
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2005 Wirtschaftsinformatik

February 2005

Service-Oriented Architecture Supporting Mobile
Access to an ERP System
Anna Maria Jankowska
European University Viadrina, Frankfurt (Oder), Germany

Karl Kurbel
European University Viadrina, Frankfurt (Oder), Germany

Follow this and additional works at: http://aisel.aisnet.org/wi2005

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2005 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Jankowska, Anna Maria and Kurbel, Karl, "Service-Oriented Architecture Supporting Mobile Access to an ERP System" (2005).
Wirtschaftsinformatik Proceedings 2005. 20.
http://aisel.aisnet.org/wi2005/20

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2005%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005?utm_source=aisel.aisnet.org%2Fwi2005%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2005%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005?utm_source=aisel.aisnet.org%2Fwi2005%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005/20?utm_source=aisel.aisnet.org%2Fwi2005%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

In: Ferstl, Otto K, u.a. (Hg) 2005. Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety;
7. Internationale Tagung Wirtschaftsinformatik 2005. Heidelberg: Physica-Verlag

ISBN: 3-7908-1574-8

© Physica-Verlag Heidelberg 2005

Service-Oriented Architecture Supporting
Mobile Access to an ERP System

Anna Maria Jankowska, Karl Kurbel
European University Viadrina, Frankfurt (Oder), Germany

Abstract: With the emergence of Web Services application vendors and organiza-
tions with heterogeneous software architectures have started to move towards
Service-Oriented Architectures (SOAs). In a SOA, software functionalities are re-
presented as discoverable services that are accessed through a network. SOA is a
promising approach for Enterprise Application Integration problems. As comput-
ing becomes ubiquitous and users are supported by a wide range of mobile de-
vices, enterprises have to think about integrating mobile clients into a SOA. We
introduce an architecture that supports communication between mobile devices
and Enterprise Resource Planning (ERP) systems equipped with a Web Services
Façade. Theoretical foundations of Web Services and SOA and a prototypical im-
plementation of mobile Web Services for an ERP system are discussed.

Keywords: Service-Oriented Architecture, Web Services Façade, mobile devices,
ERP system

1 Introduction

In the past few years, the Internet and the concept of Web Services have brought
forth new approaches to information systems (IS) design and new integration tech-
nologies in Enterprise Application Integration (EAI). Large companies such as
SAP, Dell, General Motors, Nasdaq, and Tesco [Smol03] began to re-design their
systems, implementing solutions that are loosely coupled and interoperable. Soft-
ware and consulting firms followed this trend, proposing information systems
burdened with many layers, interfaces and proxies. Although already known for a
decade, Service-Oriented Architectures (SOAs) suddenly gained great popularity,
due to the increased interest in Web Services. This concept has since been applied
even for solutions that are not meant to be exposed as services for external use.

Key business applications in most enterprises include Enterprise Resource Plan-
ning (ERP), Supply Chain Management (SCM) and Customer Relationship Man-
agement (CRM). ERP systems are the IS backbone of many organizations. They
are usually very complex, supporting all major business processes. Most organiza-
tions use software packages from vendors like SAP, PeopleSoft, Oracle, etc.

372 A.M. Jankowska, K.Kurbel

To integrate ERP systems with external applications, ERP vendors provide Appli-
cation Programming Interfaces (APIs); include low-level programming languages
in their software packages; and sometimes disclose the underlying data schema.
However, using public APIs and metadata is not a satisfactory solution to the inte-
gration problem as high costs and severe maintenance problems may result
[Puli03, p.48]. Industry standards such as the Common Object Request Broker Ar-
chitecture (CORBA) [Gros01, pp. 449-469], Microsoft Distributed Component
Object Model [Redm97], and XML provide interfaces on a higher level. Neverthe-
less, change management in EAI projects is a cumbersome process. Developers
with specialized EAI package skills maintaining integrated applications often have
a "job for life".

Although ERP is essentially an in-house application, more and more external users
need access to such a system. In supply networks, for example, customers and
suppliers may be granted access to ERP information. Sales representatives visiting
customers and employees traveling may need to know the status of an order, an
inventory level, or reconciliation of an invoice.

Web Services are a promising approach to addressing integration issues. Web Ser-
vices are software components that support distributed computing using standard
Internet protocols. They are self-contained, self-describing, and modular. They
can be published, located and invoked across the Web. Since Web Services are
loosely coupled they are suitable for organizations with a complex architecture
comprising multiple information systems, multiple platforms, different object
models, and different programming languages. The Web Services approach lends
itself naturally to incorporation in the Service-Oriented Architecture paradigm.
Information system architectures can be re-designed in this way, and new applica-
tions can be assembled from services with suitable functionalities provided by dif-
ferent software vendors [ChaJo03, p.14].

Mobile computing has improved the quality of doing business today [CaKo04].
Permanent access to information not only helps individuals but also allows firms
to perform their tasks in a more efficient manner, reducing operational costs. Ven-
dors of ERP systems such as SAP or infor AG have recognized the potential of
mobile technology and extended their systems with mobile front-ends in order to
meet new requirements [SAP04, Info04]. Mobile interfaces have resulted in sig-
nificant savings and improvements in customer service, not only in large compa-
nies but also in small ones [Wass03]. Some firms were able to almost eliminate
duplicate acquisition of data by sales representatives and office employees, and to
decrease the error ratio significantly.

ERP vendors are nowadays moving to Service-Oriented Architectures built on
Web Services [Smol03, KeRo03]. Therefore connecting mobile devices to such
component-based information systems becomes a crucial issue. The need to adopt
Web Services in the mobile domain was recognized by the Open Mobile Alliance
(OMA). This organization, incorporating over 300 companies, created in 2003 a

Service-Oriented Architecture Supporting Mobile Access to an ERP System 373

Mobile Web Services Working Group that deals with standards for mobile access
to Web Services interfaces [OMA04].

