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Abstract. Achievement of the ambitious environmental sustainability targets 
requires improvement of energy efficiency practices in private households. We 
demonstrate how utility companies, having access to smart electricity meter 
data, can automatically extract household characteristics related to energy 
efficiency and adoption of renewable energy technologies (e.g., water/space 
heating type, age of house, number and age of electric appliances, interest in 
installation of photovoltaic systems etc.) by using supervised-machine-learning-
based green IT artifacts. The gained information enables design of custom-
tailored interventions (such as promotion of personalized energy audits, 
ecologic services and products, or load shifting mechanisms) that trigger 
residents’ behavioral change toward environmental sustainability as well as 
improvement of utilities’ key performance indicators. Moreover, realizing 
privacy preservation concerns, we investigate the influence of smart meter data 
granularity and the amount of survey responses required for the artifact 
development on the household classification quality. 
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1 Introduction 

In order to promote energy efficiency and the integration of renewable energy 
sources, policy makers have placed high hopes on networked electricity meters that 
measure and communicate consumption information at a high resolution in time [1]. 
These so-called smart meters offer, besides improvements to the utilities’ billing 
processes, timely consumption feedback for residential customers, render dynamic 
tariff schemas possible, and provide input to home automation systems. Ultimately, 
smart meters should help citizens to reduce their electricity consumption and motivate 
shifting loads to support the integration of renewable, fluctuating electricity sources. 
Early studies have reported promising effects including energy savings as high as 
15% [2], and many countries mandated utility companies to roll out the technology 
among their residential customers. To date, more than 50 million smart meters have 
been deployed in the EU, and industry expects 154 million devices by 2017 [3]. 

The initial enthusiasm for the technology, however, has faded recently. More 
carefully designed studies that were not affected by sampling bias (e.g., from 
primarily observing volunteering, motivated users) showed savings of only around 
3% and little response to incentives for load shifting [4]. Moreover, the mostly poor 
design of feedback campaigns together with deficient data protection practices raised 
substantial privacy concerns among consumers [5]. It has become evident that relying 
on the mere effects of consumption information and dynamic tariffs is not sufficient 
to advance energy literacy, motivate the hoped-for behavioral change, nor to trigger 
investments in saving technologies [6]. 

We argue that the current, disappointing performance of smart metering is not a 
problem of the technology as such, but resides in an insufficient information 
extraction from the available metering data. Feedback interventions, for example, 
that are tailored to individual recipients have been shown to achieve substantially 
higher saving effects and to reach a better user acceptance [7]. Such measures (e.g., 
providing concrete advice or comparisons to similar households, offering services that 
reflect the household’s characteristics, etc.) typically yield considerably lower cost 
per kWh saved (or shifted) than tax credits and rebates and meet higher public 
acceptance than prohibitive regulations [8]. Load shifting measures, control of heating 
systems or combined micro heat and power plants can also considerably benefit from 
information beyond pure metering data if, for example, up-to-date knowledge on the 
presence of the inhabitants is available. While strong evidence supports the benefits of 
using such specific information on households to conduct consumer-specific energy 
efficiency campaigns [8], a major problem is, that the required data to conduct such 
campaigns is not available for large scale deployments. This reduces the benefits of 
smart metering infrastructures dramatically.  

The research outlined herein lies within the scope of energy informatics - an 
emerging discipline concerned with analysis, design and implementation of 
information systems to reduce energy consumption [9, 10]. We strive for providing 
the missing link between smart meter data and powerful energy efficiency 
measures. We show how data collected at 15-minute granularity from out-of-the-shelf 
smart electricity meters can be used to infer energy-efficiency related characteristics 

1236



 

 

of residential dwellings (e.g., water/space heating type, age of house, number and age 
of electric appliances, interest on installation of photovoltaic systems etc.), using 
supervised machine learning techniques. Automatically mining this information – 
with the consent of inhabitants – enables large-scale, targeted saving advice and better 
input to home automation systems that can significantly contribute to reduction of 
energy consumption and advancement of environmental sustainability. 

