
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2011 Wirtschaftsinformatik

2011

Towards an Artifact Model for Requirements to IT-
enabled Product Service Systems
Marina Berkovich
Technische Universität München, berkovic@in.tum.de

Sebastian Esch
Technische Universität München, esch@in.tum.de

Christian Mauro
Technische Universität München, mauro@in.tum.de

Jan Marco Leimeister
Universität Kassel, leimeister@acm.org

Helmut Krcmar
Technische Universität München, krcmar@in.tum.de

Follow this and additional works at: http://aisel.aisnet.org/wi2011

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2011 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Berkovich, Marina; Esch, Sebastian; Mauro, Christian; Leimeister, Jan Marco; and Krcmar, Helmut, "Towards an Artifact Model for
Requirements to IT-enabled Product Service Systems" (2011). Wirtschaftsinformatik Proceedings 2011. 95.
http://aisel.aisnet.org/wi2011/95

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2011%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2011%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011/95?utm_source=aisel.aisnet.org%2Fwi2011%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Towards an Artifact Model for Requirements to IT-enabled

Product Service Systems
Marina Berkovich

Lehrstuhl für Wirtschaftsinformatik
Technische Universität München

Boltzmannstr.3
85748 Garching

berkovic@in.tum.de

Sebastian Esch
Lehrstuhl für Wirtschaftsinformatik
Technische Universität München

Boltzmannstr.3
85748 Garching

esch@in.tum.de

Christian Mauro
Lehrstuhl für

Wirtschaftsinformatik
Technische Universität München

Boltzmannstr.3
85748 Garching

mauro@in.tum.de

Jan Marco Leimeister
Fachgebiet Wirtschaftsinformatik

Universität Kassel
Nora-Platiel-Str. 4

34127 Kassel

leimeister@uni-kassel.de

Helmut Krcmar
Lehrstuhl für Wirtschaftsinformatik
Technische Universität München

Boltzmannstr.3
85748 Garching

krcmar@in.tum.de

ABSTRACT

The development of IT-enabled product service systems (PSS)

– a combination of physical technological elements (products)

and service elements – poses various challenges because of

their complexity and the involvement of multiple domains.

Classical requirements engineering (RE) addresses these

problems only insufficiently. This paper proposes an artifact

model for the requirements to PSS, which helps in overcoming

these problems. The results generated by RE or the

development activities are called artifacts. The artifact model

defines different types of artifacts and their interrelations. This

provides a structure which facilitates the handling of a large

number of requirements. The applicability of the presented

artifact model is demonstrated in an example where the artifact

model is applied to a real-life product. We show that the

requirements can be modeled using the artifact model, and that

common problems of RE can be avoided in this way.

Keywords

Product Service Systems, PSS, Hybrid Products, Requirements

Engineering, Artifact Model

1. INTRODUCTION
Requirements Engineering (RE) has the task of determining

correct and complete requirements [10]. RE plays an important

but crucial role in the development process [10]. A poor

execution of requirements engineering often results in project

failures [10]. Also, defects in the product whose correction in

late phases is cost-intensive are the result of poor RE [29].

Many approaches and techniques are proposed for RE in the

literature. Nevertheless, RE still faces major challenges, the

first of which is the communication between the participants

involved in the development [11]. Especially in the

development of PSS, there are different fields, ranging from

marketing experts to developers, with different backgrounds

and interests in the product. A common method for enhancing

communication is through a medium, called artifact [12].

A second challenge in RE is the variety and complexity of the

requirements resulting in difficulties structuring them [10, 11].

Stakeholders express their requirements on rather different

abstraction levels. Managers, for example, think in terms of

business goals and overall needs that the product has to satisfy,

while operators and developers have a rather technical view,

and express very concrete requirements. It is the task of RE to

find the rationale for each concrete requirement by establishing

a link to a higher level requirement. At the same time, the high

level requirements have to be concretized to be realizable

during the development [26]. Knowing the interconnections

between high and low level requirements is necessary to assure

the impact analyses of changes and the proper decision

taking [2].

A third challenge in RE is the conceptual gap between

requirements and design. RE has to support the transformation

of the requirements into the design of the product [26]. This

involves the so-called “translation” of the initial requirements

into the “language of the developer” and the test that all

requirements are correctly understood [19].

10
th
 International Conference on Wirtschaftsinformatik,

16
th

- 18
th
 February 2011, Zurich, Switzerland

241

These aspects of requirements engineering are especially

important for complex and innovative products consisting of a

high number of sub-components with a high level of

technological integration. Product Service Systems (PSS) – also

called hybrid product – consist of integrated bundles of physical

technological components (referred to as tangible products),

and intangible services [36]. By introducing PSS, companies

are changing their strategy from being “product-centric” to

“customer-centric” [14], i.e., they do not offer products or

services, but offer solutions to customers’ problems [36].

A simple example of a customer’s problem is that the customer

wants a constant room temperature of 21°C. He is interested in

acquiring a solution for this problem as a whole, not on

acquiring the single components that are necessary, such as

radiator, control-software and services, e.g., maintenance [6].

The three challenges of RE mentioned above are especially

important in the context of PSS [35]: (1) communication:

achieving a correct and comprehensive understanding of the

requirements by all domains, (2) structuring: a consistent and

complete concretization and partitioning of the requirements

according to the domains, and (3) an integration of the RE into

the conceptual design.

This paper proposes an artifact model that addresses these

issues. An artifact model provides a classification scheme for

requirements and allows a problem-oriented distinction

between different requirement categories [15]. It enables the

stepwise concretization of the requirements in accordance with

the progress of the development process and the RE. The

artifact model is also a communication medium, and enhances

the communication between the domains involved in the

development process of PSS [12, 15]. The artifact model

presented here is based on the characteristics of PSS, as well as

on the insights of the role of RE in the lifecycle of PSS. The

artifact model is illustrated by an example in order to

demonstrate its applicability. While in this paper we focus

mostly on the artifacts, the methods used to generate the

artifacts and the process of applying them are mentioned only

briefly.

