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Abstract 

This study investigates an analytics approach to improving clinical outcomes, which is to utilize 

EHR data to identify and exploit variety of successful treatments that physicians deliver for 

different types of patients.  A simulated environment was used to develop and test the proposed 

approach that assigns patients to physicians for better treatment of type-2 diabetes in a clinic 

setting.  Results from this study demonstrate a 30% increase in patients being successfully brought 

to A1c goal, a 30-fold decrease in treatment errors, and a 12% decrease in outpatient costs to 

treat patients compared to traditional treatment procedures in diabetes clinic.  These techniques 

can be integrated with EHR systems, thus helping hospitals meet Stage 3 meaningful-use 

requirements for improving patient outcomes.  

Keywords: Analytics, EHR, patient-provider matching, recommendation systems. 

 

1. INTRODUCTION AND MOTIVATION 

 

Recent healthcare reforms have led to the Health Information Technology for Economic and Clinical Health Act 

(HITECH) that requires health providers to use EHR in meaningful ways [1].  The definition of “meaningful” has 

been intensely discussed and debated.  The intent behind the meaningful-use mandate is to improve the safety, 

quality, and efficiency of care through the use of EHRs [1].  What is now the focus of much research and study is 

identifying, developing, and implementing ways of achieving meaningful use.   

 

This study examines a novel application of analytics to Electronic Health Records (EHR) for improving clinical 

outcomes by intelligently matching patients with physicians.  New public health policies are being developed to 

support healthcare reform in the United States, with particular emphasis being placed on accessibility of care for all 

[2].  An often discussed issue is how best to deliver care to the masses.  A frequently proposed solution is to use 

clinical settings where patients receive the bulk of their care from a pool of primary care physicians associated with 

a specific clinic [3, 4].  This being the dominant means for care delivery where that new patients are typically 

assigned to a physician based on availability during the initial visit [5, 6].  Such an approach comes with major 

drawback in terms of mismatch between the provider skills and patient requirements. Therefore, the key research 

question that is investigated in this study is, “how can initial matches between physicians and patients be made so as 

to improve outcomes over the longevity of care within a clinical environment?” Specifically, this study focuses on 

matching patients to physicians for the treatment of chronic disease. Type-2 diabetes is the chronic disease examined 

in the current study. 
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We also propose a framework for integrating the predictive models with the existing EHR systems in the 

clinical environment. This framework also guides the development of the approach that improves patient’s 

assignment to primary care physicians for better clinical outcomes. The results of this study provide a basis for 

designing better clinical decision support functionalities within an EHR to help satisfy requirements for Stage 3 

Meaningful-Use [7].  Furthermore, this research contributes to the medical decision-making and the broader DSS 

bodies of knowledge by introducing a novel way of applying analytics to dynamically define performance-based 

constraints for developing better next-generation recommendation systems or solving complex assignment problems 

in clinical settings.  

 

2. RELATED WORK 

Currently, the majority of research in the area of matching patients and providers of care focuses on improving 

either economic or operational assets. For example, Bynum et al. [8] examined retrospective methods of matching 

patients with physicians who were in turn matched to specific hospitals. Similarly, Pham et al. [9] performed a 

retrospective study of patients treated by physicians comparing algorithms for crediting individual providers with 

treatment outcomes. Studies complementary to these on matching patient and providers have focused on analyzing 

and prescribing ways of changing provider behavior, with respect to better patient education, to produce better 

clinical outcomes [10]. Unfortunately, a major limitation to these types of studies is that the prescribed changes in 

behavior are often temporary, if at all [11], and therefore does not lead to a permanent solution to this problem.  

Both approaches have limitations and there is a significant gap that can be filled by conducting studies that 

a) account for individual differences among provider’s skills and expertise, b) prescribe a solution that dynamically 

adopts to the real time medical data stored within EHRs, c) is usable by the clinical environment. 

 

Diabetes Management 

Type 2 diabetes is a disease where a person is unable to produce sufficient quantities of insulin to maintain control 

of blood glucose levels within their body [12].  Type 2 diabetes is a chronic disease that can be controlled, but not 

cured.  Consequently physicians treating this disease engage in a process control task with an objective of bringing 

patients to clinical goals for blood glucose levels while simultaneously managing comorbidities (such as 

hypertension and dyslipidemia). As the disease progresses control of blood glucose levels typically requires a 

progression in treatments. Treating a type 2 diabetes patient entails scheduling regular visits for assessing patient 

conditions and taking actions to affect patient states [13].  Associated with these visits physicians have to gather 

information on the patient’s state either via laboratory test or patient self-reports.  Based on information gathered 

and clinical goals a physician can take treatment actions.   

 

3. CONCEPTUAL FRAMEWORK  

 

This study used Ashby’s Law of Requisite Variety as the basis for matching a patient with a healthcare provider for 

a given visit. The law states that only variety of control actions can destroy the variety of outcomes [14]. Figure 1 

describes the proposed framework for managing the provider-patient variety, which also guides the development of 

the simulated clinic described in the subsequent section.  

 

Figure 1: Conceptual Foundation for the Analytics Driven Patient-Provider Matching System 
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3. The simulated Diabetes Clinic  

 

The simulated diabetes clinic consists of different physician models treating patients on an individual basis. A 

simulated clinic comprised of models of patients with type 2 diabetes (T2DM) and models of physician decision-

making processes.  The physician and patient models were developed and tested in prior studies [15, 16]. 

