
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2001 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-19-2001

Navigating The Leading Edge: A Prototype Curriculum for Navigating The Leading Edge: A Prototype Curriculum for

Software Systems Management Software Systems Management

Gregory Uulferts

Dan Shoemaker

Antonio Drommi

Follow this and additional works at: https://aisel.aisnet.org/iceb2001

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2001 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2001
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2001?utm_source=aisel.aisnet.org%2Ficeb2001%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Gregory W. Ulferts, Dan Shoemaker, Antonio Drommi

‘The First International Conference on Electronic Business, Hong Kong, December 19-212001.’

NAVIGATING THE LEADING EDGE: A PROTOTYPE CURRICULUM FOR
SOFTWARE SYSTEMS MANAGEMENT

Gregory Uulferts
Email : ulfertgw@udmercy.edu

Dan Shoemaker
 Email: Shoemaker@udmercy.edu

Antonio Drommi
 Email: Drommia@udmercy.edu

College Of Business Administration
University Of Detroit Mercy

P.O. Box 19900
Detroit, MI 48219-0900

Phone No. (313) 993-1200

ABSTRACT

This article presents a meaningful and advantageous new
direction for information technology education, embodying
principles for systematically optimizing the functioning of
the business.

Our curriculum was built on the thesis that every aspect of
software systems management can be understood and
described as a component of four universal, highly
correlated behaviors: abstraction, product creation,
product verification and validation, and process
optimization. Given this, our model curriculum was
structured to provide the maximum exposure to current best
practice in six thematic areas, which taken together as an
integrated set, makes-up the attributes that differentiate us
from the other computer disciplines:

Abstraction: understanding and description of the
problem space
Design: models for framing artifact to meet criteria 3, 4, 5,
and 6
Process Engineering: application of large models such as
IEEE 12207
Organizational Control Systems: SQA and configuration
management
Evaluation with Measurement: with an emphasis on
testing and metrics
Construction: professional programming languages with
emphasis on reusability

Our teaching strategy approaches this as a hierarchy of
similar activities. In every course we require the student to
define and implement all three interfaces and be able to
clearly communicate this as a logically consistent model
before working out the details of the solution. The focus of
all understanding is top-down from the information interface.
Our curriculum centers on the application of
software engineering standards (such as those promulgated
by IEEE) and the software process improvement, or quality
standards (such as those promulgated by SEI and ISO)

under the assumption that this embodies the "common
body

of knowledge and state of best practice" in software
production and management.

The practical realization of this is an integration of the large
subject areas of: software engineering (methods, models
and criteria), process and product quality management
(software quality assurance and metrics), software project
management (work decomposition, planning, sizing and
estimating), and software configuration management.
Reconciliation of project and configuration management is
accomplished by cross-referencing the problems, tools,
notations and solutions (through explicit identification,
authorization and validation procedures). As a side agenda,
we have also stressed the need for re-engineering the vast
number of software products currently on the shelves. This
model plus germane simulated real-world experience
introduces all of the relevant principles to the student within
the (currently understood) framework. It allows them to
develop and internalize their own comprehensive
understanding and formulate a personal model of the
disciplinary body of knowledge.

CURRICULUM
Software Systems Management

Foundation
CIS 501 Introduction to Information Systems – Visual Basic
Core
CIS 505 Project Management
CIS 510 Object Oriented Software Development
CIS 520 Software Requirements
CIS 530 Software Quality Assurance and Testing
CIS 540 Strategic Software Process Management
Electives (6 required)
CIS 502 Structured Development for the Internet
CIS 503 Software System Documentation
CIS 525 Software Design and Construction
CIS 535 Metrics and Models for Software Management
CIS 543 Software Lifecycle Documentation
CIS 553 Graphical User Interface Development
CIS 554 Software Maintenance Using Cobol

 Gregory W. Ulferts, Dan Shoemaker, Antonio Drommi

‘The First International Conference on Electronic Business, Hong Kong, December 19-212001.’