2 Research Objective and Theoretical Context  

A number of researchers have developed methods to predict household characteristics 
data from energy consumption data. The approaches differ with respect to the type of 
data available (e.g., load records, household survey reports), their resolution in time, 
and the output variables of interest. The potential to recognize characteristics from 
load curves depends on the data granularity – the finer the granularity is the better 
recognition performance can be achieved. Vast research has been done on the 
recognition of devices from the data of extreme granularity (Hertz and Megahertz 
frequency) – in the field of Non Intrusive Load Monitoring (NILM) [11, 12]. While 
sampling rates far beyond one megahertz are quite common in industrial or lab 
settings, the smart metering infrastructure that is currently being deployed and is 
expected to be in the field for the next 20 years does not provide such fine grained 
data. Therefore, the NILM methods will not be compatible with the standard meters 
deployed in most households [13].  
Several authors have investigated coarser consumption data. Chicco [14] provides an 
overview of the clustering methods for electrical load pattern grouping. In the field of 
recognition of energy efficiency characteristics which we focus on, Fei et al.[15], 
proposed a method to detect heat pumps from the daily energy consumption data. 
Beckel et al. [16] used 30-minute data reduced to 26 features to infer 18 household 
properties, most of which relate to the inhabitants’ life situation (age, family, 
employment, social class, etc.), and three directly relate to energy efficiency (number 
of appliances, cooking type and lightbulbs).  Hopf et al. [17] and Sodenkamp et al. 
[18] improved Beckel’s algorithm by extracting 88 features, applying filtering 
methods and by refining the properties. Sodenkmp et al. [19] included weather data to 
Beckel’s algorithm using a multi-dimensional classification method called DID-class.  
Further works employ conventional yearly consumption readings for dwelling 
classification. Kozlovskiy et al. [20] detected old gas heating systems for a targeted 
cross-selling campaign in Belgium. Sodenkamp et al. [21] predicted household 
probability to register on an energy efficiency portal for customer engagement 
campaigns in Germany and Switzerland. Hopf et al. [22] used yearly consumption 
and geographic data from OpenStreetMap and GeoNames to detect living area, 
household type and number of residents. 
Our overarching goal is to examine the usage of machine-learning-based smart 
meter data analytics methods in the practice of energy utility companies and 
their contribution to the environmental and economic sustainability. In this work, 
we go beyond the state-of-the art by identifying eleven energy-efficiency related 
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household characteristics (space heating type and age, water heating type, heat pump 
usage in a household, house age, number and age of appliances, presence and interest 
in photovoltaic and thermal installations, number of recently completed energy 
efficiency measures, and type of cooking facility) from smart meter data at 15-minute 
granularity, which we collected from a Swiss utility company. We extract 93 features 
from the consumption data and include weather data represented by 40 features. 
Finally, we investigate the effects of data granularity. This information can be used 
for the development of targeted energy-efficiency measures (e.g., saving tips, 
promotions of installations of renewable energy systems, load shifting campaigns). To 
enable algorithm training and testing we designed and conducted an online survey. 
Thus, our first research question is as follows: 

RQ 1. To what extent is it possible to recognize energy efficiency related household 
characteristics from smart meter data using machine learning methods? 

The availability of detailed electricity consumption data-traces to the utilities is 
associated with consumers’ privacy concerns [5]. Depending on the company policy 
and local legislation, utilities make use of different data granularities. The typical 
aggregations vary between 15-min, 30-min, hourly and daily levels. For daily data, 
some utilities differentiate between the HT (high tariff, during the day) and NT (low 
tariff, during the night) consumption. Data with lower frequency contains less 
information about customers’ behavior and we expect the performance of our 
classification algorithms to degrade when applied to such data. Therefore, we test 
how different data granularities influence the resulting classification performance and 
formulate our second research question as follows: 

RQ 2. To what extent do different granularities of smart meter data influence the 
recognition quality of energy efficiency related household characteristics? 

3 Data Description 

For our data science study, we cooperated with a utility company in Switzerland with 
about 9`000 customers that provided us with household electricity meter readings at 
15-minute granularity in the timespan between June 1st 2014 and May 31st 2015. For 
the same time period, we acquired hourly weather-data from the U.S. National 
Climate Data Center [23]. Together with the utility, we conducted a web-based 
customer survey about energy efficiency related household characteristics between 
June and September 2015. All customers received an invitation to the survey attached 
to their bimonthly bill.  In this survey, we collected data on 527 households, which 
corresponds to a response rate of 6%. We matched the survey results with smart meter 
data using respondents’ names and addresses.  