This paper describes architectural approaches that allow mobile devices to com-
municate with ERP systems that possess a Web Services Façade. It is organized as
follows: In the next section, Web Services standards and application types of Web
Services are presented. Section three provides an overview of the Service-
Oriented Architecture and introduces the steps towards a complete SOA solution.
The subsequent section focuses on mobile Web Services and their advantages.
Section 5 presents a complex architecture which allows different mobile clients to
access an ERP system built on Web Services. It also introduces the solution pro-
posed by SAP for mobile access to its ERP system. In the final section some con-
clusions are drawn and issues for further research and development are discussed.

2 Web Services, Styles, and Applications

The W3C Web Services Architecture group defined a Web Service as a "software
application identified by a URI, whose interfaces and binding are capable of being
defined, described and discovered by XML artifacts. It supports direct interactions
with other software applications using XML-based messages via Internet-based
protocols" [W3C04b]. Web Services offer mechanisms for building interoperable,
distributed, platform and language-independent applications. Although the con-
cept of Web Services is often called "a new dressing for the old distributed-
computing model", it gathered broad attention due to the wide acceptance of the
underlying technologies.

The Web Services framework specifies communication methods between distrib-
uted components, enabling them to use each other’s functionality via Internet. In
terms of the TCP/IP reference model, the Web Services layer is located between
the transport and application layers as shown in figure 1. The entire Web Services
infrastructure is based on XML standards: Simple Object Access Protocol (SOAP)
[W3C03], Web Services Description Language (WSDL) [W3C04c], and Univer-
sal Description, Discovery, and Integration (UDDI) [OASI03].

SOAP defines a common syntax for data exchange assuring syntactic interopera-
bility. Any Web application, independently of the underlying programming lan-
guage, can send a SOAP message with the service name and input parameters via
Internet and will in return obtain another SOAP message with the results of this
remote call.

374 A.M. Jankowska, K.Kurbel

Figure 1: Web Services protocol stack and framework

Web Services can be implemented as either an RPC-style Web Service or a docu-
ment-style Web Service [ChaJe02, pp. 28-34]. RPC-style Web Services expose
the server-side functionality as a remote object typically accessed via a local proxy
object on the client side. In a document-style Web Services the service uses the
entire body of a SOAP message and parses it as a standard XML document. Table
1 compares the two styles.

 RPC-style Web Service Document-style Web Service

Message body Treated as a collection of pa-
rameters

Processed as a document

Processing model Parameters mapped to native
data structures

XML parsed according to an
external XML Schema

Invocation
mechanism

Method called on local proxy
object (stub), routed directly to
service interface

Document published to server
for processing

Table 1: Comparison of Web Services styles

WSDL is used for the description of Web Service interfaces. It specifies input and
output parameters, the structure of functions and the service’s protocol binding.
UDDI serves as a mechanism to discover and locate available Web Services.
UDDI registries are databases containing contact, business and technical informa-
tion about registered Web Services. Any organization may look in a public regis-
try [Micr04a; IBM04] using a SOAP call and will obtain a list of services that
meet the given criteria. For internal purposes, some companies create their own
UDDI registries accessible only for architects and developers of that company.

Application Layer

Web Services Layer

Transport Layer

Web Services description
(WSDL)

XML-based Messaging
(SOAP)

Network (HTTP, SMTP...)

UDDI

Client

1) Search
 for services

WSDL
Service

Description

Service

2) Retrieve
 service
 description

3) Invoke
 service

SOAP messages

Service-Oriented Architecture Supporting Mobile Access to an ERP System 375

Web Services are used for the following reasons [cf. Asto03]: To enable real-time
interoperability of applications, to aggregate capabilities of particular applications
into business services exposed for internal/external usage, to assure architectural
agility, and to provide better self-service for employees, partners and customers.

The driving force for redesigning information systems towards SOA is Enterprise
Application Integration (EAI). EAI means unrestricted sharing of data and proc-
esses among connected applications or data sources in the company [Lint99, p. 3].
Based on Web Services data from various systems can be consolidated into a sin-
gle view. Aggregating functionality within a business service means that other ap-
plications can use that service without understanding its internal complexity.

In Enterprise Resource Planning multiple front-end systems (mobile applications,
Web-based programs, traditional GUIs, etc.) should have the possibility to interact
with the ERP system. Consider, for example, the entering of customer orders. This
can be done manually, or via separate applications for all possible communication
channels through which orders can arrive (mobile devices, Web interfaces, e-mail,
etc.). Instead of such a collection of disparate solutions, a common Web Service
for order processing might be built. Each channel would then communicate with
the Web Service and simply pass order details to it for further processing.

Web-Service enabled solutions may increase the agility of organizations - they can
react faster to technological or business changes. For example, if a company pur-
chases another one, it can quickly integrate IT solutions of the acquired firm with
its own IT landscape even if the underlying systems differ significantly.

Furthermore, corporate identity may be improved by wrapping the functionality of
all applications in Web Services and exposing them to a common front-end appli-
cation. Companies can enhance their service quality or improve their opportunities
to create revenues by providing access to their information systems for clients or
suppliers. For example, concepts from Supply Chain Management like Vendor
Managed Inventory (VMI) and Collaborative Planning, Forecasting and Replen-
ishment (CPFR) can be supported by Web-Service interfaces, giving partners in
the supply chain information about forecasts of delivery dates, enable real-time
invoicing, or allow suppliers to re-schedule deliveries.