The research presented was aligned according to design science

and is explained using the guidelines of Hevner et al. [17]. The

understanding of the Problem Relevance was done through a

literature review [3, 6] and an empirical study [5]. This work

resulted in a framework [4], defining that an essential part of

an RE model for PSS is an artifact model, used to structure the

requirements to PSS. According to the principle of Design as a

Search Process, we regarded existing artifact models and

similar concepts in our research as a background for the design

of an artifact model for PSS. The principle of Design as an

Artifact requires the result of the research to be an artifact. In

our case, the developed artifact model for PSS is the artifact of

our research. According to the principle of Design Evaluation,

the artifact has to be evaluated in order to show its utility. We

evaluated the artifact model by applying it to an example of

real-world PSS.

2. THE ROLE OF RE IN THE

DEVELOPMENT OF PSS
In the center of PSS is the idea of increasing customer

satisfaction and thus generating competitive advantages [3, 7],

by providing an individualized solution to the customer’s

problem [32]. Thus, it is important to elicit and understand the

customer’s requirements completely. Furthermore, the PSS is

integrated both technically and organizationally into the value

creation processes of the customer [14], making it necessary to

understand it and derive requirements from it.

PSS integrate different components such as tangible products

and services so that they are not visible to the customer

particularly, but are evident as a solution [23]. A product may

be hardware, software, or a combination of both hardware and

software [3, 8]. The different components of the PSS are

developed by product, software, and service engineering, which

have different backgrounds and different understandings of the

development process and requirements engineering. The

domains have to be able to handle the requirements to PSS as a

whole and the different components of PSS in a coordinated

and complementary manner. Another aspect is modularization,

meaning the fractioning of the PSS in disjunctive packages that

are loosely coupled. Single modules can be standardized and

reused in different PSS [8].

The lifecycle of PSS is characterized by many interdisciplinary

tasks. It consists of the following phases [37]: (1) product

development: The development phase is divided into three

tasks: (a) task clarification (b) product conception and (c)

development-specific component design [35]. In the first task

the main parts of RE are taking place: the customer’s problem

is clarified and defined, and the requirements are elicited and

analyzed. In this task a first decomposition of the product into

tangible and intangible components is done and the

requirements are partitioned accordingly. Then, in the second

task, detailed function structures of the product are defined,

which describe the functionality of the product. The functions

are decided upon by the domain in which they are realized.

Again, the requirements are partitioned according to the

functions. In the third task, the single domains develop their

part of the product. (2) product marketing and (3) after-sales:

During these phases the requirements can change. The changes

and the traceability information of changes have to be

documented by the RE.

As indicated in the paragraph above, the analysis of the

requirements – including their concretization and partitioning –

is especially challenging for PSS. In parallel to the RE process,

a conceptual and logical design of the product has to be

developed [10]. This design is used to structure the

requirements in a form so that they can be delivered to the

development.

3. RELATED WORK
Based on an empirical study and literature reviews [3, 5, 6], we

concluded that in the literature, the development of PSS (e.g.

described in [23]) and also the RE are mostly elaborated upon

separately. In RE no integrated handling of requirements for

both products and services is present (cp. [3]).

242

Regarding artifact models, some related work can be found.

The Requirements Abstraction Model (RAM) of Gorschek and

Wohlin [16] is one of the first approaches that introduces

abstraction levels for requirements. In RAM the requirements

are concretized starting from high levels of abstraction to lower

levels. On the higher levels the requirements are given in an

abstract way, loosely defining what the product is expected to

do. On the lower abstraction levels, using information of the

concurrently conducted development steps, the requirements

are defined in greater detail. RAM is limited to software

requirements only and provides no further classification

possibilities for requirements. Another artifact model is the

Requirements Engineering Reference Model (REM) of

Geisberger et al. [15]. The basis of their method is an artifact

model that defines different classes of requirements on three

abstraction levels. REM clearly focuses on software

requirements for embedded systems where the hardware is

already given. A third artifact model based approach is

COSMOD-RE of Pohl and Sikora [30]. It is a method

supporting RE in the hardware/software co-design. It

distinguishes between requirement artifacts and development

artifacts. The method realizes a concretization of requirements

alongside the development process whereby a consolidation

between the requirements and development artifacts takes

place. They describe that it is important to align the

requirements within the first development steps. The reviewed

approaches are applied to software if hardware is given. They

do not consider special topics that are important for PSS as

modularization, interdisciplinarity, service requirements and

hardware requirements if hardware is to be developed also.

In RE and software engineering there are many process models,

e.g. [34] or V-model, but it is widely recognized that only

describing the process is not sufficient. By emphasizing the

results – i.e. artifacts – instead of prescribing a process,

domain-specific methods for producing artifacts can be used

without taking the variability of processes into account [25]. By

clearly defining the artifacts to be produced, each domain

involved in the PSS’ development can use its special

techniques or notations to develop the artifacts in a domain-

specific manner. The inter-domain communication is assured

by interchanging the artifact between the domains. This way,

the artifacts are the basis for the inter-domain communication

[21]. Because the goal of a process is always to create a result

in some form, the description of the envisioned results in form

of artifacts, enables the participants to focus on “what can be

done”, instead on “what should be done”. Furthermore, precise

completeness and consistency rules can be specified on artifacts

easily [25].

4. REQUIREMENTS FOR AN ARTIFACT

MODEL
The characteristics of PSS and the role of the RE in the

lifecycle of PSS have shown that a special approach to RE for

PSS is needed. In order to develop an artifact model for PSS,

requirements for the model are needed. We define an artifact

within an artifact model as a quantified information unit

created or used in a development task [9]. It is a result of a

development or RE activity [2]. An artifact bundles

requirements or development information that have similar

characteristics and belong to the same level of abstraction.

Based on the characteristics of PSS (section 2) and the RE

framework for PSS [4], the following requirements were

derived.

1. The artifact model should handle the requirements for a

PSS as a whole. PSS consist of multiple components which

are not easily distinguishable. It is important to handle the

requirements in an integrated manner for the whole

solution [35]. The integrated handling of requirements must

encompass all activities of RE, including those during the

development. The artifact model must be capable of being

integrated into the development.