Based on the survey responses, we defined and extracted 11 energy efficiency 
relevant household characteristics (properties) that include at least two classes (see 
Table 1). The class definition was either naturally given (e.g., heat pump exists / does 
not exist) or we empirically set class borders by using quantiles. When we used 
quantiles for defining the class border, we either aimed to separate the households in 
equally sized classes, or wanted to identify a specially interesting class (e.g., high 
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purchasing intention for solar installation). The total number of households per 
property does not necessarily respond to the total number of households participating 
in the survey, since the survey participants left some questions unanswered. The 
amount of excluded instances due to the missing data is different per property and lies 
mostly at 23.48 %, except for “Age of residency” with 23.91%, “Age of appliances” 
with 34.35%, and “Age of heating” with 40% of all survey participants excluded. 

Table 1: Energy efficiency related household properties with classes defined from survey 
responses; 𝑞! denotes statistical 𝑥 percentile of the survey responses (relative class sizes are not 
necessarily identical to the percentiles by definition for numerical values, due to categorical 
survey variables). 

Property Classes Definition Class size 
Abs. Rel. 

Age of 
appliances 

New Avg. appliance age < 𝑞!,!"  153 33,41% 
Average  Avg. appliance age between 𝑞!,!" and 𝑞!,!" 152 33,19% 
Old Avg. appliance age > 𝑞!,!" 153 33,41% 

Num. of 
appliances 

Few Number appliances  < 𝑞!,!" 149 28,27% 
Average Number appliances between 𝑞!,!" and 𝑞!,!" 280 53,13% 
Many Number appliances  > 𝑞!,!" 98 18,60% 

Cooking 
type 

Electric Number electric stoves > 0 484 91,84% 
Not 
electric 

Number electric stoves = 0 43 8,16% 

Efficiency 
measure 

No Number completed energy efficiency measures during 
the last 15 years (insulation of basement / roof / 
building envelop, or window replacement) 

304 57,69% 
Few 109 20,68% 
Multiple 114 21,63% 

Heat pump No Existing heat pump 453 85,96% 
Yes  74 14,04% 

Age of 
residency 

< 10 Age (in years) of the building the household is living in 71 13,65% 
10-29 147 28,27% 
30-74 219 42,12% 
≥ 75 83 15,96% 

Interest in 
solar 

Low Purchase intention coefficient < 𝑞!,!" 387 73,43% 
Average Purchase intention coefficient between 𝑞!,!" and 𝑞!,!" 49 9,30% 
High Purchase intention coefficient > 𝑞!,!"  91 17,27% 

Solar 
installation 

Yes Photovoltaics or solar heating existent 29 5,50% 
No Neither photovoltaics nor solar heating existent 498 94,50% 

Age of 
heating  

New Space heating age < 𝑞!/!   128 33,51% 
Average Space heating age between 𝑞!/!  and 𝑞!/! 135 35,34% 
Old Space heating age > 𝑞!/! 119 31,15% 

Space 
heating type 

Electric Space heating = „Electric heating“ 21 3,98% 
Heat 
pump 

Space heating = „Heat pump“ 66 12,52% 

Other Other space heating 440 83,49% 
Water 
heating type 

Electric Water heating = „Electric heating“ 81 15,37% 
Heat 
pump 

Water heating = „Heat pump“ 63 11,95% 

Other Other water heating  383 72,68% 
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4 Analysis 

In this section, we describe our data analysis methodology and results. We first seek 
to answer the first research question: 
RQ 1. To what extent is it possible to recognize energy efficiency related household 
characteristics from smart meter data using machine learning methods? 

To answer this question, we follow the four-step procedure described below. 
Step 1: Feature Extraction. At the beginning, it is important to reduce the raw data 
dimensionality and transform the data to a more usable form. Consumption time 
series are divided into single weeks, since from previous work we know that a weekly 
energy consumption is sufficient to perform household classification [16]. We 
extracted 93 features from 15-min smart meter data for each week, that are adopted 
from previous works dealing with 30-min smart meter data [16, 17]. The details can 
be found in the project report [24]. The extracted features cover four categories: 
consumption (e.g., in the morning, noon, evening); ratios of consumption figures 
(e.g., consumption in the morning vs. noon, daytime vs. night); statistics (e.g., 
variance, quantiles); others (e.g., number and average heights of consumption peaks).  