CIS 555 Data Base Design
CIS 557 Networks and Network Management
CIS 558 Distributed Software Development
CIS 559 Electronic Data Interchange
CIS 560 Electronic Commerce
CIS 565 Information And Society
CIS 566 Advanced Database Issues
CIS 580 Advanced Topics in Is
CIS 589 International Software Management
CIS 590 Leadership in Assessment
CIS 591 Audit

NAVIGATING THE LEADING EDGE: A PROTOTYPE

CURRICULUM FOR
SOFTWARE SYSTEMS MANAGEMENT

Introduction

The discipline of software systems management is a
meaningful and advantageous new direction for information
technology education. That is because it is focused on two
pivotal issues for such organizations, cost control and
production efficiency. Accordingly the primary distinction
between software systems management and traditional
areas of study such as computer engineering, computer
science, and software engineering, lies in the fact that the
former embodies principles for systematically optimizing the
functioning of the business, whereas the latter concentrates
on the technology itself.

In applied terms, the basic aim of software systems
management is to instill sound business practices into IT
operations. Its objective is to insure that the organization's
people equipment and financial resources are utilized for the
maximum benefit of the business and the satisfaction of its
customers. This is a particularly relevant and important
subject for the software industry at this time and place
because, although it has a forty-year history of leadership
and innovation in the production of quality goods and
services, it has yet to prove that it can operate in a cost-
effective manner.
In reality all of the evidence so far indicates the contrary. It
is a fact that…. Depending on size, between 25% and 50%
of all IT projects fail, where "failure" means that the
project is canceled or grossly exceeds its schedule
estimates (Laker, 1998). A recent Standish Group survey of
8,000 software projects found that the average one exceeded
its planned budget by 90 percent and its schedule by 120
percent (Construx, 1998). A similar study conducted by
KPMG Pete Marwick found that 87% of failed projects
exceeded their initial schedule estimates by 30% or more.
While at the same time 56% exceeded their budget estimates
by 30% or more and 45% failed to produce expected benefits.

It would be incorrect to assume that this failure was a
consequence of extreme project size, or complexity. In
actuality 60% of the failed projects were categorized by
KPMG as small. The fact is that small projects (e.g., those
that are characteristic of the average mom-and-pop business)
are almost always over schedule (92%). In fact the larger,

more complex projects actually did better. KPMG found that
only 86% of these had problems meeting their delivery dates
(which is still a pathetic statistic). Moreover, this is not a
new phenomenon. A study done by the GAO, which
encompassed the entire decade of the 1980s, found that
fully two-thirds of the software delivered to the federal
government was never used and an additional 29% was
never delivered at all. As a result, the GAO estimated that
throughout the 1980s the federal Government's bill for
worthless software topped $150 billion (Quoted in
Humphrey, 1994).

Now, when 95% of the software delivered to the federal
government is worthless you might expect some
accountability. Yet studies since then document the same
problems (SEI, 1997). According to Humphrey (2000) the
cause lies in the fact that it is extraordinarily difficult to
manage an activity that is creative and conceptual by nature
using traditional techniques. Instead, effective management
relies on extensive experience. Without which,
"Inexperienced, or inadequately trained managers are
noted with distressing frequency on canceled projects and
projects that experience cost overruns and missed
schedules. Inadequate management training is also
commonly associated with the problems of low
productivity, low quality, and of course, management
malpractice (Jones, 1994)." As such, "the world is
beginning to realize that it needs people at the highest
levels who can combine the skills of the technician with
those of the manager" (O’Brien, 1992).

Rationale: Why Study Software Systems Management?

The software industry banks close to a trillion-dollars
annually (Boehm quoted in Humphrey, 1997). Yet, with the
stakes that high the manager who is . . . "knowledgeable in
the realms of new technology is a rare breed" (O’Brien,
1992). Brynjolfsson provides a very apt synopsis of the
consequences of that condition: "Productivity is the
fundamental economic measure of a technology's
contribution. With this in mind, CEOs and line managers
have increasingly begun to question their huge
investments in computers and related technologies. While
major success stories exist, so do equally impressive
failures" The economist Robert Solow astutely sums up the
problem this way: "we see computers everywhere except in
the productivity statistics" (both quoted in Brynjolfsson,
1992). Or in simple terms, a shocking few people seem to
fathom the significant business implications of the
technology they were spending billions of dollars to acquire.
O'Brien corroborates this:

“It has become fashionable to talk of
competitive advantage and
information technology in the same
breath . . . yet it is clear that the
number of professionally educated (to
maximize competitive advantage
using technology), fully trained and

 Gregory W. Ulferts, Dan Shoemaker, Antonio Drommi

‘The First International Conference on Electronic Business, Hong Kong, December 19-212001.’

experienced information
technologists is small."