2. The artifact model should integrate the views of

different domains. The domains involved in the

development of PSS often have different methodologies,

perceptions of requirements, and understanding of the role

of RE [5, 18]. It is important to handle the requirements

and constraints in mutual coordination. The artifact model

has to support the interdisciplinary handling of

requirements and the different domain views of RE. Hence,

the system behavior and the properties of the system have

to be described in a form that is easily comprehensible for

all involved participants.

3. The artifact model should concretize the requirements

and assign them to individual domains. The requirements

for single components of PSS have to be assigned to the

responsible domains (product, software and service

engineering) and to be realized using appropriate

development methodologies. The development processes of

the single domains take place simultaneously and in

coordination [35]. The artifact model has to support this

development principle by concretizing the requirements

across multiple abstraction levels, as well as by assigning

them to the domains and defining the interfaces necessary

for the inter-domain work.

4. The artifact model should describe relations between

requirements both within one domain and between

different domains. The material and immaterial

components of PSS are strongly interrelated and are hardly

divisible [35]. In a holistic development approach, the

interrelations between requirements must be handled

independently of the domains. The artifact model must

assure that the interrelations can be traced by assigning

information to each artifact that describes the relationships.

5. The artifact model should support the change

management by tracing relationships. During the

development, requirements can change [34]. These changes

may have effects on other requirements and on components

of the system. The artifact model should realize traceability

by setting the requirements in relation to each other.

6. The artifact model should be flexible, i.e., adaptable to

individual needs. The artifact model should concretize the

requirements through different levels of abstraction

(proposed by [16]). Dependent on the type of PSS (whether

it consists of hardware, software, services, or only two parts

243

of them), the needed elements have to be selected, and the

necessary relations between them need to be defined.

7. The artifact model should support module building. PSS

are structured into modules in order to enable the

standardization of single parts of them [8]. The artifact

model should be able to support the generation of modules.

5. AN ARTIFACT MODEL FOR

REQUIREMENTS FOR A PSS
Berkovich et al. [4] are convinced that a comprehensive RE

model should consist not only of a process definition and a set

of techniques, but also of an artifact model. An artifact model

provides a way of structuring and detailing the requirements

step-by-step so that they can be realized by the involved

domains. The development process of PSS is unique because of

developing an individual solution for the customer – a solution

that solves a customer’s problem and integrates the elements

developed by different domains. Since PSS promote an

integrated and concurrent development of tangible products and

services, our artifact model covers requirements to both of

them.

The concepts proposed by the existing artifact models

(section 3) were integrated into our artifact model for PSS.

Geisberger et al. [15] first introduced the principle of

structuring requirements in different artifacts. Since we

propose an artifact model, this principle is the foundation of our

work. However, the model of Geisberger et al. [15] has a major

shortcoming: the information an artifact defines and the

representation of this information are intermixed. Our model

therefore explicitly discerns between representation and content

of artifacts. As described by COSMOD-RE ([30]), the

concretization of requirements must be integrated with the

development process. It is thus necessary to establish two

different viewpoints: the requirements viewpoint dealing with

requirements information and the development viewpoint

dealing with development information. In our artifact model,

these two viewpoints are represented by two different kinds of

artifacts: (a) requirements artifacts and (b) development

artifacts. The concept of abstraction levels, first introduced by

RAM [16], and used by Geisberger et al. [15], was incorporated

in our artifact model. Our artifact model defines four

abstraction levels, whereby each artifact belongs to one

abstraction level.

5.1 Elements of the artifact model
In order to provide a clear structure, the meta-elements of the

artifact model are described here. In Figure 1 these elements

are depicted as UML class diagram. The two main types of

elements in our artifact model are abstraction levels and

artifacts. (The definition of an artifact was given in section 4.)

The information described by an artifact is situated at a certain

level of abstraction. The abstraction levels divide the

requirements into differently detailed layers dependent on the

progress of the development process. They combine the

artifacts created in the same phase of the development process,

and present a layer containing requirements or development

information of the same level of detail.

Apart from providing the content (of information), an artifact

should also define how the information is documented. The

artifact model thus explicitly separates between model

artifacts – describing the content of information – and

representation artifacts – describing the representation of

information. This means that the model artifacts describe the

content matter of an artifact, while the representation artifacts

describe the type of documentation of the information.

In order to clearly distinguish between different types of

artifacts, we introduce three types of model artifacts:

Requirements artifacts refer to the requirements of PSS. They

are the actual work products of the RE process and support

concretizing the requirements alongside the phases of RE, up to

their partitioning into requirements for each domain that is

involved in the development [15, 16, 29]. In order to easily

address the requirements artifacts, which belong to the same

level of abstraction, we bundle them into “requirements

artifacts bundles”. External artifacts describe external

information needed by the RE to create requirements artifacts.

An example for an external artifact is a list of all stakeholders

which are relevant for the development of the PSS.

Development artifacts are work products of development

tasks. Since RE and the first design steps have to be conducted

concurrently, some development artifacts are needed as an

input for establishing the requirements artifacts. The concurrent

conduction of these two tasks enables a continuous matching of

the requirements viewpoint and the design viewpoint. In this

way, it is assured that the design supports the satisfaction of the

requirements, and the requirements can be concretized, based

on the knowledge gained by the design steps [30].

Relations between the artifacts are modeled as Relation. Three

different types of relations are defined: (1) concretization

meaning that a requirement is concretized by another one [15];

(2) based-on indicating that one artifact is created by activities

that take the others as input; and (3) impact suggesting that one

artifact is used for structuring other artifacts.

This paper presents only the model artifacts; for reasons of

clarity, the representation artifacts and external artifacts are not

described here. The representation of certain artifacts in the

artifact model can be chosen individually, for example,

depending on company-specific standards, knowledge of the

participating domains, and needs of the customer.

Artifact

Development Artifact Requirement Artifact

Representation

Artifact

3 represent
Model Artifact

1 *

Abstraction Level

*1

RelationElement

External Artifact

*1

1
1

1 1

Figure 1. Elements of the artifact model for PSS

244

5.2 Detailed description of the artifact model
The artifact model shown in Figure 2 consists of four

abstraction levels that are based on the stages of the

development process of PSS (e.g., [35, 37]) and are therefore

given by the development. Each abstraction level contains

artifacts, which are bundling requirements or development

information having the same characteristics.