Besides the smart meter features, we defined and used 40 features describing the 
correlation between electricity consumption and weather data, since a positive effect 
of weather data on the classification performance was shown in the previous study 
[19]. For each weather variable (temperature, wind speed, sky cover, and 
precipitation), we calculate eight features: overall correlation over the week, 
correlation during the day and during times of the day (night, daytime, evening), 
correlation of minima in both time series, correlation of weather minima and 
consumption maxima, and ratio of the weekday and weekend correlations.  

Finally, we use 133 features for our analysis. Due to the space constraints we 
cannot present all the features (interested reader is referred to [24]), but we list 10 
most frequently selected features in the final prediction models for all household 
properties with a short description in Table 2. 

 
Step 2: Feature selection. After having prepared the feature vectors, we select 
relevant features for each property separately. This is done to reduce overfitting and 
speed up the calculations by removing the irrelevant features. We tested the following 
feature selection methods: Correlation based (cfs), consistency based (consistency), 
Based on the importance from random forest (importance), statistical test for the 
difference in distributions (chi.squared), entropy based (gain.ratio), forward feature 
selection search (forward-selection), backward feature selection search (backward-
selection), no feature selection (none). For the methods description see [25].  

Table 2: The top 10 selected features and their description 

Rank Feature Description 
1 t15_above_2kw Time with consumption above 2 kW 
2 t15_value_min_guess Time with consumption above minimal consumption 
3 r15_wd_evening_noon Relation between evening and noon consumption on weekdays 
4 r15_mean_max_no_min Relation between mean and max consumption with subtracted 
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minimum 
5 t15_time_above_base2 Time with consumption above estimated baseline 
6 r15_evening_noon Relation between evening and noon consumption 
7 t15_const_time Time with nearly constant consumption 
8 t15_daily_min Average daily minimum 
9 r15_min_wd_we Relation between minimum of consumption on weekdays and 

weekends 
10 r15_var_wd_we Relation between the variance of consumption on weekdays 

and weekends 
 
Step 3: Classification. As the next step we train the model based on the selected 
features and evaluate the following six well-known classifiers that have 
implementations in the statistical programming environment GNU R: AdaBoost [26], 
k Nearest Neighbors (kNN) [27], Naïve Bayes [27], Random Forest [28], Support 
Vector Machine (SVM) [29].  
 
Step 4: Evaluation. To measure the classification performance, we are interested in 
testing how many households are correctly classified in each available class. These 
numbers are typically presented in the form of a confusion matrix. To compare the 
different confusion matrixes between each other we calculate two measures from the 
confusion matrices: 

• Accuracy: It is defined as the portion of correctly classified instances from the 
number of total classification instances and can take values between 0 and 1, where 
1 corresponds to perfect prediction and 0 to total misclassification. Accuracy is 
easy to interpret, but in the situation where the classes are unbalanced (i.e., one 
class occurs much more often than the others) a classifier that always predicts a 
majority class can achieve high accuracy. Therefore, this measure can be slightly 
misleading if applied to such unbalanced properties. 

• Matthews Correlation Coefficient (MCC): It is an alternative measure that is more 
suitable for the unbalanced problems. It is a correlation coefficient between the 
observed and predicted classifications. In the case of binary classification problem, 
it is equal with the phi statistic [30]. We use MCC definition for multiclass 
problems [31, 32]. MCC can take values between -1 and 1, where 1 corresponds to 
the perfect classification, -1 to the total disagreement between the predictions and 
real observations and 0 for the classification that is not better than random 
prediction. MCC lacks the easy interpretability of the accuracy measure, but it is a 
good compromise among discriminancy, consistency and coherent behaviors with 
varying number of classes, unbalanced datasets and randomization [31]. 

To calculate the performance measures, we first split the data into the test set 
(10%) from the main data by using a stratified split (the distribution of classes in the 
test set deviates at most with one household from the distribution in the main data).  
For the main data, we use 4-fold cross-validation to select the best classification 
algorithm and feature selection method.  