3 Service-Oriented Architecture

Service-Oriented Architecture is a concept that focuses on configuring entities
(services, registries, contracts and proxies) in a way that maximizes loose coupling
of components and their reuse [cf. McGo+03, pp. 35-38]. In SOA software func-
tionality is represented by discoverable services on the network. A service is de-
fined as behavior that is provided by a component and can be used by other com-
ponents, whereby the interaction is based on the interface contract. SOA consists

376 A.M. Jankowska, K.Kurbel

of the following six entities: service consumer, service provider, service registry,
service contract, service proxy, and service lease.

Figure 2: Main components of SOA, ”find-bind-execute” paradigm [McGo+03, pp. 37, 39]

The service consumer is some kind of software module (e.g. application, another
service) that works according to the "find, bind and execute" paradigm shown in
figure 2. The consumer initiates the process of locating a service in the registry,
binding to the service, and executing its function. The service provider is a net-
work-addressable component that publishes its contract in the registry and re-
sponds to customers' requests. A service registry is a directory that stores contracts
with providers and displays them to customers. A service contract is a specifica-
tion describing the interactions between a service provider and a consumer. It dis-
closes the format of requests and responses and may also specify pre- and post-
conditions for service execution or quality of service (QoS) levels. Service lease
restricts the time for which a contract is valid. Service proxy is an additional entity
that helps the consumer execute a service by calling a proxy function instead of
accessing the service directly.

In SOA services should be loosely coupled, self-contained, modular, discoverable,
dynamically bound, composable, and location-transparent. Dynamic discovery,
binding and location transparency refer to the ability of a consumer to locate and
execute a service without a-priori knowledge about the service. Modularity means
that services can be aggregated into an application with a limited number of well-
known dependencies. A service is called self-contained if its functionality is limit-
ed to a distinct problem domain function. Services are interoperable - they support
different platforms and languages. In addition, they should have coarse-grained
and network-addressable interfaces. Coarse-grained interfaces address functions of
many different APIs that enclose detail-oriented methods into a small number of
business-oriented messages [see McGo+03, pp. 50-59]. Systems based on SOA are
self-healing – they can recover from errors without human interventions.

All these features are aiming at business agility – the ability of an enterprise to re-
spond quickly and efficiently to change. Further benefits from implementing SOA
encompass faster time-to-market, reduced costs and risks, introduction of a proc-
ess-centric architecture and leverage of previous investments.

Service Consumer

 Implementation
code

Service
Proxy Service

Provider bind & execute

Registry

find register

Contract

Service-Oriented Architecture Supporting Mobile Access to an ERP System 377

Figure 3: Web Services Façades

The transition from traditional, monolithic architectures towards SOA is a highly
complex process, consisting of several stages [ThWo02, pp. 5-9]. In the first stage
existing applications are wrapped with a Web Services Façade (see figure 3). The
functionalities of applications can be then accessed through a common communi-
cation protocol. This approach lacks central management of services (monitoring,
usage statistics, and security). Services such as logging or notifications are imple-
mented separately for each application.

In the next stage common services from the lower layer of SOA are also imple-
mented as Web Services and can be shared by many applications. Service man-
agement including issues such as authentication, monitoring or service registries is
performed centrally. Business processes, however, still remain in different appli-
cations and can be changed by trained developers.

The last stage is characterized by sharing all business-neutral services (e.g. log-
ging) by all applications. Processes and services are managed centrally.

Due to the quick adoption cycles and incompleteness of standards, most organiza-
tions moving towards SOA are currently still in the first stage.

4 Mobile Web Services

Mobile devices are available in two variants – as fat or as thin clients. Thin clients
are mainly responsible for the presentation whereas the business logic remains on
the application server. Fat clients are at least partially in charge of the business
logic. Wireless appliances with mobile browsers are examples of thin clients -
they can connect to different applications and provide a suitable user interface
without knowing about the application logic. Wireless devices can be equipped
with different browsers that support various media formats such as WML,

Client

WS Façade

ERP
Application

Security/
Logging/

Notification

WS Façade

Security/
Logging/

Notification

API

WS Façade

Custom
Application

Security/
Logging/

Notification

API

CRM
Application

SOAP requests

378 A.M. Jankowska, K.Kurbel

XHTML or HTML [W3C99; W3C03b]. Personal Digital Assistants (PDAs),
Palmtops or J2ME-enabled phones are examples of fat clients. They can perform
tasks and manage data without the help of a server.

Both types of clients have advantages and drawbacks. In thin clients, user inter-
faces are bound to the specific markup elements, data caching is not possible, and
in periods of disconnectivity the browsers are useless. Generating presentation
code for a multitude of devices on the server side is computationally expensive
and increases the complexity on the server. In the case of fat clients, user inter-
faces are similar to those provided for desktop computers, with a functionality that
goes beyond the scope of browsers. Program updates, however, have to be per-
formed on the client side and special software has to be installed on the clients.

The most important technology for fat mobile clients is the Java 2 Platform, Micro
Edition (J2ME) [cf. Topl02; WhHe02]. It was designed to accommodate a variety
of embedded and hand-held devices. It is composed of a configuration and a pro-
file. The configuration consists of a virtual machine (VM), core libraries, classes,
and APIs. It defines a minimum set of Java VM features and class libraries avail-
able on a particular category of devices. The profile defines a minimum set of
APIs for a particular family of devices. Profiles are implemented on a particular
configuration, and applications are written for a particular profile (cf. table 2).

Profile Foundation
profile

Personal
profile

RMI
profile

PDA profile MID Profile
(MIDP)

Configuration Connected Device Configuration
(CDC)

Connected Limited Device
Configuration (CLDC)

Virtual machine CVM KVM

Device memory 10 MB 1 MB 512 Kb 160 Kb

Table 2: The J2ME stack

The Mobile Information Device Profile (MIDP) provides a set of Java APIs spe-
cific to a particular category of devices (cell phones, PDAs, etc.). In J2ME the
data can be cached on the client with the help of the MIDP Record Management
Store (RMS) API and sent to a database when the connection is established.

