strategy should be considered
before knowing the port information. Apparently, thePlanning is the mechanism that develops a representation planning process is hard to be completed in one phase andof a course of actions before acting in problem solving
a two phase planning technique is suggested: First decideprocess. Planning mechanism is widely used in AI prob-
what kind of planning categories the query belongs to bytem solvers [Sace 77][Nils 80]. For complex problem retrieving more information from databases, then decidesolving in expert database systems, planning technique
the scheduling process in detail.will also be a necessity [Han 84]. This can be seen in the

air-flight reservation problem.
In our two-phase planning process, the first phase is to

In the air-fight reservation, if a traveller wants to fly retrieve port information into several small new relations
from a small port to another remote small port, the expe- according to user's query and determine the selection of
rience suggests us to schedule the flights like this: first fiy planning strategies based on the results. Our new small
from the departure port to a neighboring big port, then fly relations are (1) Local (dpt, arr) which represents that the
in the direction to the final destination via big ports only. departure port is quite close to the arrival port and only
The final flight would be the flight from the big port local schedule is needed. All the others are non-local
which is close to destination directly to the final destina- flight schedules. (2) BigBig (dpt, arr) which means that
tion. Because most of the small ports are ignored in our both the departure and arrival ports are big ports and
search, the search effort will be reduced considerably. scheduling flights via bigports only is the simple sugges-

tion, (3) BigSmall (dpt, arr) which means that the de-
This scheduling technique is resulted from one useful parture port is a big one but the arrival is a small one. The
planning strategy: means-ends analysis [Barr 81], which planner will suggest to schedule .Ryto a big port which
compares the current goal with a current task domain to is close to the destination via big ports only and thenjly
extract a difference between them and select a relevant directly to the desn'nan'on. (4) Sma#Big (dpt, arr) which
operator to reduce the difference. The small-big-big- flies from a small port to a distant big port, and (5) SmaU-
small flight planning is essentially a hierarchical problem Small (dpt, arr), which flies from a small port to a distant
solving process which avoids passing through tiny ports small port.
in scheduling a long distance travel.

Let's discuss the first phase of the two-phase planning.
There are at least two approaches in scheduling such a We first retrieve the airport information using user's
search process, a top-down and a bottom-up approach. In query into five small relations: Local, BigBig, BigSmaU,
the top-down approach, we first find the appropriate con- Sma[!Big, SmallSmall.
secutive flights from a big-port closed to the initial One example query is:
departure to a big-port closed to the final destination,
then find the local flight to connect these ports. In the In general cases, the retrieval for port information will
bottom-up approach, we first find a flight from the initial result in only a small number of tuples in one of the five

186

range ofp 1, p2 is airport
retrieve into s : SmaliSmall(dpt = pl.port, arr = p2.port)

where
pl.port = mf. dpt andp2.port = mf. arr
/* pl and p2 are both small ports */
andpl.size < 10 andp2.size < 10
/* Two ports are located beyond local distance */
andpl.lat - p2.lat > 5 andpl.lat - p2.lat > -5

relations. For example, a query asking for flights from section augmented at the end of the module. The plan
Madison to Los Angeles will result in only one tuple in module is more complex than unplanned deductive

SmallBig relation. modules. But with two phase planning, the generated
query program will possibly be just slightly more com-

The second phase of the planning will be the generation plex than or the same as or even simpler then (e.g. in
of a query program which processes the resulted tuple in cal flight plan generation the iteration part is deleted)
the small relation. In RELPLAN syntax,iwe have yor the unplanned process but result in efficient processing.
tuples in variable: reiname do... query program gener-
ation". For the empty relation, query program will not The two-phase planning splits the planning section of the
be generated and the corresponding planning strategy is module into two parts. The first part consists of a set of
ignored because it makes no sense to process on empty query statements which retrieve information for the
relations. This ensures the appropriate planning strategy selection of the planning strategy.
selected based on diverse user query requirements and
data in the database. The second part of the planning section consists of one or

several steps for each planning strategy. Each step in a
planning strategy is a modification of some stereotyped

THE DEVELOPMENT OF PLAN rules of the original deductive module. For example, in
MODULES SmallSmall planning strategy, the first step is to fty from

the local port directly to the neighboring bigport, which
The plan module is a deductive module with a planning is written as,

append constrain,forstart-> f. arr = pl.port andpl.size > 10 /* flying toabig port */
detele itemtion /* flying in one step */

Let's see the specification of a plan module.

