
Association for Information Systems
AIS Electronic Library (AISeL)
UK Academy for Information Systems Conference
Proceedings 2009 UK Academy for Information Systems

3-31-2009

Ubiquitous Information Systems (UBIS): A design
research study of intelligent middleware and
architecture
David Bell
School of Information Systems, Computing and Mathematics, Brunel University,UK, david.bell@brunel.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/ukais2009

This material is brought to you by the UK Academy for Information Systems at AIS Electronic Library (AISeL). It has been accepted for inclusion in
UK Academy for Information Systems Conference Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

Recommended Citation
Bell, David, "Ubiquitous Information Systems (UBIS): A design research study of intelligent middleware and architecture" (2009). UK
Academy for Information Systems Conference Proceedings 2009. 12.
http://aisel.aisnet.org/ukais2009/12

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fukais2009%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009?utm_source=aisel.aisnet.org%2Fukais2009%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009?utm_source=aisel.aisnet.org%2Fukais2009%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais?utm_source=aisel.aisnet.org%2Fukais2009%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009?utm_source=aisel.aisnet.org%2Fukais2009%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009/12?utm_source=aisel.aisnet.org%2Fukais2009%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

UBIQUITOUS INFORMATION

SYSTEMS (UBIS):

 A DESIGN RESEARCH STUDY OF

INTELLIGENT MIDDLEWARE AND

ARCHITECTURE

David Bell

 School of Information Systems, Computing and Mathematics

Brunel University, Uxbridge, United Kingdom.

Email: david.bell@brunel.ac.uk

Abstract

Ubiquitous information systems (UBIS) adapt current Information System thinking to explicitly

differentiate technology between hardware devices and software components in relation to people and

process. More recent ubiquitous computing approaches provide the means to link Web content and

services to a number of mobile devices (evolving from earlier Palm Computers to more recent smart

phones and ambient screens), adapting information to provide mobile business solutions. In general,

these approaches focus on providing the means to improve specific information access and transcoding

but not on how the information can be discovered and accessed on-the-fly. This paper explores how a

number of investment banking systems can be re-used to provide the invisibility of pervasive access and

uncover more effective architectural models for strategies of this type. A proof-of-concept intelligent

middleware Web service is built to further test and explore how human-devices-application

connections can be made sporadically and not limited to pre-configured access to specific applications

and data.

Keywords: Ubiquitous/Pervasive Computing, Middleware, Design Research

1.0 Introduction

The Ubiquitous computing (Ubicomp) goal of an enhanced computer that makes use

of the many computers embedded within the physical environment - effectively

invisible to the user - impacts all areas of computing, including hardware components,

network protocols, interaction substrates (e.g. software for screens and haptic entry),

applications, privacy, and computational methods (Weiser 1993). Invisibility within

the physical environment is a central theme in Ubicomp. Computer scientist,

economist, and Nobel Prize recipient Herb Simon calls this phenomenon "compiling“;

Philosopher Michael Polanyi calls it the "tacit dimension"; Psychologist TK Gibson

calls it "visual invariants“; Philosophers’ Georg Gadamer and Martin Heidegger call it

"the horizon" and the "ready-to-hand“; John Seely Brown at PARC calls it the

"periphery" (Weiser 1991). “All say, in essence, that only when things disappear in

this way are we freed to use them without thinking and so to focus beyond them on

new goals” (Weiser 1991 p. 933). In order to de-couple the information that we

associate with our current applications and move it into the periphery, a means to

transform the content and support the user in their current place is required. Large

numbers of devices, variation in how information should be changed and the large

number of source systems combine to make architecting such system challenging. In

response, a number of vendors have simplified the problem by focusing on specific

parts of this complex network. AvantGo were early entrants into the market, focusing

on a single device (the Palm Pilot) and a standard data format. IBM unsurprisingly

supplemented their application server (WebSphere) with a number of supporting tools

that address both data transcoding and pervasive device support. More recently, smart

phones (such as the Apple iPhone, Google G1 and Blackberry Storm) are proliferating

large numbers of small applications that each connects to a range of internet data

services (e.g. combining barcode readers and search).

The vision of Ubicomp is also well represented in the research community with many

practical and futuristic projects – notable projects have included human-centred

computing in Project Oxygen at MIT, wireless device access in HP Cooltown and in-

house telecare for the elderly at Brunel University. Difficulties arise when trying to

overlay such a vision on top of current information system architectures. One could

be disappointed that Weisner’s Ubiquitous Computing vision has not been realised,

especially since many of the hardware and network bottlenecks have been overcome.