Mobile Web Services are conventional Web Services with functionality that is
used by mobile devices. They can deliver pertinent, timely information to mobile
users and provide a reliable infrastructure that works across platforms and archi-
tectures. Mobile Web Services can improve integration of employees, partners, or
suppliers regardless of locations and access devices. Furthermore, they enable
asynchronous connectivity for applications in wireless environments.

Mobile access to an Enterprise Resource Planning system offers various advan-
tages in terms of business agility. For example, when an inventory hits the reorder
level, the Web Services Façade of the ERP system can communicate this to the

Service-Oriented Architecture Supporting Mobile Access to an ERP System 379

inventory manager equipped with a mobile device and present options for resolv-
ing the event. If the ERP Web Services are integrated with the suppliers’ Web Ser-
vices, the manager could immediately order products, entering order data into the
ERP system through his/her mobile phone.

With the help of mobile Web Services it is possible to make complete ERP func-
tionality available for users with different devices and different software. The
same task can be performed by a user with a Pocket PC and Microsoft .Net Com-
pact Framework [Micr04], a mobile browser using ASP.Net with mobile controls
[Espo03, pp. 507-550], or a J2ME-enabled device with the kSOAP [Enhy04] li-
brary. With SOA gaining popularity and enterprises adapting this approach, access
to Web Services from mobile devices is becoming a necessity.

5 An Architecture for a Mobile ERP System Based on
the SOA Paradigm

5.1 Technological Considerations for Mobile Web Services

Before developing a mobile Web Service, various constraints of wireless devices
have to be considered carefully. If a mobile appliance is supposed to be a SOAP
client with the capability of using SOAP, it has to be quite powerful in terms of
memory and processing speed. Despite the rapid progress in mobile technology,
wireless devices still have to cope with severe constraints. Typically, mobile
phones are capable of running between 1 and 10 million instructions per second,
which is about 1/10 of the speed of a PDA and about 1/100 of the speed of a desk-
top computer. Furthermore, wireless phones have only between 128 and 512 KB
of memory, whereas the memory of a PDA ranges from 2 to 64 MB.

A significant loss of performance has to be expected when parsing SOAP on the
mobile client's side. Neither is it feasible to build or parse large XML documents.
In addition, the overhead from using SOAP/XML messages during the transport
(as compared with the raw data) is estimated to range from 400% to 600%, de-
pending on the amount of information [Tian+04, p. 1098]. If a mobile client is re-
source-constrained in this sense, it should better communicate with the Web Ser-
vice through a middle-tier and simply display the results.

In addition to these points, most mobile devices do not offer support for Web Ser-
vices. J2ME with its MIDP supports the HTTP protocol but not Web Services. Al-
though in the Java Specification Request 172 (JSR172) - J2ME Web Services
Specification - [Sun04] Sun addressed the use of XML, SOAP and Web Services
on mobile appliances, implementation of standardized support as part of J2ME
technology is still in progress. Results are expected around the end of 2004.

380 A.M. Jankowska, K.Kurbel

kSOAP [Enhy04] is a third-party library from Enhydra that can be used with
J2ME for SOAP processing. kSOAP is built on top of kXML which uses less
memory for XML processing than traditional XML parsers. kXML is considered
suitable for Java applications on mobile devices. kXML-RPC [Endy04a] is also
based on kXML, providing support for the XML-RPC protocol for J2ME-enabled
devices. kXML-RPC offers J2ME developers more flexibility when selecting a
data-exchange mechanism. XML-RPC based communication together with the
kSOAP library is in many cases more convenient than document-style Web Ser-
vices. Compared with traditional libraries for XML processing Enhydra’s libraries
are really small. While Xerces.jar (a library for processing and transforming
XML) has over 1 MB, kSOAP and kXML in a .jar file need only around 42 KB.

For devices equipped with browsers, using Web technology (e.g. Java Server
Pages, Servlets, ASP.Net) to deliver the appropriate end-format (WML, XHTML,
HTML) seems to be the best choice. Since the content has to be provided in vari-
ous markup languages depending on browser characteristics, the server should de-
tect device features and dynamically create the appropriate format. Intensive con-
sideration should be given to layout, pagination, and navigation issues.

5.2 A Web Services Façade for an ERP System

A typical ERP system as shown in figure 4 consists of application modules like
sales, production, accounting, materials management, etc. and has interfaces to
other systems like SCM, CRM, E-commerce applications, and legacy systems.
ERP modules communicate with external software packages through remote pro-
cedure calls (RPC) [Gros01].

In order to demonstrate the benefits of the SOA concept, we re-implemented parts
of a real-world ERP system as a Web Service and provided access from wireless
devices. The system used is infor:COM [Info04]. Some functions of infor's Sales
module were re-implemented.

An architecture as shown in figure 5 was developed, based on a three-tier model
with a Web Services Façade [Broe03, pp. 189-258]. The application is divided
into business objects, business services, and business workflow tiers. Business ob-
jects are products, customers, etc. Business services (e.g. a sales service) imple-
ment methods to access or manipulate the objects (e.g. retrieving quotes). Busi-
ness methods are instantiated by business workflows. Such workflows can import
business services and business services can import business objects. In J2EE all
above mentioned components map to Enterprise JavaBeans (EJB): Business work-
flows are represented by stateful Session Beans, business services are mapped to
stateless Session Beans and business objects to Entity Beans.

Service-Oriented Architecture Supporting Mobile Access to an ERP System 381

Figure 4: ERP system and possible extensions

Session Beans perform work on behalf of clients. They are generally short-lived
and are responsible for quick actions, such as submitting or retrieving an order. A
stateful Session Bean retains the state on behalf of a client and can span multiple
method requests. A stateless Session Bean does not maintain state across method
invocations. Entity Beans represent business data. They are generally long-lived
and map to an underlying storage, such as an RDBMS system.