Example 5. The plan module.Right only the case SmaN-
Small of the planning section is demonstrated:

187

Ex 5. The plan module fight: only the case Smal/Small of the planning section is demonstrated.4

module flight
.....

plan ->

schema SmallSmall(dpt,arr)

retrieve into SmaliSmall(pl.port, p2.porO
where...

for tuples in s: SmaliSmall do
step 1: /* First fly to a big port in one step. */

append constraintfor start -> f.arr = pl.port andpl,size > 10
delete iteration

srep 2: /* Then fly via big ports only to a big port which is close to the destination. */
append constraint for iteration -> f.arr = pl.port and pl.size > 10
replace jinal-> n.arr = pl.port ands.arr = p2.port and

pl.lat - p2.lat < 5 and pl.lat - p2.lat > -5
andpl.long - p2.long < 5 and pl.long - p2.long > -5

step 3: /* Finally fly from that port directly to the destination. */
delete iteration

endfor

end module

4 To simplify our discussion, the other four cases Local. Big:Big BigSman. SmaliBig are not included here.

THE DEDUCTIVE QUERY pared for each non-empty plan relation. For
TRANSFORMATION BASED ON example, the query in Example 6 results in a non-
PLAN MODULES empty plan relation SmallSmall because Madison

and Suzhou are both small ports and located be-
Because the specification of planning section is based on yond local distance. The planning strategy for
the modification of its deductive module, the transforma- SmallSmall is selected.
tion process is naturally based on the modification of the
deductive module. (2) Phase 2: Plan generation:

Algorithm 2. The transformation of deductive queries Modify the module based on plan rules and gener-
using planning techniques. ate the corresponding query program.

(1) Phase 1: The selection of planning strategies. For each plan step do, append, delete or replace
the original stereotyped rules by the rules speci-

Data retrieval for the plan selection relations fied in planning section. The modification forms
specified in planning section. Planning is pre- a modified modyle and the generation of the

188

queries based on the modified module follows tion in the intermediate step transformation.

Algorithm 1.
The algorithm is demonstrated by using the fol-

Because the initialization is needed only for the lowing example.
first step, the start rule in the deductive module is --

simply ignored in the rest steps. Because the final Example 6. Find flights from Madison to Suzhou (a small
termination in the intermediate step (not the final port in China) using planning technique.
step) does not generally follow user's query. A
jinal part is usually added by rule replacefinal in User's query:
the planning section and processed as final situa-

range ofx is flight
retrieve (x. dpttime, x.arrtime, x. fare)
where x.dpt = "Madison" and x.arr = "Suzhou"

anc(x.fare > 800 andx.fare < 1000 and x.arrtime - x.dpttime < 30

The resolved query program of RELPLAN preprocessor:
/* The first phase of two-phase planning, retrieve into SmaliSmall, efc. has been discussed
in 5.1. Only the second phase, plan generation, is demonstrated here. */

,[Inge ofx is flight
retrieve (x.dpttime, x. arrtime, x.fare)
where x.dpt = "Madison" and x.arr = "Suzhou" -/

andx.fare > 800 andx.fare < 1000 andx.arrtime - x.dpttime < 30

retrieve into n. : new_flight (fno, fl no, Ono, dpt, arr, dpttime, at-rtime, fare)
where
n.fno = x.fno and n.flno = 0 and n.f2no = x.fno
and n .dpt = x.dpt and n..arr = x. arr and n..dpttime = x.dpttime
and n-.arrtime = x.arrtime and n..fare = x.fare and x.dpt = "Madison"

and x. arr = pl.port and pl.size > 10 and n..fare < 1000
and n-.arrtime - n-.dpttime < 30

loop

range ofpl is airport
range Ofp2 is airport
/* Collect the new.flights whose arrival ports are close to the destination */
re1rieve into tmprelation and delete newflight

where
n.arr = pl.port and s.arr = p2.port
and p l.lat - p2.lat < 5 and p 1.lat - p2.lat > -5
and pl.long - p2.long < 5 and pl.long - p2.long > -5

mnge ofn is newflight
range of pO is airport
range ofp) 8 drport
/* Obtain newflight by connecting the old new_flight with the flight which
meets the constraints. */
retrieve into n. : new flight (fno, flno, f2no, dpt, arr, dpttime, arrtime, fare)