Instead we have a number of intelligent mobile devices each competing in a narrow

market segment (media downloading, e-mail integration etc.). Only by widening (and

connecting) research at all levels from hardware design to information system strategy

can substantial progress be made.

The web is awash with intelligent recommender services, but the same level of

ubiquitous intelligence has still to percolate into the main stream business

environment. In order to illustrate some relatively simple applications of intelligent

ubiquitous information systems (not currently utilising ubiquitous technology in this

manner), two banking scenarios are presented. It is also worth highlighting that the

underlying devices, databases and applications already exist and are in use within the

working environment described - their ubiquitous re-use is not however.

Scenario A: After flying from New York to London, a sales manager is

entering the lobby in the regional headquarters of a global investment

bank. Swiping their ID card through the turnstiles allows them to enter

the waiting area for the lifts where they are faced with a large flat screen

display. Instead of repeating the corporate marketing advertisements a

report of the regional sales data is rendered – displaying data that is

relevant to an imminent meeting. In addition, urgent messages are

displayed (taken in part from the US cellular telephone).

Scenario B: Three traders are standing within viewing distance of one of

their trading workstation and discussing the current economic climate.

Their radio frequency identifiers (RFIDS) detect their proximity to the

display where software automatically starts and displays financial news

that is relevant to each of them.

This paper presents an intelligent, loosely coupled approach to ubiquitous information

systems and is structured as follows. Section 2 covers some of the characteristics of

Ubicomp and literature on relevant integration middleware. Section 3 presents the

design research method deployed in this research and the constructed artefacts

generated whilst undertaking the design. Section 4 reports on progress with this early

research and identifies a number of possible avenues for continued research within the

area.

2.0 Devices to Information Systems

2.1 Web of Devices

A future Web containing a heterogeneous mix of software services and embedded,

mobile devices offers many opportunities to more effectively interact with enterprise

applications (extracting information for rendering on appropriate devices at optimal

times in appropriate places). One approach is to extend existing technologies and

platforms to support such complexity and IBM’s Websphere Everyplace Suite (WES)

has followed this strategy. IBM extended their application server platform to include

a number of tools for pervasive synchronisation of e-mail to mobile devices,

transcoding data (converting data for specific devices) and radio frequency identifier

(RFID) management. Another early middleware provider is AvantGo; providing

software services to synchronise content from the Web onto a Palm Pilot mobile

device. AvantGo middleware supports both general purpose access to Web sites such

as news as well as corporate data distribution (e.g. financial analysis provided by

banking institutions to specific clients). IBM and AvantGo both provide clearly

targeted technical innovations – enabling a pre-configured service that has been

identified and constructed for a user community. In order to realise an increased level

of invisibility in the UBIS vision we need to explore the interface between the human

(with their mobile or ambient lens) and the source system to which they may want to

interact. To undertake a task of this type requires appropriate theoretical

underpinning and we must first understand ubiquitous architecture as a whole.

Mukherjee and Saha (2003) provide a comprehensive schematic of the entities and

layers of a ubiquitous architecture. Figure 1 is an extended version of their

architecture with an additional focus on software services – both alongside

applications and resident on the mobile device.

Figure 1. Ubiquitous Architecture (adapted from Mukherjee and Saha 2003).

Working outwards (in Figure 1) the pervasive network is made up of a number of

devices (sensors, actuators, user interfaces etc.) that are interconnected on one or more

networks. These devices can interface together in order to undertake specific tasks,

for example peer to peer content distribution, or with remote applications and

services. In order for the mobile devices to access remote services or applications they

must first utilise some pervasive middleware. Original middleware definitions

describing a middleware service as general purpose services that sit between

platforms and applications (Berstein 1996) appear too general (in light of a UBIS

environment with application components sitting on many devices and applications)

and requires additional clear and usable constructs to progress further. To start this

exercise, a number of approaches to integration middleware, from the research

literature, are contrasted. Before proceeding though, it is worth emphasising the

positive (and much needed) contribution that Information Systems is able to provide

to the research area, bringing together a much needed focus on human, technological

and societal dimensions.

In a more pragmatic vein the architecture in Figure 1 can be used to construct a high

level architecture. Indentifying the applications, services and devices that are within

scope of the design before mapping networks and middleware required to create

connections between chosen components. Traditionally, these connections would be

envisaged at design time. Connections between specific applications and devices

would be designed – choosing or developing appropriate middleware and network

systems. This approach is clearly demonstrated in the commercial strategies already

described.