Figure 5: J2EE three-tier model with Web Services Façade

ERP

Controlling

Materials
Management

Purchasing

Sales

Production

Accounting

E-Commerce
Application

SCM

CRM

Back-
office

Supplier's
ERP

Human
Resources

Application

Communication
through RPC

Presentation Tier
Traditional Mobile GUI

Application Tier

Business Workflow (Stateful)

Business Services (Stateless)

Business Objects (EntityBeans)

M
etaD

ata

Web Services Façade

Persistence Tier

Runtime

Distribution

Management

Load
balancing/failover

Security

Transactions

382 A.M. Jankowska, K.Kurbel

Some examples of Entity Beans include stocks, orders and customers. Typically,
Session Beans call Entity Beans to achieve their desired actions [Roma99, pp. 71-
204]. In our framework Entity Beans were implemented for different objects such
as quotes, sales, stock, invoices, etc. In stateless Session Beans we keep methods
for manipulating the objects of Entity Beans, such as retrieving quotes or sales by
particular criteria, or inserting orders. In stateful Session Beans we created new
methods which consist of the methods previously implemented in stateless Session
Beans, necessary to perform a particular task. The beans are exposed as Web Ser-
vices, using data types that can be supported [see Engl02, pp. 85-107]. This
means, for example, that instead of using Java Vectors the methods in Session
Beans return arrays of objects from Entity Beans.Web Services were partly gener-
ated automatically from EJBs using the JDeveloper 10g IDE [Orac04]. Web Ser-
vices are exposed both as RPC-style Web Services and as document-style Web
Services. Each type of Web Service therefore possesses two WSDL files - one for
document style (including the XML schema document) and one for RPC style.

5.3 Mobile Access to Web Services Façade

Our architecture supports thin and fat client applications. It is entirely based on
Java technology (Java 2 Platform, Enterprise Edition and Mobile Edition; Java
Web Service Developers Pack - JWSDP [Sun04a]). Java was chosen because it
satisfies cross-platform requirements; it is an open standard and provides support
for Web Services. The ERP system’s functionality (Sales module) is exposed in
form of a Web Services Façade. The Web Services are implemented as RPC-style
services and document-style services. Both types can be accessed through mobile
and wireless devices, directly from a mobile device or indirectly, with the help of
middleware we developed. The main components of the architecture are described
in the following sections. The overall framework is presented in figure 6.

5.3.1 Mobile Web Services Access Engine for RPC-Style and Document-
Style Web Services

In our prototypical architecture, mobile access to Web Services is provided
through an additional middle layer called Mobile Web Services Access Engine
(MWSAE). This engine has the tasks of communicating with the Web Services and
delivering device-independent content to the user. It determines the type of
browser and the most important device characteristics, and tailors the content to
the features of the device.

As a part of the MWSAE, we implemented a Device Context Retriever (DCR) re-
sponsible for obtaining the characteristics of the device. The device context is
taken from CC/PP profiles (Composite Capabilities/Preference Profiles) [W3C00]
or, if CC/PP is not available, from HTTP standard Accept headers [W3C02].
HTTP headers include information about the supported media types (MIME

Service-Oriented Architecture Supporting Mobile Access to an ERP System 383

types), character sets, content encoding, and languages. CC/PP, developed by
W3C, is intended for modeling context related to device specifications and user
preferences. It is based on the XML serialized Resource Description Framework
(RDF) [W3C04a]. A CC/PP profile generally consists of a number of components
(e.g. browser) which can have various attributes (e.g. supported media types,
screen resolution, etc.). For constructing and processing device profiles in DCR an
open-source library, DELI (DElivery Context LIbrary for CC/PP and UAProf),
was used [But02].

Figure 6: Architecture for mobile ERP system based on SOA concept

DCR was also implemented as a tag library (named Device Context Retriever Tag
Library). Tag libraries are reusable modules that can build and access program-
ming language objects and influence the output stream [Sun04b]. They usually
encapsulate frequent tasks and can be used across applications, increasing speed
and quality of development. Tag libraries have access to all objects available to
JavaServer Pages [Good00], they can communicate with each other and can be
nested, allowing for complex interactions within a page.

The engine provides support for RPC-style and document-style Web Services. It
uses the SOAP with Attachments API for Java (SAAJ) and the Java API for
XML-based RPC (JAX-RPC) [Sun04b]. SAAJ allows creating, sending and ob-

J2ME
+ kXML-
RPC

Web
Services

Stubs
JSP with
custom

TagLibraries
(e.g.

MWSrpcTL)

ERP
Database

Entity
Beans

Session
Beans

JDBC

W
eb

ServicesFaçade

WML

J2ME
+ kSOAP

XSLT
stylesheets

XHTML/
HTML

Client
Web

Services
Stubs

Mobile Web Services Access Engine

384 A.M. Jankowska, K.Kurbel

taining XML messages over the Internet, whereas JAX-RPC shields developers
from the complexity of such a communication.

JAX-RPC is a concept similar to Remote Method Invocation (RMI). Using JAX-
RPC, a client can access a Web Service as if the Web Service was a local object
mapped into the client’s address space. A remote method invocation is performed
via the SOAP protocol. A developer can specify the remote procedures by defin-
ing remote methods in a Java interface, from which a WSDL file is generated. A
stub class (a service proxy masking the marshalling and remote procedure calls) is
then generated from a WSDL file. In JWSDP stubs are created by xrpcc [Sun04b].

Instead of sending SOAP to a Web Service, a client can invoke a method on a
stub. The JAX-RPC runtime converts this invocation into a SOAP message and
transmits it over HTTP. The JAX-RPC runtime on the server side translates the
message into a method invocation. This method is invoked on the tie object which
delegates it to the service implementation. Figure 7 illustrates the invocation of a
Web Service.