Higher education clearly hasn't found any answers. In 1985,
Datamation conducted an extensive survey aimed at giving
academia a report card. They polled a laundry list of experts
from every conceivable area of business to find out whether
college training translated to success in business. Needless
to say, the grades were not good. Everyone took turns
bashing the products of this country's post secondary
education system for their total lack of leadership, business
knowledge and communication skill. This was particularly
true for computer science. The comments of one Fortune
200 executive were typical. He estimated that only "5
percent of the graduates (hired by his company) were
adequately prepared." One would think that the pressures
of competition would make higher education more
responsive to the demands of industry, which is the ultimate
consumer of its graduates. In addition, this survey was
conducted almost sixteen years ago. Perhaps like fine wine
the situation improved with age? A comprehensive study of
university catalogues, conducted in 1997, found that 90% of
business school curricula were at best . . . "incomplete and
lagging behind the state of the art by more than ten
years . . . when it came to the requirements of managing
software (Jones 1997)". More pertinent, although almost
eleven years separate these two studies the same symptoms
were identified: "weak, or inadequate business preparation
and impractical, or out-of-date curricula."

Both studies make it clear that the key to the formulation of
a successful study of the discipline of software management
hinged on the capability to amalgamate "current best
practice" ideas into an optimally valid and accurate model of
software process functioning. The dilemma lies in the fact
that this best practice is prescribed by professional
standards and, ...since 1976 the Software Engineering
Standards Committee of the IEEE Computer Society has
developed 19 standards in the areas of terminology,
requirements documentation, design documentation, user
documentation, testing, verification and validation,
reviews and audits. And if you include all the major
national standards bodies, there are in fact more than 250
software engineering standards. (IEEE). Besides the
implication that our eminent standards bodies need to be
leashed, this astonishing productivity (roughly 10 new
standards a year) underlines the crucial importance of a
common conceptual framework that will help educators
judge the boundaries of the body of knowledge in order to
know what to teach. Therefore our first efforts were focused
on developing such a unified frame of reference.

Disciplinary Model: Conceptual Basis

At the theoretical nucleus of our undertaking was the belief
that software systems management has not been
approached at the proper (e.g., the highest possible) level.
Instead, technology centered approaches have always been
introduced piecemeal. This is unsuitable because by
definition proper management must incorporate methods for

handling the problem as a whole. That implies
understanding and mastery of all rational principles, and
methods that optimize the software process as a complete
and consolidated entity set. This required getting a proper
understanding of the entire range of disciplines that
compose the world of computing. Figure One summarizes
this.

The World of
Business

The MBA

Derivation of Disciplines Based on Functional Interfaces

Interacting
Organizational

Units

Business
Studies

Project
Management

Software
System

Management

Leading Edge
ProgramsModern Programs

Information
Technology

Software
Engineering

The World of

People

Human Users

The World of
Applications

Software in its
Various Forms

The World of
the Machine

Hardware and
Telecommunication

Devices

Interface 3

Interface 2

Interface 1

Computer
Science

Program
Construction

Computer
Engineering

Machine
Studies

MIS/IS
Programs

Information
Systems

DOMAINS Traditional Programs

Figure 1

This diagram shows that computer systems function on
three hierarchically differentiated, mutually inter-dependent
interfaces. Bottom up these are the hardware/software
interface (1), the human/machine interface (2), and the
information/computing interface (3). At the
hardware/software interface, tangible machine resources
realize the functional design. Practically speaking, this
translates into efficient run times and the other familiar,
properties of good hardware and software architecture. At
the human/machine boundary, information crosses the
physical periphery and referential margin between human
and machine. The tangible realization of this can be seen in
effective user-friendly programs, and ergonomically
designed equipment. At the information/computing
interface, the organization's inherent and elemental structure
is mapped into the domain of the computer. This interface
views computer systems as embodying the organization's
complete information infrastructure. It should also be clear
that inefficiencies in either of these components (e.g., the
computer system or the organizational system it interacts
with) all conspire to make the total system less efficient.
Optimization principles exist for all of these interfaces; the
problem is that nobody sees the need to apply them
uniformly across all of the interfaces in the entire system.
The classic result is the 900-megahertz machine interacting

 Gregory W. Ulferts, Dan Shoemaker, Antonio Drommi

‘The First International Conference on Electronic Business, Hong Kong, December 19-212001.’

with a human who processes a task every five minutes while
entering three-day-old data.