2.2 Integration Middleware

In addition to some of the commercial platforms already discussed a number of

middleware specific research project have been undertaken. Three themes are clear in

the literature – software engineering, architecture and data support.

The AMUN middleware (Trumler et al. 2006) uses autonomic principles and the

JXTA platform to investigate an office of the future. The middleware itself focuses

on events and central control and configuration. Coronato and Pietro (2005) used

grid middleware to provide access to services. Again, a heavy reliance on a specific

software platform limits the fluid and invisible emergence of data and services. The

importance of awareness and transparency is highlighted by Yau et al. (2002) when

presenting their RCSM middleware. Their approach uses the Interface Description

Language (IDL) as a means to support a number of underlying technologies.

Extending this abstraction further to use XML would appear promising and increase

the realisation of some of the benefits they state.

A number of researchers have used agent based middleware to interact in a context

sensitive way with services. Soldatos et al. (2007) present a taxonomy of ubiquitous

components: transparent ad-hoc communication, capture and transfer of sensor

streams, raw signal processing, context acquisition and decision making. In addition

they propose a middleware of agents (ranging from perceptual components such as

face recognition to service agents); developed in C++ and JADE (Java Agent

DEvelopment framework) and providing a memory jogger system. The technology

centric approaches demonstrate a valid means of realising a UBIS architecture, but

often lack wider architectural cohesion.

Soldatos et al. (2007) highlight the difficult balance between transparency and context

awareness with technology pre-configuration (both hardware and software). In

addition to technology centric middleware, research focusing on the planning of

component and service execution (Rouvoy et al. 2008) has been undertaken,

optimising the utility of applications (a customer relationship management scenario in

this case) as context changes occur. At the heart of the planning system is a quality of

service (QoS) plan and an associated plan repository (requiring that specific

interactions are modelled up-front).

In order to realise a UBIS vision, a wider architectural framework is required that

lends itself to grounding subsequent technology choices and activities. A substantial

amount of current Ubicomp research focuses on tailored technology solutions and not

how they are best able to fit into a larger architectural vision.

3.0 Design Approach

3.1 Design Framework

Recent activity around design research methodology has provided a number of

frameworks for research artefact generation – with artefacts often categorised using

March and Smith’s (1995) terminology of concepts, models, methods and

instantiations. Artefacts are wide ranging and examples include data sets,

methodologies and digital media. A consequence of focusing on the iterative design

and implementation of more effective products and processes are a catalogue of

interlinked design artefacts each generated over the life of the research project.

Subsequent analysis at both a holistic level and of each artefact’s unique life-cycle is

limited without detailed recording of artefact characteristics over time (including their

origination). Expanding analysis to evaluate against existing artefacts (typically

applications or databases that are external to the design exercise) has additional

difficulties, typically the result of many external artefacts being documented at a high

level or not at all. In summary, the effective use and reuse of design research artefacts

is heavily reliant on comprehensive capture of artefact detail (the same knowledge

capture limitations are compounded when re-using artefacts across research projects).

The foremost question in ubiquitous information system architecture is how

component synthesis should be undertaken more effectively – bringing together

hardware devices and software/application services. The research described in this

paper initiates this process by scoping the use of intelligent middleware and

associated device, application and service knowledge. The research follows a design

research approach, which is a "search process to discover an effective solution to a

problem" (Hevner et al. 2004 p.88). The relevance of the problem for the research

community must be demonstrated and the solution must be effective to a satisfactory

level. The effective solution may not (and generally does not) coincide with the "best"

or "optimal" solution however - generally the effectiveness of the solution must be

demonstrable through an iterative evaluation of the designed artefact(s). The

research process can be seen in Figure 2.

Figure 2. Design research framework (terminology from March and Smith 1995).

The design research process presented in this paper, and depicted in the diagram

above, is methodologically based on and adapted from the approach described by

Nunamaker et al. (1991) and the guidelines presented by Hevner et al. (2004). The

research outputs are also described according to March and Smith's (1995)

terminology for design research. The resulting inter-related artefacts will provide a

theoretical model for progressing research with this area of middleware development.

• Theory building: The study is theoretically based on previous work

conducted in the areas of ubiquitous middleware architecture and

development. The proposed architecture builds upon this theory by

covering an existing gap represented by a lack of integration between

hardware device capability modelling and application/service software

modelling.