5.2.1 1st Abstraction Level – System Level
The first abstraction level is the System Level, consisting of

requirements artifacts combined according to their similar

content, and describing the generic requirements for a PSS.

Based on the properties of PSS, we distinguish between four

types of requirement information (cp. [3, 23]). The artifact

Customer and Stakeholder Requirements describes the

wishes of the customers [24, 29] and the requirements of other

stakeholders which are relevant for the PSS to be developed.

These requirements are very generic and describe the overall

purpose and goals of the product. Business Process

Requirements consist of the requirements derived from the

business processes of the customer which are relevant for the

PSS, since PSS are to be integrated into the value-creation

process of the customer [7]. For example, if the customer wants

a room temperature of 21°C, it is important to know how often

the air conditioning system will actually be in operation to

derive requirements for the frequency of maintenance. The

artifact Environment Requirements describes restrictions to

the realization of the PSS caused by the environment in which

the PSS will be deployed. Typical environment requirements

are given by laws, standards, products of competitors,

technologies, development methodologies, suppliers, ecological

factors, infrastructure and industry standards (e.g., [18, 24]).

The artifact Contractor’s Requirements consist of goals that

the contractor wants to achieve with the PSS. They describe the

resources that the contractor is able to provide for the PSS, as,

for example, possible efforts to be spent. These requirements

are usually the result of the abilities of the contractor [28] and

the general conditions of the development process [24].

Summing up, the requirements of the first abstraction level

describe the general requirements to the PSS on an abstract

level. These requirements correspond to the definition of the

initial requirements of the “task clarification” phase of the

development process of PSS (see section 2).

5.2.2 2nd Abstraction Level – Feature Level
As proposed by the development process, the “task

clarification” should develop a first design of the product, and

decompose it into tangible and intangible parts. In our artifact

model, the results of this task are stored in the 2nd abstraction

level.

This abstraction level consists of a development artifact, called

System Design, and four requirements artifacts bundled into

Design Requirements. The system design describes the design

of the product, and is generated based on the initial

requirements of the 1st abstraction level.

The system design defines the main

functions of the PSS and decides whether

they are realized by a technical product or a

service.

Based on the system design, the

requirements of the first abstraction level

are concretized. This concretization takes

the knowledge on the realization of

functions, provided by the system design,

into account, i.e., requirements can directly

refer to the tangible product or the services

which are to be developed (cp. [30]).

The system design consists of two parts: the

system boundary, which delimits the

system to be developed from other systems

and defines the relation of the system to its

environment [13, 27]. By defining the

system boundary, the most important

elements of the system and interactions with

external actors are identified [30]. The

second part of system design is the function

structure, which describes the functionality

of the whole PSS by means of single

functions. A function is defined as the relationship of input and

output parameters of a system, which serves as a purpose [31].

The communication between the different functions is

described by communication paths [29]. The combination of the

functions and their communication paths form the function

structure and describe the entire functionality of the PSS

without distinguishing the single components of it.

The functions are derived based on the requirements of the first

abstraction level and the system boundary. Based on the initial

requirements, the functions are concretized until it can be

decided for each function whether it can be realized by a

tangible product (hardware and/or software) or by a

service (cp. [22, 31]). This process of concretizing the functions

Generic Requirements to

PSS Design Requirements

Function Structure

Requirements Domain Requirements

Customer and

Stakeholder

Requirements

Business Process

Requirements

Function Structure

Design

Process- Oriented

Requirements

Result-Oriented

Requirements

Concretized Product-

Oriented Requirements

Product Engineering

Requirements

Software Engineering

Requirements

Service Engineering

Requirements

Preliminary Design

Product- Oriented

Requirements

Concretization Based onImpact

Contractor‘s

Requirements

Environment

Requirements

System Design

Component LevelFunction LevelFeature LevelSystem Level

Ressource-Oriented

Requirements

Concretized Service-

Oriented Requirements

Development Artifacts

Abstraction Level Artifact Requirements artifacts bundle

Figure 2: Artifact Model for Requirements to PSS

245

is part of the development process, and is therefore not the

focus of this paper, and will thus not be explained further.

The Product-Oriented Requirements forms an artifact and

refer to the tangible components of the PSS. These

requirements consider only the functionality of the tangible

components, without distinguishing between hardware and

software. Thus, at this stage it is still undecided of which

components the products consists and how these components

are realized. Only the functionality of the product is defined by

these requirements. Such requirements describe, for example,

the flexibility or interactions of the product with the users.

The other three requirements artifacts represent the different

dimensions that are used to characterize the services [33] and to

structure requirements on services [18]. The Result-Oriented

Requirements describe the requirements to the result of a

service, e.g., satisfaction of the customer with the service. The

Process-Oriented Requirements refer to the process

dimension of the services. The requirements of these artifacts

describe how the process of providing the service has to be

designed. The Resource-Oriented Requirements refer to the

resources which support the provision of the services but are

not the main focus of the development. An example of such a

requirement is the special competence of the members of staff.

Although these requirements can describe tangible products,

they can be differentiated from the product-oriented

requirements. They describe only resources that are needed for

the provision of the service, but not the product in focus of the

PSS. In other words, they describe products that are needed for

the service but are not developed within the scope of the PSS.

It has to be noted that the requirements of these four types are

strongly interdependent. The concretization of them takes place

iteratively, whereby from each requirements artifact,

requirements of all other artifacts can be derived. The result-

oriented requirements are used to derive process-oriented

requirements, which are used to derive resource-oriented

requirements, and vice versa. These three types of requirements

are the basis for the product-oriented requirements, i.e., the

product-oriented requirements are derived from them [18].

5.2.3 3rd Abstraction Level – Function Level
The goal of the third abstraction level is to further concretize

the functions and requirements, in order to assign later each

function to a component, i.e., for each function it is decided

whether it is realized by hardware (also mechatronics),

software, or service. This abstraction level can be attributed to

the “1a) product conception” phase of the development process

of PSS (section 2). The requirements are assigned to the

functions and concretized as far as necessary. We distinguish

three artifacts: a development artifact Function Structure

Design and two requirements artifacts bundled into Function

Structure Requirements.