Dynamically generated stubs exist for all Web Services. JavaServer Pages con-
tained in the Mobile Web Services Access Engine then create an instance of the
stub class and invoke the business methods through this proxy by specifying
methods, parameters and the service endpoint. This technique was used for re-
trieving information that is limited in scope, such as quotes numbers.

Figure 7: XML-RPC with JAX-RPC

In addition we developed a Mobile Web Services RPC Tag Library (MWSrpcTL)
with the previously described functionality. The MWSrpcTL tag library allows
binding to a Web Service as well as sending and receiving SOAP messages by in-
voking methods with parameters on the Web Service and receiving output. It also
offers the possibility to map SOAP/XML to Java types. Instead of mixing Java
code with JSP pages, the developer can simply put appropriate tags for interacting
with the desired Web Service.

In order to deliver the information retrieved from a Web Service in the correct
format, a Content Adaptation Tag Library (CATL) was used (for more details see
[JaDa03]). This library converts certain elements, such as tables, forms, images,

Client Server

JAX-RPC

Stubs

SOAP/HTTP

JAX-RPC

Ties

Service-Oriented Architecture Supporting Mobile Access to an ERP System 385

etc., to device-specific elements. It also takes care of pagination and produces ap-
propriate output based on information obtained from the DCRTL. However, it is
still possible to apply a different technique (e.g. XSLT) for transforming the con-
tent to the accurate end format.

SAAJ is used for document-style Web Services. In SAAJ all information is trans-
ported as SOAP messages over a connection. This type of connection is called a
point-to-point connection (from one endpoint to another endpoint) and the mes-
sages are called request-response messages. Endpoints are represented by a
java.net.URL objects. Messages are sent over a SOAPConnection object
with the method call, which sends a request and waits until it receives a re-
sponse (cf. [Sun04b] for more details).

The Mobile Web Services Access Engine provides two classes for document-style
Web Services. The first class is responsible for creating SOAP messages (with and
without attachments); the second one has the challenging task of sending those
messages and obtaining the results. Received SOAP messages are transformed
into the appropriate format by transformation objects with XSLT stylesheets
[W3C03c] according to device characteristics delivered by the Device Context Re-
triever component.

SOAP documents are parsed and modified according to the respective stylesheet.
In our approach the Java Transformation API for XML (TrAX) [Apac04a] was
chosen to invoke XSL stylesheets. TrAX is capable of compiling stylesheets and
holding them in memory, thus improving the performance significantly. Usually
TrAX takes an XML (SOAP) file and a stylesheet as input to create an output rep-
resenting the result of the transformation. For better performance our stylesheets
are compiled when they are used for the first time. Then they can be re-used in
multiple transformations. For each output type a number of reusable template
stylesheets was prepared.

5.3.2 Direct Access to Web Services from Mobile Devices

The second way of accessing Web Services is to invoke them directly from a suf-
ficiently powerful mobile device. For appliances supporting J2ME technology, we
developed a set of reusable classes that facilitate the consumption of Web Ser-
vices. Those classes can be instantiated in an MIDP application (so-called midlet),
and particular methods can be invoked.

For document-style Web Services our implementation is based on kSOAP. The
class we developed is responsible for generating SOAP messages, sending them,
receiving input and processing the SOAP messages obtained. Simple midlets can
be generated automatically based on the functionality provided by the Web Ser-
vice. They may subsequently be modified by a developer as needed.

386 A.M. Jankowska, K.Kurbel

For RPC-style Web Services the kXML-RPC library was used. Appropriate stubs
are provided on the client side for all services. The stubs can be re-generated auto-
matically if the description of a Web Service in a WSDL files changes.

Features of devices or services Appropriate Protocol
Small memory, reduced bandwidth XML-RPC

Speed, efficiency, easy maintenance XML-RPC

Interoperability with other parties beyond
control

SOAP

Exchange of robust data structure, flexible
messaging architecture

SOAP

Table 3: Characteristics of devices/services vs. Web Services protocols [cf. GaGo02, p.46]

Midlets invoke particular methods from the stub and the communication process is
similar to the one presented in figure 7. Instead of JAX-RPC, kXML-RPC is ap-
plied now. Stubs and midlets can be generated automatically from the WSDL de-
scription and changed by developers according to specific clients' needs. The gen-
eration is based on the Axis WSDL2Java tool [Apac04] with some enhancements
regarding the generation of stubs for mobile clients.

Since our architecture supports both types of services, table 3 provides some
guidelines as to the benefits of RPC-style and document-style Web Services, when
they are invoked directly from mobile appliances.

Figure 8: Software architecture of the SAP Mobile Infrastructure [cf. SAP04a]

Mobile Device

Browser Native UI

Local Web server
J2ME

JSP

Public Interface

SOAP

Persistence/JDBC Synchronization

Security Deployment

Drivers

HTTPS
SAP Web Application Server

Mobile Engine Server Components

SAP 3rd Party
RFC, XI, SOAP

Service-Oriented Architecture Supporting Mobile Access to an ERP System 387

5.4 Related Work

SAP, the largest provider of Enterprise Resource Planning systems, developed a
solution which offers mobile access to its ERP application based on Web Services.
The so-called Mobile Infrastructure (MI) is embedded in the SAP NetWeaver ap-
plication and integration platform and includes SAP Mobile Infrastructure Client
(Mobile Engine) and SAP Mobile Infrastructure Server (cf. [SAP04a; SAP04].
The SAP MI client (cf. figure 8) consists of its own Web server, database layer
and business logic. Developers can build applications with JavaServer Pages for
standard browsers or J2ME for PDAs, laptops and smart phones. Since the SAP
MI client has to be installed locally on a mobile device, it can be applied only on
powerful devices, preferably PDAs, supporting at least the Java Runtime Envi-
ronment (JRE) 1.1.8. It cannot be used on Palmtops without such support nor on
resource-scarce wireless devices. The SAP Mobile Infrastructure offers access to
Web Services directly from the mobile client. However, it does not provide the
possibility to communicate with Web Services through middleware for wireless
devices which are not equipped with Java. Our approach covers both cases.