Conceptual Model: A Review Of Current Approaches

In order to understand the implications of this within higher
education we took a rigorous look at the basis of each of the
disciplines that could be directly related to one of these
interfaces. The oldest, best established, and most righteous
of these is computer science. The principles embedded in
this body of knowledge have been very successful; witness
the advances in hardware over the past 40 years. Ideally,
computer scientists focus on optimizing the
software/hardware interface. It first emerged from the
disciplines of electrical engineering, mathematics and logic
back in the 1950's. Its strongest identification and
disciplinary attachment is with the math department. A
quote from the Carnegie Mellon Curriculum for
Undergraduate Computer Science makes this very clear:

“Computer science is a mathematical
discipline...so much so that the difference between
computer science and mathematics is often quite
hard to pin down. While both disciplines are
concerned primarily with abstract structures,
computer science is not simply a branch of
mathematics. It relies on skills attitudes and
techniques derived for mathematics, but it is
concerned not so much with proofs and structures
as it is with algorithms and the design and
organization of structures.”

However, the next level up in the hierarchy, the
human/machine interface, involves a much larger set of
variables, most of them unknown and unknowable.
Compounding this problem is the complexity of human
behavior, which is intuitive, hence unpredictable and
impossible to model mathematically. Accordingly, the
central methods and principals of computer science,
focusing on exact descriptions of the problem, have been of
limited value in optimizing the higher (in terms of the
abstraction ladder) interfaces.

Through the 1980s, partly because of the failure of
traditional computer scientists to perform consistently, and
effectively at the human machine interface, the computer
industry itself evolved the discipline of software
engineering (a useful reference date for this is the
foundation of the Wang Institute of Graduate Studies, 1979,
for the details see [Ardis, 1987]). This discipline takes a
software/applications focus. It embodies a set of
description and design principles based on engineering
methodologies specifically oriented toward software
development and management methodologies specifically
oriented to software systems management (Ardis, 1987).
Generally, at the undergraduate level the software
engineering curriculum is indistinguishable from computer
science. Where it differs is in the incorporation of an
additional set of courses whose focus and content are
delineated by common industry practices, such as software
specification, design, testing and quality assurance, and

software configuration management. In these courses,
engineering principles shape the approach, and teamwork,
instead of individuality, is stressed. Software engineering is
different from computer science in two general aspects; it
has an applied rather than theoretically abstract intent, and
the training model is very much "world of work," instead of
academic.

Practically speaking, the advantage of the software
engineering approach over traditional computer science is
that it supports the design, development, and operation of
much larger and more complex real-time computer systems.
The disadvantage is that, to be truly effective in a large,
multifaceted organization, the interface has to be engineered
on both sides. That is, the human system opposite the
machine has to predictable and stable to some extent. So,
software engineering techniques work well for complex,
embedded systems in areas such as avionics and
telecommunications and not at all in the low-tech, generic
systems used in complex business organizations. Since
most of the packaged software sold by the computer
industry today falls into this second category, it seemed
safe to conclude that to be universally applicable software
engineering must evolve principles and techniques for
engineering the system's human component. Thus came the
fortuitous marriage of software engineering to information
science, which is the foundation of our unique program.

Information science, which has always been viewed by the
other two disciplines as more of an art than a science, began
to appear on campuses in the 1970's. This discipline
focuses on the development of a complete set of
approaches to mesh organizational systems with computer
systems. Given the practical human focus and the fact that
the tools originated in the disciplines of operations research
and industrial engineering, information science curricula
have always tended to be based in business schools. This
placement is unfortunate because curricular content
focusing on the bottom two interfaces (or at least the
machine part of the human/machine interface) tends to be
almost completely non-existent in most of these programs.
Essentially, the information scientist defines the system as
the flow and transformation of organizational data.
Symbolic notational techniques can be used to discretely
model system behavior on the interface. Since these tools
are familiar to everybody in computing, modeling
techniques such as UML or Data Flow can be drilled down
to any level in description and definition of the system. The
difference for the information scientist lies in where the level
of application is begun. Here, the business process itself,
instead of the processing of the data becomes the primary
means by which interface events are defined. Since this
data is independent of processing, its origination and
handling can be defined external to the computer part of the
system. The appropriateness of starting the design activity
here should be intuitively obvious to everybody, since the
computer doesn't function in a vacuum. Implicit is the
requirement that the function and the computer system
mesh as efficiently as possible.