The process of simultaneously concretizing requirements and

function structures is described by [22, 24, 31]. Here, the

process is summarized, in order to explain the interrelations of

the requirements and function structures. The process is

conducted iteratively. As a starting point, the function structure

and the requirements of the second abstraction level are taken.

Then, the requirements are assigned to the functions and

concretized if necessary [13, 22, 28]. In the next step, the

functions are concretized and the process is repeated. This

iterative concretization of requirements and functions is done

until each function can be clearly assigned to one component.

For each component it is decided which domain (product,

software or service engineering) will realize it. The functions

describing services can be concretized according to customer-

involving vs. customer-neutral functions [35]. The in-depth

description of this process is not the focus of this paper.

The resulting function structure consists of fine-grained

functions which describe the functionalities of the technical

product and services without distinguishing them in real

components. For example, a function structure for the technical

product washing-machine describes the complete functionality

for washing like heating water, mixing the detergent, etc. A

function structure for the service maintenance describes the

process to provide the maintenance.

As described in the process of concretizing the function

structure and the requirements iteratively, all requirements on

this abstraction level are concretized and directly assigned to

the functions. The Concretized Product-Oriented

Requirements describe the technical product. The functions

define the concrete functionality of the technical product and

therefore the requirements of the 3rd abstraction level can be

concretized in accordance with the technical characteristics like

geometry, ergonomics, acoustics, user interface, etc., taking the

distinction between software and hardware into consideration.

The Concretized Service-Oriented Requirements describe

the services in detail, using for example blue printing. The

resource oriented requirements are described by referring to

concrete resources descriptions.

The function structure describes the complete functionality of

the technical product and services. At this abstraction level the

realizing domain of each function is already known. Using this

knowledge, the requirements are able to describe not only the

functionality of the product, but also its form, e.g., its geometry.

5.2.4 4th Abstraction Level – Component Level
The fourth abstraction level concretizes and assigns the

requirements to the individual domains. It therefore provides

the requirements to the task “1c) development-specific

component design” of the development process of PSS (see

section 2).

The Preliminary Design, a development artifact, is a coarsely-

grained description of the structure of the product under

development [29]. The preliminary design is developed based

on the function structure of the third abstraction level.

Therefore, the product is split into hardware (also

mechatronical components), software (without hardware

components), and service components. The Preliminary Design

concretizes the Function Structure Design and defines abstract

components developed by product, software and service

engineering [29]. It describes the tasks of hardware, software

and services [35].

The Domain Requirements (requirements artifact) express

requirements to the components of the preliminary design and

246

are a further concretization of the Function Structure

Requirements. As described in the third abstraction level, all

functions of the function structure are directly connected to a

component of the PSS. In the fourth level of abstraction, a

component for each function is defined, and the domain

realizing the function is identified. The domain collects all

requirements assigned to the function and concretizes them.

The concretized requirements are the domain requirements of

this abstraction level. The assignment of the Domain

Requirements to the components of the Preliminary Design and

the accompanying concretization of them is an iterative process

that is described by the process model. After all requirements

have been concretized, they can be divided according to

functional and non-functional ones for hardware and software,

and according to result-, process- and resource-oriented for

services.

6. EVALUATION
The artifact model is evaluated using a criteria-based

evaluation strategy according to [1]. The goal of the evaluation

is to show the applicability of the artifact model on a real-life

project. As a real-life example, we chose the IT-based Personal

Health Manager (PHM) [20]. The PHM provides a coaching

program for physical fitness to people leading an inactive

lifestyle as they are either unmotivated or do not know how to

do workouts. The goal of the PHM is to find the right balance

between automated services that are delivered through IT, and

personal services that are delivered face-to-face through

coaches [20]. The idea of the evaluation is to apply the artifact

model in retrospective to the requirements of the PHM. We

chose an already completed project, in order to identify the

occurred problems in structuring the requirements and to

analyze whether these problems would be tackled by the

artifact model.

6.1 Evaluation Design
The evaluation is done by assessing whether problems that

occurred in the development are prevented using the artifact

model.

Step 1) First, a set of criteria for the evaluation is defined. As a

starting point the requirements to the artifact model (section 5)

are used as criteria. Then, the developers are interviewed, to

identify issues that were problematic during the development.

The criteria are supplemented with these issues.

Step 2) In a joint workshop with the developers the artifact

model is applied on an exemplary set of requirements.

Step 3) Then, the produced specifications are assessed by both

the developers and researchers for the satisfaction of the

predefined criteria. Furthermore they compared the legacy

specifications and the artifact model based specification.

6.2 Evaluation Results
Step 1) In the development of the PHM a classical V-model of

software engineering was applied. In a first phase, the

requirements were elicited from the stakeholders and

documented in a specification document. Thereby, the

following list of issues occurred:

(1) Achieving consistency between requirements to services,

software and hardware. This was very challenging, since,

for the services, no model existed which defined how to

describe the requirements and their relations to software.

(2) Achieving a consistent abstraction level of requirements

and assuring the sufficient concretization of abstract

requirements. The RE methods of software engineering did

not provide clear criteria for the concretization of

requirements, they do only state that the requirements have

to be concretized till they are sufficiently detailed.

(3) Assumptions about the solution – especially which

functions are realized as services and which through

software – were incorporated into the specification in an

unsystematic manner. Thus, rationales for the decisions

were missing and it remained unclear on which information

base these decisions were taken.

(4) Change-management in iterative development: Especially

the requirements to services changed frequently because

processes that had been performed manually, had to be

automated. Thus, new requirements regarding the software

came up, but the service processes changed at the same

time. Both keeping an overview of the requirements and

tracking changes were challenging in this setting.

(5) Incorporation of all stakeholders and sufficient

requirements completeness: A large number of stakeholders

with different background were involved, e.g., the users of

the coaching program, the department responsible for

corporate health management, or the IT service provider.

Step 2) In the workshop 20 initial requirements from the

stakeholders were concretized alongside the abstraction levels

of the artifact model, and resulted in 67 concrete requirements.