189

where
n.fno = n.fno $ x.fno and n.flno = n.fno and n.f2no = x.fno
and n..dpt = n.dpt and n.arr = x.arr and n .dpttime = n.dpttime
and n .arrtime = x.arrtime and n.fare = n.fare + x. fare

-

and n.arrtime + 3 > x.dpttime and n.arrtime + 1 < x. dpttime
and pO.port = x.dpt and pmg.port = x.arr
and p2.port = x.dpt and p3.port = x.arr and x.arr = pl.port
and pl.size > 10 and n .fare < 1000 and n.arrtime - n..dpttime < 30
and (pO.lat - p.mg.lat) *(p2.lat - p3.lat) > 0
and (PO.long - p-mg. long) * (p2.long - p3.long) > 0

exit when newflight is empty

end loop

range ofn is imp relation

/* Flying from the port which is close to the destination directly to the final destination. */
retrieve into n : new flight (fno, flno, flno, dpt, arr, dpttime, arrtime, fare)

where
n.fno = n.fno $ f. fno and n .flno = n.fno and n .flno = f. fno
and n.dpt = n.dpt and n..arr = f. arr and n_.dpttime = n.dpttime
and n .arrtime = f. arrtime and n .fare = n. fare + f. fare

-

and n.arrtime + 3 > f.dpttime and n.arrtime + 1 < f.dpttime
and n .fare < 1000 and n .arrtime - n .dpttime < 30

retrieve (n .dpttime , n_.arrtime , n..fare)
where
n .dpt = "Madison" and n .arr = "Suzhou" and n.fare > 800
and n.fare < 1000 and n.arrtime - n.dpttime < 30

The Processing Efficiency Using We divide the discussion into several cases:

Search Constraints and Planning (1) Bare iterative search without any restriction and
with user's query processed at the end:

The planning process generates a longer query program
than the unplanned process. In general, people will The process will never terminate because without
wonder whether they will generate more efficient pro- restriction the flight connection with new flight
cessing. Let's analyze the processing efficiency based on will iteratively generate infinite large number of
primitive calculations for the query in Example 6. tuples in generic relation new flight.

Suppose there are 100 k tuples with each taking 100 bytes (2) Iterative search with user's bound information
in relationflight and 5 k tuples with each taking 100 bytes augmented during iteration:
in relation port in the database. The total database size
will be 10.5 megabytes which cannot be processed by With bound information (e.g. maximum fare
main memory algoritms and database processing is the $1000) augmented, the iteration will terminate.
necessity. Suppose that the average cost of each flight to Suppose for each step, the averaged selectivity is
a local small port is $50.00 and from one big port to 1/1000. The first time around 100 tuples selected,
another is $150.00. The average propagation cycle the second iteration will generate 10000 tuples.
(number of flight connections) via small ports will be 20 The total number of tuples processed in 20 times
and via big ports only will be 7. could be: 100 + 10000 + + 10020 =

190

100* (10020 -1)/(100 - 1) = 104°, a Conclusion
number too huge to be processed in a reasonable
amount of computing time. The database oriented problem solving often involves

recursive or iterative processing of large data relations in
(3) Iterative search with (2) and same-direction con- relational database systems. To achieve efficient process-

straint augmented: ing, besides the query processing strategy and optimiza-
tion schemes in database technology, the most important

With same direction constraint augmented, the factor is knowledge-directed inference and planning
selectivity will be increased by 4 times, the total techniques.
number of tuples processed could be: 25 + 252
+ . + 2520 = 1028, which is a significant This paper presents a prototyped relational planner
reduce but still too large to be processed. RELPLAN, which develops an inference and planning

mechanism for the augmentation of knowledge in pro-
(4) Iterative search with (3) and transfer time con- cessing recursive rules in relational DB systems. Using

straint augmented: the example of air-flight reservation a knowledge-
directed deduction and planning mechanism is presented