Then, we take the features describing a single week (week number 34, from 12.01 
to 18.01.2015). The features of the main dataset are centered and scaled to have mean 
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0 and standard deviation 1. The features in the test set are then scaled with the same 
proportions. All households with missing or not available values for the chosen week 
are removed, as well as the feature vectors that are constant for all households. This 
problem occurs mainly with weather features that are constant during the week (e.g., 
precipitation and sky cover). 

Performance of the individual classifiers for week 34 is presented in Figure 1, 
together with two benchmark measures: random guess (𝑅𝐺 =  1 𝐾 , where 𝐾 is the 
number of classes in one property) and biased random guess (𝐵𝑅𝐺 = ℎ!, where ℎ 
is the relative class size of each class for one property, as displayed in Table 1). The 
figure illustrates, that no single classifier provides the best classification performance 
for all properties. Similarly, no best feature selection technique for all properties can 
be found. Therefore, we choose the classification configuration (feature selection and 
classifier) that produced the best result for MCC and list it in Table 3.  

 

 
Figure 1: Comparison of classification performance of individual classifiers without feature 
selection (week number 34) 

With these best performing classifier configurations, the final model is trained on 
all households that are not in the test set. Predictions are then made for the test set and 
are then evaluated in terms of both the accuracy and MCC. We repeated the training 
and prediction process for all 29 week of data that were not excluded due to public or 
school holidays or missing values. The results for every week are then aggregated 
with a simple ensemble classifier [33], that averages the prediction probabilities for 
each class and thus forms one single multi-week-classifier. The final predictions for 
the test data are then evaluated with respect to both the accuracy and MCC. The 
results are presented in the Figures 2 and 3. 
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As the result, we can answer our first research question positively: It is 
possible to predict most (9 from 11) energy efficiency relevant household 
properties better than by using random guess. We especially achieved good results 
for the prediction of properties related to the room and water heating (Space heating 
type, Water heating type, and Heat pump). The properties Cooking type and Efficiency 
measures could not be predicted adequately with our approach. But even with the 
negative MCC, the results can still be valuable for utility companies that usually do 
not know what household belong to which class: the application of the classifier can 
perform better than random guessing. 

Table 3: The best performing configurations 

Property Feature selection method Classifier 
Space heating type cfs  Random Forest 
Water heating type none Random Forest 
Heating age gain.ratio Support Vector Machine 
Age of residency cfs AdaBoost 
Age of appliances chi.squared Naïve Bayes 
Cooking type none Random Forest 
Heat pump chi.squared Random Forest 
Solar installation none Random Forest 
Efficiency measures cfs AdaBoost 
Num. of appliances none Random Forest 
Interest in solar chi.squared Random Forest 

 
 

 
Figure 2: Classification performance for all properties measured with MCC 
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Figure 3: Classification results for all properties measured with accuracy, compared to random 
guess and biased random guess 

RQ 2. To what extent do different granularities of smart meter data influence the 
recognition quality of energy efficiency related household characteristics? 

To answer this question, we have to repeat the classification process as described 
in RQ1 for different data granularities. We simulate the different granularities by 
aggregating the existing 15-minute smart meter data up to the following typical 
aggregation levels: 15-minute, 30-minute, 60-minute, daily NT/HT (low-tariff during 
the night / high-tariff during the day), and daily. The NT consumption is measured 
during different times by different utility companies. For this case we will assume that 
NT consumption is measured between 23:00 and 07:00. 

For each data granularity, we adapted the defined features that are reasonable for 
the data granularity: For 30-minute and 60-minute data we use features analogously to 
the 15-minute ones. For the NT/HT and daily aggregation levels we define 14 and 7 
different features respectively that describe the consumption during the weekdays and 
weekends, the relations between different consumptions and the variance. Naturally, a 
large set of the 15-min smart meter features cannot be calculated for HT/NT or daily 
measurements (e.g., features on consumption during times of the day, or peaks of the 
load curve). Additionally, we compare the results to the worst case of only having a 
single weekly value (1 feature).  