• Constructs: Characterisation and categorisation of middleware at the

heart of a UBIS has not been clearly articulated. The developed

framework has been evaluated primarily through its conceptual

migration of a number of banking applications on a range of mobile

devices. The scenario itself is not identifiable with a live project given

the novelty of the research; however the applications and settings are

drawn from live industrial projects. The application of the architecture

to the scenario represents the development of a “proof of concept”

project whose outcomes are to be evaluated in relation to the source

applications from which they were taken.

• Models: Two sets of observations have been conducted. The first set of

observations concerned the applicability of existing ubiquitous

computing middleware architecture to fully represent the required

migration. The development of component description and middleware

was observed in order to understand how a typical software

development process currently organises development components of

this type. This observation allowed the research to understand the

limitations of applications, services and devices described and

developed with current industrial technology and method (largely

based on XML). A second set of observations were carried out on the

proof of concept development and used to evaluate the framework.

• Methods: Two design methods are in use: (1) the method for extending

the current architecture to better reflect the intricacies of UBIS and (2)

the method deployed when moving from architecture to realised

system. Method 1 is a pre-requisite for method 2. The iterative

development and evaluation of the architecture and intelligent

middleware software is possible starting with a number of business

applications and services and finishing with a proof-of-concept

software artefact.

• Instantiations: A developed software artefact, connecting applications

to devices, will be evaluated in the context of the Mukherjee and Saha

original framework. The middleware will utilise current business

practices – namely Java and XML.

The aforementioned strategies permeated the research as a whole. The strategies

themselves should not to be considered as process steps, but rather as means of

organizing the researchers’ processes. All strategies were influential during every step

of the study. In terms of the iterative cycle adopted to materialize the various research

artefacts (i.e., constructs, models, method and instantiations), the steps that were

followed are schematically outlined in Table 1.

Phases of research Individual steps

Identify problem relevance Conduct literature review

Analyse industry applications and middleware

Identify gap(s)

Framework design Define scope of architectural framework

Define underlying concepts and constructs

Define middleware artefacts (input and output)

Framework evaluation Apply framework to a realistic scenario

Observe framework in action with proof of concept

Improve and re-evaluate framework Identify limitations or areas of improvement

Refine (re-design) architecture (iterate previous

two steps)

Communicate and discuss research Identify limitations and further potential benefits

Define directions for future work

Disseminate (e.g., present and publish findings)

Table 1: The adopted design research process

(based on guidelines by Hevner et al. (2004))

The developed software instantiation, described in the context of earlier stages, is

detailed in this paper. The previous section highlighted an existing gap in the current

literature. The following section will address the identified gap, confirming relevance

of the problem investigated, both in the architectural and software artefacts. The

resulting artefacts are now presented.

3.2 Intelligent Connector Architecture

Before developing a proof-of-concept, a number of business applications were

analysed (four investment banking applications from each of the categories – Trading

Systems, Risk Analysis Systems and Market Data Systems) and mapped to a number

of devices. Each device selected is currently used in the business environment and (1)

their relationship to the application and (2) transcoding rules required when

connecting each application part to the one of the new devices required explicit

description. For example, a bond calculator that generates a matrix of bond analytics

calculated in real-time, and when considering a mobile phone a number of

relationships are apparent. The mobile phone display is able to display 3x4 of the

Bond Matrix; the phones owner is interested in Russian Bonds; the phone’s

connection is able to handle 100 analytic records per second etc. Transcoding the

output of the bond calculator to satisfy the various relationships (or constraints)

requires a number of transcoding scripts to execute. A pipeline of transcoding scripts

are constructed in order to satisfy the relationship between the mobile phone and bond

calculator. The objective is to allow this to happen invisibly, without manual

intervention or pre-configuration. Consequently, the initiating event, application-

device relationships and transcoding scripts need to be in place for this to happen.

The architectural extension to provide this level of automatic integration is presented

in Figure 3. This level of automation is critical if a middleware pipeline is to

construct itself on-the-fly when reacting to some recognised event (e.g. a person

passing an ambient screen) in a new and novel way. The additional relationship

between events and applications and devices is a pre-requisite for any intelligent

initiation. The same exercise was carried out on a further 3 applications and 4

ubiquitous devices. The result of the exercise and subsequent analysis is an extended

architectural framework (see Figure 3).