With transfer time augmented, the selectivity will for database oriented problem solving. It shows: (1) The
be increased by around 10 times, the total number modularization of a rule system benefits the appropriate
of tuples processed could be: 2.5 2.52 + . . . augmentation of expert knowledge in deductive process;
+ 2.520 = 1.6IOS, another significant reduce (2) Planning and constraining will significantly reduce
and it requires reasonable processing power. search space and result in more efficient problem solving

process; (3) The selection of planning strategy is based
(5) Iterative search with (4) and planning technique on user's query and the knowledge stored in expert data-

augmented: base systems, which is the first-phase of the two-phase
planning approach; the second phase, plan generation, is

With planning technique augmented, the search based on the planning rules defined in the planning sec-
on small ports are limited only at the end of the tion of the deductive modules; and (4) The deductive and
search (in SmaliSmall example), the average plan modules will result in high level query interface with
number of iterative search will be significantly transparent underlying deductive and planning process.
reduced, suppose to be 8 in the example. Then the
total number of tuples processed could be: This is just a preliminary step for the development of
2.5 + 2.52 t. . . + 2.58 = 2500. It is a knowledge-directed deduction and planning in expert
quite efficient algorithm. The planning technique database systems. A variety of different planning mech-
contributes significantly because it reduces the anisms should be explored. Their effectiveness, limita-
average number of iterations from 20 to 8. tions, relationship and differences comparing with plan-

ning mechanisms in AI research need to be explored in
(6) More efficient execution strategies could be ex-

plored. For example, with the big port constraint
depth.

(pl.size > 10) augmented in the start and itera- Acknowledgements: The authors wish to thank David
tion part of the plan module, the relation flight can DeWitt, Michael Carey and Charles Dyer for their help-
be first restricted to the portion which contains ful discussions and comments.
big ports only, which will reduce the size of the
relation to be iteratively executed. Some heuris-
tics such as cost or time preference may also be REFERENCES
augmented to cut-off the growing of the inter-
mediate relations. [Barr 81] Barr, A. and Feigenbaum, E., 71:e Handbook

01'Ar*#cial Intelligence (1/01. I-/H), Heuristic Press
A more strict simulation model can be built for compari- William Kaufmann Inc., 1981
son ofthe performance of database execution. Our coarse [Brod 84] M. Brodie, J. Mylopoulos, and J. Schmidt,
estimation shows the order of magnitude difference on "On Conceptual Modeh'ng ", Spring-Verlag, 1984.
number oftuples processed, it is reasonable to expect that [Cham 75] D. Chamberlin, J. Gray and I. Traiger
the more detailed simulation and performance testing will "Views, Authorization and Locking in a Relational
still be in favor of knowledge augmentation and planning Data Base System", Proceedings of the National
techniques. Contputing Conference, May 1975.

191

[Chan 81] C. Chang, "On the Evaluation of Queries [Nils 80] Nilsson, N.J., Pn'nciples of Art(ficial Intern-
Containing Derived Relations in a Relational Data gence, Palo Alto, California, 1980.
Bases", In [Gall 81]. [Reit 78] R. Reiter, "Deductive Question-Answering on

[Gail 78] H. Gallaire, and J. Minker, Logic and Data- Relational Databases", In [Gall 78].
bases, Plenum Press, New York, 1978. [Reit 84] R. Reiter, "Towards a Logical Reconstruction

[Gall 81] H. Gallaire, J. Minker, and J. Nicolas, Ad- of Relational Database Theory", In [Brod 84].
vances in Data Base 71:eo,y, Volume 1, Plenum [Sace 77] E. Sacerdoti, A Structurefor Plans andBehav-
Press, New York, 1981. ior, American Elsevier, New York, 1977.

[Han 84] J. Han, "Planning in Expert Database System [Ston 75] M. Stonebraker, "Implementation of Integrity
by Using Rules", Proceedings of the First Intema- Constraints and Views by Query Modification",
tional Workshop on Expert Database Systems, Proceedings 1975 ACM-SIGMOD Conference on
Kiawah Island, South Carolina, October 1984. Management of Data, 1975.