The concretization of the requirements took place iteratively. In

this paper, due to space limitations, the concretization of only

one initial requirement is shown, without showing the

iterations. Further, we show the concretization of just one

requirement on each level. The primary stakeholders were:

participants of the PHM, medical practitioners and fitness

coaches, companies offering the PHM to their employees,

service provider for the PHM, IT operators for the software

platform, fitness studios of the companies and legislators.

First abstraction level: GR1 is a customer and stakeholder

requirement to the PSS (Table 1). The source of this

requirement is the participants of the PHM. The requirement

describes the high level goal that participants want to achieve.

Table 1. Requirement of the first abstraction level

Source Requirement

Participant GR1: participants should get information

about physical activity and workout

schedules to support them, thus becoming

more active.

Second abstraction level: The requirements of the first

abstraction level can be concretized into Design

Requirements (DR) on the second abstraction level, addressing

different aspects of providing workout schedules to the

participants. In Table 2, the requirements that were derived

from GR1 are shown: the product-oriented requirements DR1.1

and DR1.2 and a process-oriented requirement DR1.3. First,

247

the system boundary was defined: all stakeholders directly

communicating with the PSS are part of the system-to-be. The

system was then structured into eight functions, where it was

decided whether they are realized by tangible products or

services. The functions are: Participant Management, Workout

Supervision, Calendar Management, Content Management,

Communication, Training Schedule Management, Training

Course Management, and Physical Examination Management.

Table 2. Requirements of the second abstraction level

Source Requirement

GR1 DR1.1 (product-oriented) A central calendar

is used to manage all appointments of the

participants and coaches.

GR1 DR1.2 (product-oriented): The workout plan

must be designed so that the participant is able

to increase his physical activity

GR1 DR1.3 (process-oriented): The workout plan is

created in cooperation between the participant

and the coach in order to assure that it is

adequate for the participant.

Third abstraction level: The eight functions of the second

abstraction level describing the whole PSS were concretized

iteratively, resulting in 25 functions. Here, only the functions

related to the present requirements will be explained.

The requirements of the 2nd abstraction level are concretized by

assigning them to the functions (Table 3). Thereby, one

requirement of the 2nd abstraction level can be concretized by

multiple requirements in the 3rd abstraction level. DR1.1 was

concretized to FSR1.1.1 (assigned to F3: “Make appointments”,

and realized by the product), and to FSR1.1.2 (assigned to

F2 “Appointment summary” and realized by the product).

Table 3. Requirements of the third abstraction level

Sourc

e

Function Requirement

DR1.1 F3 “Make

appointments”

FSR1.1.1: It must be possible

to make an appointment for

the creation of a workout

plan, whereby coach and

participant are present.

DR1.1 F2 “Appointment

summary”

FSR1.1.2: An overview of all

appointments within one

month has to be provided to a

participant.

Fourth abstraction level: In this abstraction level, components

of the PSS are defined, for which it is known whether they are

realized by hardware, software, or services. Thereby, the

requirements of the third abstraction level are concretized

again. In Table 4 the concretization of requirements FSR1.1.1

to concrete requirements for software is shown.

Table 4. Requirements of the fourth abstraction level

Source Component Requirement

FSR1.1.1 Software:

Calendar →

Create

Appointmen

t

SW1.1.1.1: The create

appointment function of the

software must be able to invite

both participants and coaches.

FSR1.1.1 Hardware:

Appointmen

t Reminder

HW1.1.1.2: The pulse watch

must emit an acoustic signal to

remind the participant of his

appointment.

Figure 3 shows an excerpt of the requirements described above

according to the abstraction levels, whereby the concretization

relations are shown explicitly in the form of arrows.

6.3 Discussion
The artifact model provides a structure for arranging different

types of requirements and for concretizing them. It defines

different artifacts for services and products, and then defines

the interrelations between them. Through the abstraction levels

and function structures, it defines how concretized

requirements are derived from service requirements, and vice

versa. Furthermore, the concretization of the requirements is

aligned with the development process through the development

artifacts. Thus, the co-design of requirements and development

artifacts is supported. The developers noticed that the artifact

model prevents an unstructured intermingling of requirements,

by offering predefined categories for them. Thereby, the

requirements 1 to 3 and the developer issue 1 and 2, described

in section 6.2, are addressed. The incorporation of all

stakeholders’ requirements is facilitated by the artifact model.

If a stakeholder expresses detailed requirements, they are

situated on a low level of abstraction. The requirements

engineer clearly sees the need to elicit high level requirements

1. Abstraction Level: System Level

GR1: Participants should get information about physical

activity and workout schedules to support them, thus

becoming more actives

2. Abstraction Level: Feature Level

DR1.1: A central calendar is used to

manage all appointments of the participants

and coaches.

3. Abstraction Level: Function Level

FSR1.1.1: It must be possible to make an

appointment for the creation of a workout

plan, whereby coach and participant…

FSR1.1.2: An overview of all

appointments within one month has to

be provided to a participant

…

4. Abstraction Level: Component Level

DR1.3: The workout plan is created

in cooperation between the

participant and the coach in order to
assure that it is adequate …

SW1.1.1.1: The create appointment

function of the software must be able to

invite both participants and coaches.

HW1.1.1.2: The pulse watch must

emit an acoustic signal to remind the

participant of his appointment

…

…

Figure 3: Application of the artifact model on the

requirements to IT-based lifestyle coaching

248

for providing a rationale for the low level requirements.

Detailed requirements are questioned and a premature focusing

on realization issues is prevented. This way, in the case study

the developers assigned a large number of requirements to low

abstraction levels, and then recognized that high level

requirements for them were missing. Thereby, they judge

developer issue 2, 3 and 5 as addressed by the artifact model.

At the same time, the artifact model describes general classes

of artifacts and can therefore be applied to a wide range of

different products, satisfying requirement 6. Through the

explicit definition of artifacts for products and services on the

second abstraction level, and the guidance for concretizing

them in the third and fourth abstraction level, the requirements

to the entire solution are specified as a whole and concretized

jointly. Thereby, especially the requirements 2 and the

developer issue 5 are addressed.