 Gregory W. Ulferts, Dan Shoemaker, Antonio Drommi

‘The First International Conference on Electronic Business, Hong Kong, December 19-212001.’

The problem with information science lies in the fact that it
is primarily oriented toward the business view rather than
technology. So, it is traditionally a managerial rather than a
technical discipline. As a result, the reward structure is
geared differently. An extensive and definitive study of IT
personnel carried out by Datapro Corporation, found that
the three most critical predictors of success for this area
were the business criteria of, corporate fit, corporate
credibility, and upward management skills. Which
indicates that, based on this industry-wide survey, the
successful people working at the MIS management level
don't need to be technically proficient.

A Pilot Study: Goals

As we said earlier, we differ from most approaches in that
we view computer system development as an integrated
activity that is wholly based on seamless abstraction of the
system from the business to the operating reality. However,
in an attempt to determine exactly where we fit in the
spectrum of programs out there, the College of Business
Administration funded (in the summer of 2000) the IT
Education Baseline Project for the purpose of accomplishing
the following explicit goal…

“The project will develop and enact a process
for the systematic collection, evaluation and
classification of software education programs
for the purpose of developing explicit
descriptive understanding of the various
categories of programs in this area”.

In essence, this amounted to an attempt to characterize the
current state of the art in terms of computer and software
curricula and the pedagogy that supports these. Given that,
the results were expected to serve to define a coherent and
concrete characterization of the diffusion of innovation in
the various types of computer, or software education
programs in the US. It was assumed that this
characterization could then be used for long-term curricular
assessment and planning by any educational agency
interested in technology transfer for the profession.

A Pilot Study: Methodology

This study was conducted in two phases. The first phase
involved the identification of an appropriate set of
institutions to conduct rigorous on site interviews at. We
felt that this was necessary because, notwithstanding the
presence of Ford’s report (SEI-94-TR-11) there is very little
consistent agreement about what constitutes a traditional
computer science, or MIS versus a software engineering
program. We particularly sought to identify programs at
Carnegie One institutions and Jesuit schools (given our
own foundation)

Following satisfactory completion of that phase of the
project and the selection of a sample of 22 institutions, on
site interviews were conducted to detail the pedagogy
employed at each. Obviously we could have read each

institution’s course catalogue to learn what they offered.
However, we felt that these interviews were necessary
because the intent and even the details of implementation
are never clear in a document such as a catalogue.
Accordingly, we sought to acquire (at a minimum) syllabi,
assignments and (hopefully) examples of student artifacts
themselves. This process consumed the period from June
2000, to September 2000 and featured intensive visits to all
22 institutions. Following this data-gathering phase we
began to perform a comparative content analysis of the
courses, artifacts and assignments obtained. Since the
intention of this project was to identify and characterize
various program types as well as map the diffusion of
innovation throughout the study of computing.

This report presents the preliminary findings of this initial
analysis. A couple of things must be kept in mind as you
read this. Although the survey was nationwide it is
impossible to say for certain that all institutions that offer
software engineering programs (labeled “modern” in the
graph) were considered when then initial sample group was
drawn. That is because the discipline itself is so loosely
defined that there is simply no common registry of such
programs. We used information provided by the Software
Engineering Institute (SEI), the United States Military and
IEEE to distinguish institutions that satisfied the general
functional definition of a software engineering education
program based on those three bodies’ view of the world.
The sample that was drawn from this lengthy list was
composed of a range of institutions from research
universities down to small regional colleges.

Preliminary Findings: The Software Engineering
Education Baseline

Using the mass of detailed data that we had collected at
each institution we sought to formulate a definitive
characterization of program types based on our interface
model and the assumptions that underlay our own
disciplinary approach. From this we identified three
distinctive types of programs. We labeled the first
“Traditional” (e.g., programs that focus primarily on one
interface such as computer engineering, computer science
and MIS). We labeled the second “Modern” (e.g., programs
that span two interfaces such as software engineering). We
labeled the third type “Leading Edge” (e.g., programs that
embody all interfaces (e.g., the software systems
management approach). Given all of this we performed a
simple count and percentage to reach our conclusions and
the results were surprisingly stable. The following graph
presents the range of program types by classification as
revealed in our study.