[Hens 84] L. Henschen, and S. Naqvi, "On Compiling [Ston 76] M. Stonebraker, E. Wong and P. Kreps, "The
Queries in Recursive First-Order Databases", Design and Implementation of INGRES", ACM
Journal ofACM 31 (1), 1984. Transactions on Database Systems 1(3), Septemkr

[Keli 81] C. Kellog, and L. Travis, " Reasoning with 1976.
Data in a Deductively Augmented Data Management [Ullm 82] J. D. Ullman, Principles ofDambase Systems,
System", in [Gal] 81]. 2nd ed. Computer Science Press, Potomac, Mary-

[Kung 84] R. Kung, E. Hanson, Y. Ioannidis, T. Sellis, land, 1982.
L. Shapiro, and M. Stonebraker, "Heuristic Search [Ullm 85] J. D. Ullman, "Implementation of Logical
in Data Base Systems", Proceedings of the First Query Languages for Databases", Proceedings
International Workshop on Expert Database Sys- 1985 ACM-SIGMOD Conference on Management of
tems, Kiawah Island, South Carolina, October 1984. Data, Austin, Texas, 1985.

[Naqv 83] S. Naqvi and L. Henschen, "Synthesizing
Least Fixed Point Queries into Non-Recursive Itera-
tive Programs", Proceedings International Joint Acknowledgements: The authors wish to thank David
Conference on Art</iciai Intelh'gence, Karlsruhe, DeWitt, Michael Carey and Charles Dyer for their help-
West Germany, August 1983. ful discussions and comments.

192

APPENDIX: THE SYNTACTIC SPECIFICATION OF RELPLAN5

< RELPLAN > : < Data Definition > < Data Manipulation >

< Data Definition > : { <Data Deft > } { < Module Definition > }

< Data Defl > : < Schema Definition > 1 < Variable Declaration > | < Rule_Definition >

< Schema Definition> : schema { Rel-Name '(' Attr.Name {',' Attr-Name } ')' }

< Variable Declaration > : range of Var-Name {'; Var Name } is [module] Rel Name

< Rule.Definition > : < Virtual Relation.Defn > 1 < Search_Constraint Defn >

<Virtual Relation-Defn > : define virmal relation [Var.Name ': '] Rel-Name '(' < Attr Reference >

{',' < Attr_Reference > } ')' [where <Qualification>]

< Search-Constraint Defn > : 6kfine cons:mint [Var_Name ':'] Constraint Name '('

< Attr.Reference > {',' < Attr Reference > } ')' [where <Qualification >]

< Atlr Reference > : Attr Name l Attr Name '=' <Expression>

<Module.Definition> : module Module Name <Module Body > end modzile

<Module Body> : { < Data-Defl > } { < Stereo_Typed_Rule-Defn>}[< Plan_Definition>]

< Stereo.Typed-Rule-Defn> : <Step> '= >' <Num Query> { <Num Query> }

I constraint [for <Step> 1.'=>' <Num Clause> { <Num.Clause> }

1 (upper I lower) bound ' = > ' < Num Attribute >

<Step> : stan I iteration I final

< Num Attribute> : ['(' Integer ')'] <Attribute>

<Num Query> : ['(' Integer ')' 1 <Query>

< Num Clause > : ['(' Integer ')'] < Clause >

< Attribute > : Var Name '.' Attr Name

< Plan_Definition> : plan ' = > ' < Plan Pretude > < Plan-Steps >

< Plan Prelude > : < Data Defl > < Data Manipulation >

< Plan Steps > : for tuples in Var-Name ':' Rel Name do<Step> { <Step> } endjor

193

<Step> : step Integer ':' <Modification> { <Modification> }

< Modification > : (append I replace) < Stereo-Typed_Rule.Defn>

I delete (< Step > I cons:mint Uor < Step >] I (upper I lowe, bound)

< Data Manipulation > : { { < Variable Declaration>} <Query> }

<Query> : retrieve <Target Listl > where [<Qualification >]

retrieve into Rel_Name < Target LisQ > where [<Qualification >]

< Target Listl > : '(' <Attribute > {',' <Attribute > } ')'