 

The physician models are agents that compute actions to be taken based on the information received from the 

simulated patient being treated.  The physician models take actions to measure patient states via simulated 

diagnostic tests (e.g., measuring blood glucose levels via self-monitoring blood glucose or HgbA1c tests), to 

prescribe medications for altering the blood glucose levels, and to schedule visits with the patient to create 

opportunities for taking further actions with the patient. Each physician model comprises of a rule set that is used to 

process information for making decisions and taking action.  Accompanying this rule set is a knowledge base that 

contains knowledge that a physician model has access to for guiding their decision-making process and treatment 



Ramsey et al.  Analytics Approach for Managing Patient Provider Variety 

 

Proceedings of the Ninth Midwest Association for Information Systems Conference, Ames, Iowa May 15-16, 2014  4 

actions. The patient model developed within the simulated clinic comprises of a separate rule set for determining a 

patient’s time-dependent responses to medication treatment actions taken.  Medication actions exhibit time delays 

before affecting blood glucose levels within the patient and these time dependencies are based on published dose-

response curves for insulin and oral agents [16, 17].  

 

Outcomes of the simulations were evaluated according to three metrics: errors, patient blood glucose outcomes, and 

cost to treat blood glucose.  Errors were scored as any action that a physician took with a patient that did not 

conform with the published guidelines for treating type 2 diabetes. [13, 18]. Patient blood glucose outcomes were 

measured by a simulated HgbA1c (abbreviated as A1c) test, which is a 90-day moving average of a patient’s plasma 

glucose and is a stable means for measuring control of blood glucose levels. The clinical goal for A1c is 7% (but not 

lower than 4%).  Cost to treat blood glucose included costs for office visits, referrals to health professionals, 

medications, laboratory tests, syringes, and testing supplies.  

 

4. Empirical Results 

A patient from the 10,000 simulated patients can be treated by no more than 17 physicians and a total of 169,810 

cases are used in our computational experiment. We then develop an analytics based algorithm that provides a 

recommendation on which physician a patient should be treated depending on the treatment data of the training 

patients and evaluate the algorithm using the data of the test patients. More specifically, we take the following three 

steps: (1) clustering training patients into groups based on their initial states, (2) choosing the best physicians for 

each cluster of patients, and (3) evaluating the physician-patient assignments using test patients.  

 

4.1 Clustering patients based on their initial states 

We obtained 7 distinct groups of patients with similar initial conditions. The basic information of each variable used 

for clustering the training patients and the importance of each variable attributed to the clusters are summarized in 

Table 1.  

Table 1: Variables for each patient’s initial state 

Variable Name Min Max Mean Std. Dev Importance 

Sulf Allergy 0 1 0.154 0.361 0 

A1c 4.1 14.9 7.236 1.522 0.517 

Adherence 0.26 1 0.870 0.129 0.679 

Creatinine 1 1.67 1.350 0.091 1 

Insulin 0 68 6.345 11.984 0.847 

Glipizide 0 20 4.124 6.336 0 

Metformin 0 2000 625.710 815.130 0.235 

Pioglitazone 0 45 3.701 10.887 0.539 

 

The properties of the given 7 clusters are described in Table 2.  Majority of patients are assigned to only a few 

clusters. For example, more than half of the training patients belong to Clusters 3 and 7. Patients in Cluster 7 also 

show the highest success rate in their treatments.  

 

Table 2: Characteristics of clusters (*: many on insulin, **: insulin dose adjustments required) 

Initial Meds Initial A1c Distribution 
Cluster 

Frequency 

(Success Rate) 
A1c 

Creat- 

inine Adherence Metformin Pioglitazone Insulin H M L 

1 242 (65.29%) L H 0.88 L H M 2% 16% 82% 

2 648 (70.52%) L H 0.59 L L L 0% 12% 88% 

3 2,468 (65.72%) L H 0.91 M L L 1% 12% 87% 

4 964 (57.05%) M M 0.90 L L H* 8% 34% 58% 

5 310 (22.90%) H H 0.77 L L L 81% 19% 0% 

6 402 (50.75%) M H 0.89 H M L** 13% 29% 58% 

7 1,966 (77.26%) L M 0.91 L L L 1% 14% 85% 
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4.2 Choosing the best physicians in each cluster 

Once a patient is assigned to one of 7 groups, the patient can choose the most successful treatment actions (i.e., 

physician model) for the best outcomes. The decision on the most successful physician model is made based on two 

matching criteria: success rate of a physician in the treatments of patients in a given group and cost for a physician’s 

treatment. To understand the successful physician’s treatment actions, we performed decision tree analyses and 

identified some of treatment actions in each cluster. For example, with 99.3% success rate, physicians in cluster 1 

showed the following three characteristics of treatments over the course of multiple visits for 1 year.  

4.3 Evaluating the success rate of the matched assignments and random assignments 

We then evaluate the proposed patient-physician assignments by comparing their outcomes with the ones of random 

assignments. Figure 2 shows the proportion of patients successfully treated by the matched physician and the 

randomly assigned physician with different panel sizes. Results demonstrate that an increase in the limit on the 

patients that a physician can treat does not help the performance of the random assignments.  

Finally, we compare the work load of physicians in the two assignments and the results in Figure 3 show that almost 

every physician is fully engaged in treating patients in the random assignment, whereas the matched assignment 

decreased the work load up to about 30%, meaning that patients are skewed to a few highly ranked physicians.  

 

Figure 2: Treatment success rate for varying panel sizes. 

Notation: Solid lines show proportions of patients successfully treated.  Dashed lines show the proportion of the 17 

models that were actively engaged in treating patients (an indication of work load balancing). 

 

 

 

 

Figure 3: The cost per patient per year to control blood glucose levels (these figures do not include cost for 

treat comorbidities or any other medical conditions). 
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