The artifact model defines relationships between the different

artifacts. The relationships describe the interdependencies

between the artifacts on the same abstraction level and the

concretization dependencies between artifacts of different

abstraction levels. This structuring principle supports the

traceability of requirements. The requirements on higher

abstraction levels serve as rationale for the requirements on

lower abstraction levels. Vice versa, for each requirement on a

higher abstraction level, its concretization can be found on the

lower abstraction levels. The availability of this information

enables efficient impact analysis when requirements change.

Thereby, requirement 4 is addressed. Since traceability is a

basic prerequisite for change management; requirement 5 and

developer issue 4, described in section 7, are addressed. The

requirements defined in the artifact model are closely aligned

with the function structures. The function structures can be

used to define modules. These modules can then be

standardized and reused. Thereby, requirement 7 is satisfied.

6.4 Threats to Validity
The internal validity could be threatened by a bias towards the

artifact model, because the developers of PHM are members of

the same organization as the researchers. However, this threat

is seen as minor, because the evaluation does not rely only on

questioning the opinion of the developers, but their statements

must be justified by the example specification. Regarding

external validity, the major concern is the generalizability of

the results, because we conducted only one case study. From

the viewpoint of the developers of PHM and researchers,

however, the selected part of the system under consideration is

representative for typical projects in the field of PSS.

7. CONCLUSION
In this paper we have addressed the concept of PSS consisting

of hardware, software, and service elements, offered as a

bundle. Due to their special characteristics, the RE poses

several challenges for them. The RE has the task of collecting

and specifying all requirements on the product-to-be. Since

these requirements are the base of all following development

steps, they are common ground for communication and for

interdisciplinary collaboration.

This paper has presented an artifact model for requirements for

PSS. The artifact model defines different types of requirements

– combined into artifacts – and structures them in abstraction

levels. Requirements on high abstraction levels serve as

rationales for requirements on lower abstraction levels. This

way, it is assured that each low level requirement has a

rationale, and furthermore for each high level requirements it is

explicitly described which low level requirements realize them.

Thus, the completeness of low level requirements is increased

and traceability between these requirements is realized.

Another distinguishing mark of the artifact model is the

integration of the development artifacts into the RE. The

importance of relying on initial design decision for concretizing

requirements has been acknowledged in the RE in software

engineering. Through the explicit modeling of the dependencies

of development artifacts and requirements artifacts, a concerted

concretization and structuring of requirements is enabled. This

way, it is avoided that preliminary design decisions are

incorporated into the specification unknowingly and in an

unstructured manner. By focusing on the artifacts instead of

processes, the inter-domain cooperation is enhanced. By clearly

defining the artifacts to be produced, each domain can use its

special tools, notations and techniques to develop the artifacts

in a domain-specific manner. Additionally, the artifacts are the

basis for the inter-domain communication.

Entirely new in the proposed artifact model is the combination

of requirements for all components of PSS: Software-,

hardware-, and service requirements are handled using one

comprehensive artifact model. It therefore serves as a common

basis for the understanding of all participating domains and for

communication during development activities.

The applicability of the artifact model has been illustrated by a

real-life example. In cooperation with the initial developers of

the example system, the satisfaction of the requirements has

been discussed. Further, five major problems experienced

during the development have been tackled. Thus, we conclude

that the artifact model is applicable in practice and helps

addressing common problems.

7.1 Limitations and Future Work
A limitation of this work is that the evaluation was only

conducted in retrospective. However, this way it was possible

to compare the problems experienced during the development,

with the benefits the artifact model could provide. Another

limitation is that due to space restrictions the representation of

the artifacts’ content, the process model, and the techniques for

creating the artifacts could not be described. Further research

will focus on more comprehensive case studies to show the

usefulness of the artifact model. In order to conduct such case

studies, a process model and a set of methods have to be

elaborated upon. A tool support for the artifact model would be

beneficial as well, since in real-life projects a large number of

requirements have to be managed.

8. ACKNOWLEDGEMENT
We thank the German Research Foundation (Deutsche

Forschungsgemeinschaft – DFG) for funding this project as part

of the collaborative research center „Sonderforschungsbereich

249

768 – Managing cycles in innovation processes – Integrated

development of product-service-systems based on technical

products”.

9. REFERENCES

[1] Ahlemann, F. and Riempp, G. 2008. RefModPM: A

Conceptual Reference Model for Project Management

Information Systems. In Wirtschaftsinformatik 50 (2).

[2] Berenbach, B., Paulish, D.J., Kazmeier, J. and Rudorfer,

A. 2009. Software & Systems Requirements Engineering:

In Practice. Mcgraw-Hill Professional.

[3] Berkovich, M., Esch, S., Leimeister, J.M. and Krcmar, H.

2009. Requirements engineering for hybrid products as

bundles of hardware, software and service elements – a

literature review. In Proceedings of the 9. Internationale

Tagung Wirtschaftsinformatik (Wien, Österreich, 2009).

[4] Berkovich, M., Leimeister, J.M. and Krcmar, H. 2010. Ein

Bezugsrahmen für Requirements Engineering hybrider

Produkte. In Proceedings of the Multikonferenz

Wirtschaftsinformatik (MKWI 2010) (Göttingen, 2010).

[5] Berkovich, M., Leimeister, J.M. and Krcmar, H. 2009. An

empirical exploration of requirements engineering for

hybrid products. In Proceedings of the XVIIth European

Conference on Information Systems (Verona, 2009).

[6] Berkovich, M., Leimeister, J.M. and Krcmar, H. 2009.

Suitability of Product Development Methods for Hybrid

Products as Bundles of Classic Products, Software and

Serivce Elements. In Proceedings of the ASME 2009

International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference

IDETC/CIE (San Diego, 2009).

[7] Böhmann, T. and Krcmar, H. 2007. Hybride Produkte:

Merkmale und Herausforderungen. In

Wertschöpfungsprozesse bei Dienstleistungen: Forum

Dienstleistungsmanagement, Bruhn, M. and Stauss, B. Ed.

Gabler, 240-255.

[8] Böhmann, T., Langer, P. and Schermann, M. 2008.

Systematische Überführung von kundenspezifischen IT-

Lösungen in integrierte Produkt-Dienstleistungsbausteine

mit der SCORE-Methode. In Wirtschaftsinformatik, 50

(3).