< Target LisQ > : '(' < Expression > {',' < Expression> } ')'

<Qualification> : '(' <Qualification> ')'

I not < Qualification >

<Qualification > (and I or) <Qualification >

< Clause>

<Clause> : < Expression > < Relop > < Expression >

1 Constraint Name '(' <Attribute> {',' <Attribute> } ')'

< Relop> : =1!=1<1<=1>1>=
< Expression > : < Term > (+ 1 -) < Term >

< Term > : < Factor > (* 1 /) < Factor >

< Factor > : < Attribute > 1 Constant I String

6{ . . . } denotes a set of zero or more occurrences, [...] denoms one or zero occurrences, and (. .1. .) denotes one of
several occurrences,

194

APPENDIX : THE SYNTACTIC SPECIFICATION OF RELPLANS

< RELPLAN > : < Data Definition > < Data Manipulation>
< Data_Definition > : { < Data Defl > } { < Module.Definition > }
< Data Defl > : < Schema Definition > 1 < Variable_Declaration > 1 < Rule Definition >
< Schema Definition > : schema { Rel Name '(' Attr Name {',' Attr-Name } ')' }

< Variable Declaration > : range of Var Name {',' Var-Name } is [module] Rel-Name
< Rule.Definition> : <Virtual Relation Defn> 1 < Search Constraint Defn >
<Virtual_Relation Defn > : de/ine virtual relation [Var-Name ':'] Rel_Name '(' < Attr-Reference> {','

< Attr_Reference> } ')' [where <Qualification >]
< Search Constraint.Defn> : define constraint [Var Name ':'] Constraint-Name '(' <Attr.Reference>

{',' <Attr-Reference> } ')' [where <Qualification>]
< Attr Reference > : Attr-Name I Attr.Name ' =' < Expression >
< Module_Definition > : module Module Name < Module Body > end module
<Module Body> : { < Data_Defl > } { < Stereo-Typed_Rule Defn>}[< Plan.Definition >]
< S te reo Typed.Rule Def n> : < S tep > ' = > ' < Num.Query > { < Num Query> }

constraint [for <Step>]'=>'<Num Clause> {<Num Clause > }
|(upper lower) bound ' = > ' < Num_Attribute >

<Step> : starr I iteration I jinal
<Num Attribute> : ['(' Integer ')'] <Attribute >
<Num Query> : ['(' Integer ')'] <Query>
<Num Clause> : 1 '(' integer ')' 1 <Clause>
<Attribute > : Var Name '.' Attr Name
< Plan.Definition > :plan'=>' < Plan Prelude > < Plan Steps >
< Plan Prelude> : < Data Defl>< Data Manipulation >
< Plan Steps > : for tuples in Var Name ':' Rel Name do <Step> { <Step> } endfor
<Step> : step Integer ':' < Modification > { < Modification > }
< Modification > : (append I replace) < Stereo Typed_Rule Defn >

l delete(<Step> I constraintuor<Step>] 1 (upperl lower) bound)
< Data Manipulation > : { { < Variable Declaration > } < Query > }
<Query> : reirieve < Target Listl > where [< Qualification>]

retrieve into Rel Name < Target LisQ > where I < Qualification >]
< Target Listl > : '(' <Attribute> {',' <Attribute> } ')'
< Target LisQ > : '(' < Expression > {',' < Expression > } ')'
< Qualification > : ' (' < Qualification > ')'

not <Qualification>
<Qualification > (and I or) < Qualification >
< Clause >

<Clause> : < Expression > < Relop> < Expression >
1 Constraint-Name '(' <Attribute> {',' <Attribute > } ')'

<Relop> :=1!=1<1<=1>1>=
< Expression > : <Term> (+1-) <Term>
<Term> : < Factor > (* | /) < Factor >
< Factor > : < Attribute > 1 Constant I String

s { ... I denotes a set of zero or more occurrences, 1 ... I denotes one or zero occurrences, and (..1 -) denotes one of

several occurrences.

195

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1985

	Using Expert Knowledge in Database-Oriented Problem Solving
	Jiawei Han
	Larry Travis
	Recommended Citation

	tmp.1422244364.pdf.zOZiH