Figure 3. Extended UBIS Architecture

The first extension to the architecture is the addition of events to the middleware

layer. Two event channels are added to enable: (1) Events to be consumed and

generate the Services and Applications (e.g. informing that a specific bond analytic

has changed) and (2) Events to be consumed and generated by the pervasive devices

(e.g. Trader X is at location Y and is interested in Bond Z). It is this additional stage

that allows the designer to explore both the capabilities and functionality of the

devices and applications (inputs, outputs, requirement – when and where etc.).

Consequently, the construction of linkages between the applications, services and

devices are in response to specific events. The shared spaces (“S”) are also included

in the middleware layer as repositories of space based information and logic –

embedded within a specific location. The space can be viewed as a data cache with

integrated logic that is able to react to the cache and external events. The event

message (an XML document) is read by the intelligent middleware who then

identifies appropriate connections (interested parties). The second extension to the

architecture is the connection middleware itself – comprising service adaptors,

transcoders and device adapters. Initial analysis of the source systems (and their

information provision) allows specific groupings of information (e.g. screen parts) to

be identified as useful and described accordingly. Service adaptors extract this

information in XML format (using the previous description as tags). A similar

process is undertaken when describing particular devices, identifying and describing

what they are able to render. The device adapters render XML on specific devices.

A connector pipeline is constructed from service adaptors (Java code that extracts

XML
1
 from each service), a number of transcoders that convert XML

1
 into XML

2

ready for passing to the device for consumption via device adaptors. For example, in

the Bond Calculator example above, the intelligent middleware would read events

(∆BondZ, TraderX@Foyer, TraderX=iPhone) and construct two pipelines to convert

the bond analytics into an XML format that can then be transcoded for consumption

by the device adaptors for the trader’s iPhone and Ambient screen in the foyer.

A final artefact was a developed instantiation of the connection software and associate

Web service. This made use of Java, XML and XPath. The system and device

capabilities, event interests and input/output parameters were described in XML (see

Figure 4). The intelligent connector service reacts to events by constructing pipelines.

The XML documents are searched using XPath for interests in a particular event and

then a pipeline between the event producer and interested party is constructed. The

transcoder software is selected (based on the two ends of the pipeline) and the link is

made. Information from the event producer is rendered on devices that are relevant

to the interested party.

 Figure 4. Connector Software and XML template

The transcoding scripts are selected to bridge the outputs of the sources artefact and

the input of the recipient. The matching processing in this prototype is simplistic and

not within the scope of the research aim of exploring and extending the architectural

framework. The space tags in the XML are used to store contextual information about

the device, application or service (e.g. proximity of a device etc.). The tags

themselves reference shared spaces resident in the middleware layer (with universal

resource identifiers URIs between the tags). In conclusion, the software system

comprises a number of Java Web services that provide data conversion for particular

devices, applications or services (adapters), XML conversion (transcoders), Pipelines

construction (INPI-WS – using XPATH) and XML files containing component

descriptions.

Component description:

<Device, Application or service Name>

 <InterestEvents>..</InterestEvents>

 <GenEvents>..</GenEvents>

 <Inputs>..</Inputs>

 <Outputs>..</Outputs>

 <Space>..</Space>

</Device, Application or service Name>

Trancoder – as above without event detail

3.3 UBIS Architecture in use

Now that the architecture has been extended to better support the dynamic

construction of ubiquitous business application integration (aiding invisible access), it

is worth describing the process that emerged from the application analysis exercise.

As more applications and devices were analysed and described an architecture design

framework (articulating the population of Figure 3) resulted:

Process Step Details

Indentify devices Describe the characteristics of devices (rendering

ability) that reside in the UBIS environment.

Identify applications and services Describe the characteristics of applications and

services (information provision) that reside in the

UBIS environment.

Identify events and spaces Events generated by applications, services and

devices are classified (in relation to specific

information). Interest in specific events can be

added to the previously described devices,

applications or services.

Select or design application, service

and device adapters (and associated

transcoding scripts)

Adapters provide an XML interface to the specific

device, application or service. The inputs and

outputs alignment determines the necessity to

execute transcoding scripts. It should be noted that

many applications provide an XML interface that

will then only need transcoding.

Scenario Testing A real-world use case can be used to test the

information flow around the UBIS architecture.

Further discrepancies in the description of

architectural components can be removed or

adjusted.

Realise physical architecture Physical hardware components can be selected and

software can be chosen or built.

Table 2: Architecture Design Process

The UBIS architectural framework now in place provides both the schematic and a

supporting process. It is able to provide a basis for architecting intelligent business

system integrations that are able to better reflect human interests (in events and

specific visualisations) and wider communities – prior to selecting and implementing

specific technical components. It should also be noted that the framework is task

independent, focusing instead on the environment (event description), the user lens

(device description) and available information (device, application and service

description).