6 Conclusions and Further Work

Analysts and industry experts forecast that the market for wireless applications
will continuously grow over the next few years. With increasing user needs to ac-
cess essential business information from anywhere at anytime, organizations will
have to find effective architectural solutions that allow users to communicate with
the organization's information systems. Technically speaking, different types of
clients have to be supported.

SOA is a promising approach for enterprises with a complex architecture encom-
passing multiple systems residing on multiple platforms. SOA can help to solve
the EAI problem. Therefore vendors of software packages such as ERP are redes-
igning their systems. According to Gartner Group, SOA-based systems will be the
prevailing software-engineering practice by 2008 [Nati03]. As mobile computing
and SOA are growing together, a special focus of research and development has to
be set on accessing Web Services from mobile devices. Web Services seem to be a
natural solution for integration problems and distributed environments.

However, mobile devices still lack support for core Web Services technologies.
This paper proposed four approaches for the communication between Web Ser-
vices Façades on top of an ERP system and a variety of mobile devices supporting
J2ME or equipped with wireless browsers. For the latter type of devices, a sup-
plementary middle layer was introduced. J2ME-enabled devices with additional
lightweight libraries are capable of communicating directly with a Web Service.
Yet this is rather a solution for the future since kSOAP and kXML-RPC are not

388 A.M. Jankowska, K.Kurbel

standard libraries integrated in J2ME. It may be expected that this situation will
change with further standardization and the advent of a new version of J2ME
technology, providing support for SOAP and Web Services.

Our architecture currently allows content delivery in some basic formats such as
HTML, XHTML, or WML. Future developments will concentrate on adding sup-
port for new markup languages like VoiceXML [W3C03a]. We also plan to ex-
plore issues of interoperability of existing Web Services and mobile clients built
with the Microsoft .NET framework or Windows CE technology.

A short-term goal is to develop a dedicated Integrated Development Environment
(IDE) that will facilitate the creation of mobile Web Services for further ERP
modules. Some IDEs for Web Services, even for mobile Web Services (JDevel-
oper10g, Eclipse 2.1. with appropriate plug-ins, etc.), already exist. However, the
support they offer is very limited for a task like mobilizing an ERP system (e.g.
lack of support for document-style Web Services, support only for own servers
with their deployment peculiarities, etc.). The IDE is supposed to substantially
automate the creation of different components by providing suitable wizards and
by re-using modules which were developed before.

References

[Apac04] Apache Software Foundation: Axis 1.2. http://ws.apache.org/axis/, 2004. Viewed
04-07-01.

[Apac04a] Apache Software Foundation: Java Transformation API for XML (TrAX).
http://xml.apache.org/xalan-j/trax.html, 2004. Viewed 04-07-01.

[Asto03] Astor, A.: Patterns in Web Services Projects, in: Web Services Journal, 5/2003,
pp. 42-44.

[Broe03] Broemmer, D.: J2EE Best Practices: Java Design Patterns, Automation, and Per-
formance, Wiley Publishing, Inc., Indianapolis, 2003.

[Butl02] Butler, M.H.: DELI: A Delivery Context Library for CC/PP and UAProf, External
Technical Report HPL-2001-260. http://www-uk.hpl.hp.com/people/marbut/Deli-
UserGuideWEB.htm, 2002. Viewed 04-06-23.

[CaKo04] Caldwell, D.; Koch, J.: Mobile Computing and its Impact on the Changing Na-
ture of Work and Organizations. http://sts.scu.edu/research/MobileComputing.pdf,
2004. Viewed 04-06-27.

[ChaJe02] Chappell, D.; Jewell, T.: Java Web Services, O’Reilly, Sebastopol, 2002.

[ChaJo03] Charlesworth, I.; Jones, T.: The EAI and Web Services Report, in: eAI Journal,
3/2003, pp. 12-18.

[Engl02] Englander, R.: Java and SOAP, O’Reilly, Sebastopol, 2002.

Service-Oriented Architecture Supporting Mobile Access to an ERP System 389

[Enhy04] Enhydra: kSOAP 2.0. http://ksoap.objectweb.org/, 2004. Viewed 04-06-23.

[Enhy04a] Enhydra: kXML-RPC. http://kxmlrpc.objectweb.org/, 2004. Viewed 04-06-23.

[Espo03] Esposito, D.: Programming Microsoft ASP.NET, MS Press, Redmond, 2003.

[GaGo02] Gabhart, K., Gordon, J.: Wireless Web Services with J2ME, Web Services Jour-
nal, Vol. 2/2, 2002, pp. 44-48.

[Good00] Goodwill, J.: Pure Java Server Pages, Sams Publishing, Indianapolis, 2000.

[Gros01] Grosso, W.: Java RMI, O’Reilly & Associates, Sebastopol, 2001.

[IBM04] IBM UDDI Business Registry. https://uddi.ibm.com/ubr/registry.html. Viewed
04-06-29.

[Info04] Infor:COM. http://www.infor.de. Viewed 04-06-24.

[JaDa03] Jankowska, A.M.; Dabkowski, A.: Content Adaptation Tag Library - An Ap-
proach for User Interface Adaptation for Different Devices, in: Proceedings of the
Net.ObjectDays 2003 Conference, Erfurt, Germany, pp. 78-92.