The classification is repeated for a single week only. We exclude the weather 
variables from this analysis, because we want only to show the value of the data at 
different granularities. The consideration of weather will have more value for the finer 
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granularities, since it is also available on the 15-minute level. For calculations at each 
granularity levels, the features from coarser granularities are also included. This is 
done to ensure that important features are not missed on any granularity level. E.g., if 
there is a good feature that we calculate based on the daily data, but do not for hourly 
data, then we will get better results for daily granularity than for the hourly data, even 
though we could get the same or better result by including this feature with hourly 
data. In this way, we get a large number of features, especially for the 15-minute data, 
and therefore we perform feature selection with the three best performing methods on 
the 15-min data (cfs, chi.squared, gain.ratio), and without feature selection.  

In Figures 4 and 5, we show the best classification performance that was achieved 
for different granularities with one of three feature selection methods or without 
feature selection using Random Forest classifier. Since our goal in this analysis is to 
compare the best possible performances of different data granularities, we do not 
create overfitted models that are not necessarily designed to predict household classes 
for new households, and use the same data for training and test. Therefore, the results 
cannot be compared with those presented in Fig. 2 and 3, but they give an impression 
on the impact of data granularity on the classification performance. We can conclude 
from the results, that there is not much difference between using the 15-, 30- and 60-
minute data for the prediction of the energy efficiency relevant household 
characteristics. There is a large drop in performance by using the daily (HT/NT and 
24-hour) data for some properties. Using the weekly values shows the worst 
performance, demonstrating the value of finer granularity data.  

 
Figure 4: MCC results for different data granularities 
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Figure 5: Accuracy results for different data granularities 

5 Discussion and Conclusions 

The objective of our study was the identification of energy-efficiency and 
renewable energy related household characteristics based on smart electricity meter 
data. For the development of our methodology and the training of our machine-
learning based green IT artifact, we used smart meter data collected at 15-minute 
granularity from a Swiss utility company and conducted a customer survey in 2015. 
In this paper, we have shown that it is possible to identify 9 from 11 proposed energy 
efficiency relevant household properties (including space heating type and age, water 
heating type, existence of heat pumps, number and age of appliances, existence and 
interest in solar installations, and house age) with average accuracy over all properties 
of 70%. The artifact could not identify the properties “number of completed energy 
efficiency measures” and “type of cooking facility”. Furthermore, we have shown that 
the smart meter data aggregated at hourly values is sufficient to detect 8 from 11 
properties with only a small loss of prediction quality, compared to 15-minute data. 
Importantly, tools for the recognition of household characteristics must be used under 
clearly documented privacy preservation conditions and with user consent. 
Development of law-based guidelines for energy consumption data treatment in the 
analytics tasks is an important task that should be solved in the next future. 

We have identified the following limitations of our work. First, this study is based 
on the online survey implying the selection bias, which means that we cannot be sure 
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that our sample used for the algorithms training and test is representative and that the 
results hold for all utility customers. Further, we worked together with a utility 
company that serves customers from one city and the surrounding area - this 
introduces a regional bias into the analysis. In addition, we only considered 11 
household properties in this work - the results may differ when new properties are 
included.  

In the future work, we plan to conduct field studies to investigate the effects of 
personalized interventions toward the households selected using the presented 
algorithms. The interventions can include offers of energy-efficiency products and 
services, customized consultancy on energy efficiency measures, or normative 
feedback. We could show the economic, ecologic and social potential of such 
interventions in a recent study [20] where households with inefficient heating systems 
were identified based on annual gas consumption data. We expect much better results 
with the use of smart meter consumption data as shown in this paper. In this setting, 
we also plan to recognize combined properties (e.g., old house without conducted 
energy-efficiency measures, or homeowners that are interested in solar installations) 
from the electricity consumption and weather data. We also plan to reproduce and 
expand the presented results by cooperating with utility companies serving customers 
from other geographic locations. A more detailed approach would investigate how the 
combined changes in granularity and data volume affect the classification 
performance. Additionally, we used only a simple ensemble learner, that computes 
the mean value from individual predictions, to aggregate classification results from 
multiple weeks. Using a more advanced approach that takes the varying performance 
during different seasons into account could further improve the results.  

Being an example for a data science research, our work still allows for empirical 
validation of the effects from applying the developed artifact in field. Moreover, we 
demonstrate how to integrate the end-users (utility customers) in the IS research. 
Ultimately, the proposed artifact is applicable to virtually every smart meter 
deployment worldwide without changes in the hardware, and thus can considerably 
contribute to the society’s energy targets.  
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