[9] Booch, G., Rumbaugh, J. and Jacobson, I. 2007. Das UML

Benutzerhandbuch. Addison-Wesley, München.

[10] Byrd, T.A., Cossick, K.L. and Zmud, R.W. 1992. A

synthesis of research on requirements analysis and

knowledge acquisition techniques. In MIS Quarterly, 16

(1), 117-138.

[11] Davis, G.B. 1982. Strategies for information requirements

determination. In IBM Systems Journal, 21 (1), 4-30.

[12] Dix, A.J. 1994. Computer-supported cooperative work - a

framework. In Design Issues in CSCW, Rosenburg, D. and

Hutchison, C. Ed. Springer Verlag, 23-37.

[13] Ehrlenspiel, K. 2002. Integrierte Produktentwicklung.

Hanser Fachbuchverlag.

[14] Galbraith, J.R. 2002. Organizing to Deliver Solutions. In

Organizational Dynamics, 31 (2), 194-207.

[15] Geisberger, E., Broy, M., Berenbach, B., Kazmeier, J.,

Paulish, D. and Rudorfer, A. 2006. Requirements

Engineering Reference Model (REM). Technical Report.

Technische Universität München, München.

[16] Gorschek, T. and Wohlin, C. 2006. Requirements

Abstraction Model. In Requirements Engineering, 11 (1).

[17] Hevner, A.R., March, S.T., Park, J. and Ram, S. 2004.

Design Science in Information Systems Research. In MIS

Quarterly, 28 (1), 75-105.

[18] Husen, C.v. 2007. Anforderungsanalyse für

produktbegleitende Dienstleistungen. Doctoral Thesis.

Fakultät Maschinenbau, Universität Stuttgart.

[19] Jacobson, I., Booch, G. and Rumbaugh, J. 1999. Unified

Software Development Process: The complete guide to the

Unified Process from the original designers. Addison-

Wesley Longman, Amsterdam.

[20] Knebel, U., Esch, S., Leimeister, J.M., Pressler, A. and

Krcmar, H. 2009. Online, Set, Go - Design and empirical

Test of an Itbased physical Activity Intervention. In

Proceedings of the 17th European Conference on

Information Systems, Verona.

[21] Kofler, T. and Ratiu, D., Towards a Reusable Unified

Basis for Representing Business Domain Knowledge and

Development Artifacts in Systems Engineering. In

Proceedings of the Workshop on Advances in Conceptual

Modeling, Vancouver.

[22] Kortler, S., Helms, B., Berkovich, M., Lindemann, U.,

Shea, K., Leimeister, J.M. and Krcmar, H. 2010. Using

mdm-methods in order to improve managing of iterations

in design processes. In Proceedings of the 12th

International dependency and structure modelling

conference, DSM, Cambridge.

[23] Leimeister, J.M. and Glauner, C. 2008. Hybride Produkte

– Einordnung und Herausforderungen für die

Wirtschaftsinformatik. In Wirtschaftsinformatik, 50 (3).

[24] Lindemann, U. 2006. Methodische Entwicklung

technischer Produkte: Methoden flexibel und

situationsgerecht anwenden Springer, Berlin.

[25] Méndez Fernández, D., Penzenstadler, B., Kuhrmann, M.

and Broy, M., A Meta Model for Artefact-Orientation:

Fundamentals and Lessons Learned in Requirements

Engineering. In Proceedings of the 13th International

Conference on Model Driven Engineering Languages and

Systems, Oslo.

[26] Nikora, A.P., Classifying requirements: towards a more

rigorous analysis of natural-language specifications. In

Proceedings of the 16th IEEE International Symposium on

Software Reliability Engineering.

[27] Nuseibeh, B.A. and Easterbrook, S.M., Requirements

Engineering: A Roadmap. In Proceedings of the 22nd

International Conference on Software Engineering.

250

[28] Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. 2006.

Engineering Design: A Systematic Approach. Springer,

Berlin.

[29] Pohl, K. 2007. Requirements Engineering. Grundlagen,

Prinzipien, Techniken. Dpunkt Verlag.

[30] Pohl, K. and Sikora, E., COSMOD-RE: Supporting the

Co-Design of Requirements and Architectural Artifacts. In

Proceedings of the 15th IEEE International Requirements

Engineering Conference.

[31] Ponn, J. and Lindemann, U. 2008. Konzeptentwicklung

und Gestaltung technischer Produkte: Optimierte

Produkte - systematisch von Anforderungen zu Konzepten.

Springer, Berlin.

[32] Sawhney, M. 2006. Going beyond the Product: Defining,

Designing and Devlivering Customer Solutions. In The

Service-dominant Logic of Marketing, Lusch, R.F. and

Vargo, S.L. Ed., M. E. Sharpe, New York, 365-380.

[33] Scheer, A.-W., Grieble, O. and Klein, R. 2003.

Modellbasiertes Dienstleistungsmanagement. In Service

Engineering - Entwicklung und Gestaltung innovativer

Dienstleistungen, Bullinger, H.-J. and Scheer, A.-W. Ed.,

Springer, Berlin.

[34] Sommerville, I. and Kotonya, G. 1998. Requirements

Engineering: Processes and Techniques Wiley & Sons.

[35] Spath, D. and Demuß, L. 2003. Entwicklung hybrider

Produkte – Gestaltung materieller und immaterieller

Leistungsbündel. In Service Engineering - Entwicklung

und Gestaltung innovativer Dienstleistungen, Bullinger,

H.-J. and Scheer, A.-W. Ed., Springer, Berlin.

[36] Tan, A.R., McAloone, T.C. and Gall, C., Product/Service-

System Development - An explorative Case Study in a

manufacturing Company. In Proceedings of the

international conference on engineering design, Paris.

[37] Tuli, R., Kohli, A. and Bharadwaj, S. 2007. Rethinking

Customer Solutions: From product Bundles to Relational

Processes. In Journal of Marketing, 71 (3).

251

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2011

	Towards an Artifact Model for Requirements to IT-enabled Product Service Systems
	Marina Berkovich
	Sebastian Esch
	Christian Mauro
	Jan Marco Leimeister
	Helmut Krcmar
	Recommended Citation

	Proceedings Template - WORD