4.0 UBIS Middleware Research Roadmap

The research presented in this paper is still at an early stage. Robust evaluation of the

approach is required, systematically analysing further business applications. In terms

of effectiveness the approach presented clearly improves on the current commercial

approaches because: (1) the approach is not task centred and limited to specific

information routings, (2) initial modelling allows the architecture to automatically

adapt as new applications, devices or events appear and are recognised and (3) the

approach is not platform or device dependant (utilising standards based XML and

Web Service protocols). Existing Ubicomp research offers answers to some of these

limitations, but not in the comprehensive manner that is able support wider business

application architecture. The general nature of the architecture presented addresses

many of the issues highlighted. Whilst undertaking the design it is clear that a

number of potentially fruitful avenues exist:

• The modelling of application and device capabilities, relationships and events

is limited by the syntactic and hierarchical nature of XML. Applying ontology

languages (such as the Web Ontology language) of the Semantic Web may

provide some additional benefits.

• The current approach relies heavily on a middleware layer that is able to

process the transcoding pipeline. Limited scalability of the approach could

warrant investigation into delegated processing with Clouds or Grids

(traditional or mobile). The whole deployment of processing in a complex

network of computers and devices is a topic in its own right.

5.0 Conclusion

In this paper the author presents a novel approach to ubiquitous information system

(UBIS) architecture – including an intelligent middleware approach that reacts to an

environment in which people and devices interact on-the-fly (not limited to

responding to only specific requested tasks). An UBIS architectural framework is

presented that extends work by Mukherjee and Saha to more effectively support

ubiquitous information access in an enterprise setting - introducing ubiquitous

computing architecture into the Information Systems discipline. A design research

agenda is followed and includes both the extended architectural framework and a

realised Web service instantiation (of intelligent middleware) that utilise Java, XML

and XPath.

References

Bernstein, P.A. 1996, "Middleware: a model for distributed system services",

Communications of the ACM, vol. 39, no. 2, pp. 86-98.

Coronato, A. & De Pietro, G. 2005, "Autonomic Pervasive Grids: A session Manager

Service for Handling Mobile Users", Self-organization and Autonomic

Informatics (I), .

Hevner, A., March, S., Park, J. & Ram, S. 2004, "Design Science in Information

Systems Research", MIS Quarterly, vol. 28, no. 1.

March, S. & Smith, G. 1995, "Design and Natural Science Research on Information

Technology", Decision Support Systems, vol. 15, pp. 251-266.

Nunamaker, J., Chen, M. & Purdin, T. 1991, "System Development in Information

Systems Research", Journal of Managemennt Information Systems, vol. 7, no.

3, pp. 89-106.

Rouvoy, R., Eliassen, F., Floch, J., Hallsteinsen, S. & Stav, E. 2008, "Composing

Components and Services Using a Planning-Based Adaptation Middleware",

Lecture Notes in Computer Science (Springer LNCS), vol. 4954, pp. 52.

Saha, D. & Mukherjee, A. 2003, "Pervasive computing: a paradigm for the 21st

century", Computer, vol. 36, no. 3, pp. 25-31.

Soldatos, J., Pandis, I., Stamatis, K., Polymenakos, L. & Crowley, J.L. 2007, "Agent

based middleware infrastructure for autonomous context-aware ubiquitous

computing services", Computer Communications, vol. 30, no. 3, pp. 577-591.

Trumler, W., Petzold, J., Bagci, F. & Ungerer, T. 2006, "AMUN: an autonomic

middleware for the Smart Doorplate Project", Personal and Ubiquitous

Computing, vol. 10, no. 1, pp. 7-11.

Weiser, M. 1993, "Hot topics-ubiquitous computing", Computer, vol. 26, no. 10, pp.

71-72.

Weiser, M. 1991, "The Computer for the 21th Century", Scientific American, vol. 265,

no. 3, pp. 94-101.

Yao, S.S., Karim, F., Wang, Y. & Gupta, K.S. 2002, "Reconfigurable context-

sensitive middleware for pervasive computing", Pervasive Computing, IEEE,

vol. 1, no. 3, pp. 33-40.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	3-31-2009

	Ubiquitous Information Systems (UBIS): A design research study of intelligent middleware and architecture
	David Bell
	Recommended Citation

	Ubiquitous Information Systems (UBIS): A design research study of intelligent middleware and architecture.