[KeRo03] Kezmah, B.; Rozman, I.: Web Services in ERP Solutions: A Managerial Per-
spective., in: Proceedings of the International Symposium Metainformatics 2002,
Esbjerg, Denmark, 2003, pp. 177-179.

[Lint99] Linthicum, D.: Enterprise Application Integration, Addison Wesley, Boston, 1999.

[McGo+03] McGovern, J.; Tyagi, S.; Stevens, M.; Matthew, S.: Java Web Services Archi-
tecture, Morgan Kaufmann Publishers, San Francisco, 2003.

[Micr04] Microsoft: .NET Compact Framework. http://msdn.microsoft.com/mobility/prod-
techinfo/devtools/netcf/, 2004. Viewed 04-06-25.

[Micr04a] Microsoft UDDI Business Registry. http://uddi.microsoft.com/default.aspx.
Viewed 04-06-29.

[Nati03] Natis, Y.: Service-Oriented Architecture Scenario, Gartner Research. http://
www4.gartner.com/resources/114300/114358/114358.pdf, 2003. Viewed 04-06-28.

[OASI03] OASIS: UDDI Version 3. http://www.uddi.org/specification.html, 2003. Viewed
04-06-29.

[OMA04] Open Mobile Alliance Mobile Web Services Working Group. http://www.
openmobilealliance.org/tech/wg_committees/mws.html. Viewed 04-06-29.

[Orac04] Oracle Corp.: JDeveloper 10g, http://otn.oracle.com/products/jdev/index.html.
Viewed 04-06-20.

[Puli03] Pulier, E.: The Reality, Challenges, and Enormous Potential of Web Services, in:
Web Services Journal, 5/2003, pp. 48-50.

[Redm97] Redmond, F.: DCOM: Microsoft Distributed Component Object Model, John
Wiley, New York, 1997.

[Roma99] Roman, E.: Mastering Enterprise JavaBeans, John Wiley, New York, 1999.

[SAP04] SAP AG: http://www.sap.com/solutions/mobilebusiness. Viewed 04-06-24.

390 A.M. Jankowska, K.Kurbel

[SAP04a] SAP: SAP Mobile Engine: An Open Platform for Enterprise Mobility.
http://www.sap.co.kr/solutions/mobilebusiness/pdf/50057072s.pdf. Viewed 04-09-28.

[Smol03] Smolnicki, J.: How XML and Web Services Will Change Your Business, CIO,
11/2003, http://www.pwcglobal.com/Extweb/ncinthenews.nsf/docid/2C9CB295270D7
52DCA256DD5006D122D. Viewed 04-06-24.

[Sun04] Sun Microsystems: Java Specification Request 172: J2ME Web Services Specifi-
cation, http://jcp.org/en/jsr/detail?id=172, 2004. Viewed 04-06-21.

[Sun04a] Sun Microsystems: Java Web Services Developer Pack, http://java.sun.com/web-
services/jwsdp/index.jsp, 2004. Viewed 04-06-23.

[Sun04b] Sun Microsystems: The Java Web Services Tutorial, 2004, http://java.sun.com/
webservices/docs/1.3/tutorial/doc/index.html, 2004. Viewed 04-06-20.

[ThWo02] ThoughtWorks: Web Services: Pathway to a Service-Oriented Architecture.
http://www.thoughtworks.com/us/library/SOA.pdf, 2002. Viewed 04-06-29.

[Tian+04] Tian, M. et al.: Performance Considerations for Mobile Web Services, in: Com-
puter Communications Journal, Volume 27, Issue 11, 2004, pp. 1097-1105.

[Topl02] Topley, K.: J2ME in a Nutshell, O'Reilly & Associates, Sebastopol, 2002.

[W3C00] W3C: Composite Capabilities/Preference Profiles: Terminology and Abbrevia-
tions, Working Draft. http://www.w3.org/TR/2000/WD-CCPP-ta-20000721/, 2000.
Viewed 04-06-23.

[W3C02] W3C: Delivery Context Overview for Device Independence. http://www.w3c.
org/2001/di/public/dco, 2002. Viewed 04-06-17.

[W3C03] W3C: SOAP 1.2. http://www.w3.org/TR/SOAP/, 2003. Viewed 04-06-29.

[W3C03a] W3C: Voice Extensible Markup Language (VoiceXML) Version 2.0.
http://www.w3.org/TR/voicexml20/, 2003. Viewed 04-06-20.

[W3C03b] W3C: XHTML 2.0 The Extensible HyperText Markup Language Specification.
http://www.w3.org/TR/xhtml2/, 2003, Viewed 04-06-25.

[W3C03c] W3C: XSL Transformations (XSLT) Version 2.0. http://www.w3.org/TR/
xslt20, 2003. Viewed 04-06-23.

[W3C04a] W3C: RDF Primer. http://www.w3.org/TR/rdf-primer, 2004. Viewed 04-06-27.

[W3C04b] W3C: Web Services Architecture Requirements. http://www.w3.org/TR/2004/
NOTE-wsa-reqs-20040211/, 2004. Viewed 04-06-29.

[W3C04c] W3C: WSDL 2.0. http://www.w3.org/TR/wsdl20, 2004. Viewed 04-06-24.

[W3C99] W3C: HTML 4.01 Specification. http://www.w3.org/TR/html4/, 1999. Viewed
04-06-26.

[Wass03] Wassink, J.: Das Ende des Auftragsblocks, iCONOMY, 5-6/2003, pp. 46-47.

[WhHe02] White, J.; Hemphill, D.: Java 2 Micro Edition, Manning Publ., Greenwich,
2002.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	February 2005

	Service-Oriented Architecture Supporting Mobile Access to an ERP System
	Anna Maria Jankowska
	Karl Kurbel
	Recommended Citation

	Microsoft Word - WI05-Beitrag207.doc