 Gregory W. Ulferts, Dan Shoemaker, Antonio Drommi

‘The First International Conference on Electronic Business, Hong Kong, December 19-212001.’

59%

36%

9%

0%

10%

20%

30%

40%

50%

60%

Traditional Modern Leading Edge

Comparison of Programs by Type

Figure 2

As can be seen. The programs representing traditional IT
education still dominate although the number of legitimate
software engineering programs appears to be on the rise.
We actually discovered a program similar to ours at another
institution in our sample and that is the reason for the
unexpectedly high percentage score there.

Given that our approach is relatively unique, we felt that our
disciplinary model needed to be explained in more detail.
The final parts of this paper will outline our approach to
software systems management. It is offered for the purpose
of assisting any institution interested in such a curriculum
in adopting such a model (the actual course list contained in
Appendix A)

Disciplinary Model: Implementation

Our curriculum was built on the thesis that every aspect of
software systems management can be understood and
described as a component of four universal, highly
correlated behaviors: abstraction, product creation,
product verification and validation, and process
optimization. Given this, our model curriculum was
structured to provide the maximum exposure to current best
practice in six thematic areas, which taken together as an
integrated set, makes-up the attributes that differentiate us
from the other computer disciplines:

Abstraction: understanding and description of the
problem space
Design: models for framing artifact to meet criteria 3, 4, 5,
and 6
Process Engineering: application of large models such as
IEEE 12207
Organizational Control Systems: SQA and configuration
management
Evaluation with Measurement: with an emphasis on
testing and metrics
Construction: professional programming languages with
emphasis on reusability

Our teaching strategy approaches this as a hierarchy of
similar activities. In every course we require the student to
define and implement all three interfaces and be able to

clearly communicate this as a logically consistent model
before working out the details of the solution. The focus of
all understanding is top-down from the information interface.
Our curriculum centers on the application of software
engineering standards (such as those promulgated by IEEE)
and the software process improvement, or quality standards
(such as those promulgated by SEI and ISO) under the
assumption that this embodies the "common body of
knowledge and state of best practice" in software
production and management.

The practical realization of this is an integration of the large
subject areas of: software engineering (methods, models
and criteria), process and product quality management
(software quality assurance and metrics), software project
management (work decomposition, planning, sizing and
estimating), and software configuration management.
Reconciliation of project and configuration management is
accomplished by cross-referencing the problems, tools,
notations and solutions (through explicit identification,
authorization and validation procedures). As a side agenda,
we have also stressed the need for re-engineering the vast
number of software products currently on the shelves. This
model plus germane simulated real-world experience
introduces all of the relevant principles to the student within
the (currently understood) framework. It allows them to
develop and internalize their own comprehensive
understanding and formulate a personal model of the
disciplinary body of knowledge.

Summary And Conclusions

It is common industry practice that computer systems are
defined and imp lemented by two very different types of
personnel. IT workers, who function more like managers
than technical staff, study the business operation. This is
communicated to computer workers, who are usually more
technical than managerial. They handle the details of
actually developing and implementing the computer
solution. This has always been an inefficient and
cumbersome process containing numerous chances for
misunderstanding and error. It is also a good explanation
for the generally recognized low level of quality of most
software. In the practical world computer system
development no matter how inefficient is still a single
activity. Therefore this would logically seem to be a single
body of knowledge. Given the unquestioned recognition in
the industry of the need for quality software, the value and
advantage of an individual trained in one place in the
methods and techniques of both areas should be intuitively
obvious.

Although our program is innovative, in actuality it just takes
the next logical step. Our curriculum is applied, not
scientific and unlike scientists, we are entirely focused on
the production of tangible artifacts, which can be used. Our
success is judged by the proven quality of these products.
Since tangibility is definitely not a requirement for "pure"
science, the placement of our program in a college of
business is appropriate. A very explicit goal of the

 Gregory W. Ulferts, Dan Shoemaker, Antonio Drommi

‘The First International Conference on Electronic Business, Hong Kong, December 19-212001.’

University of Detroit Mercy's College of Business
Administration (or any other college as the case may be) is
to produce leaders in the field. This leadership demands a
knowledge and experience base obtained from focused
study. No present degree seems to satisfy all aspects of the
requirement. Business degrees satisfy it in traditional
business. However, general business study simply doesn't
fit in a technical area like computing. It might be argued that
on a team, no one person should have the complete
perspective, but the questions remains, who will supply the
leadership? We believe that, as demands on computer
systems become more and more complex, leaders will have
to have a complete, top down perspective. Our program
provides that view. We want to stress however, that we are
not proposing new theory. Our principles are distilled from
common elements found in all of these disciplines. It is
simply our assumption that the framework for designing
efficient computer systems needs to be fixed at the proper
(e.g., the highest) level of abstraction. This is an appropriate
concern because, by definition, design must incorporate
techniques for dealing with the problem in its entirety. This
is also not some fuzzy-minded, theoretical exercise. It is a
critical issue with a very explicit, dollars and cents
implication for every organization in the world. Right now,
and even more so in the future, effective information will be
the basis of an organization's ability to compete. In that
respect computer technology will become the basis for a
new competitive order in worldwide society. Effective
systems will determine whether organizations will keep up
with the competition or be left by the wayside in the
marketplaces of the future. This effectiveness calls for a
deliberate study of how computer systems can be made to
meld naturally with our familiar, existing human systems.
Our curriculum provides the basis for doing that.

REFERENCES

[1] M. O'Brien, Software Production Management, NCC
Blackwell Ltd.: Oxford, U.K., 1992.
[2] Erik Brynnjolfson, "The Productivity Paradox of
Information Technology", Communications of the ACM,
Vol. 36, No. 12, pp. 67-77, December 1992.
[3] Construx Software Builders, web site @
www.construx.com, 1998.
[4] Edelstein, V., R. Fuji, C. Guerdat, and P. Sullo,
"International Software Engineering Standards," Software
Engineering, March/April.
[5] KPMG Technology and Services Group, web site at
www.kpmg.ca 1998.
Laker Consulting, web site at www.laker.com.au., Sydney,
1998.
[7] Norman Fenton, Shari Lawrence Pfleeger, and Robert
Glass, "Science and Substance, a Challenge to Software
Engineers", IEEE Software, pp. 86-94, July, 1994.
[8] Watts S. Humphrey, Managing the Software Process,
Addison-Wesley: Reading, MA, 1994.
[9] Capers Jones, Assessment and Control of Software Risks,
Prentice-Hall: Englewood Cliffs, 1997, NJ.
[10] M. O'Brien, Software Production Management, NCC
Blackwell Ltd.: Oxford, U.K., 1992.

[11] M. Paulk, B. Curtis, M. Chrissis, C.Weber, "Capability
Maturity Model, Version 1.1 ," Technical Report, Software
Engineering Institute, Carnegie-Mellon University, 1993.
[12] Software Engineering Institute, web site at
www.sei.cmu.edu. 1998.
[13] Stephen S. Roach, "Services Under Siege-The
Restructuring Imperative." Harvard Business Review, pp.
82-92, Sept.-Oct., 1991.

APPENDIX A

Software Systems Management Curriculum

Foundation

CIS 501 Introduction to Information Systems –
Visual Basic

Core

CIS 505 Project Management
CIS 510 Object Oriented Software Development
CIS 520 Software Requirements
CIS 530 Software Quality Assurance and Testing
CIS 540 Strategic Software Process Management

Electives (6 required)

CIS 502 Structured Development for the Internet
CIS 503 Software System Documentation
CIS 525 Software Design and Construction
CIS 535 Metrics and Models for Software
Management
CIS 543 Software Lifecycle Documentation
CIS 553 Graphical User Interface Development
CIS 554 Software Maintenance Using Cobol
CIS 555 Data Base Design
CIS 557 Networks and Network Management
CIS 558 Distributed Software Development
CIS 559 Electronic Data Interchange
CIS 560 Electronic Commerce
CIS 565 Information And Society
CIS 566 Advanced Database Issues
CIS 580 Advanced Topics in Is
CIS 589 International Software Management
CIS 590 Leadership in Assessment
CIS 591 Audit

	Navigating The Leading Edge: A Prototype Curriculum for Software Systems Management
	223.doc

