
Association for Information Systems
AIS Electronic Library (AISeL)
UK Academy for Information Systems Conference
Proceedings 2015 UK Academy for Information Systems

Spring 4-1-2015

Requirements and Risk: Singing From the Same
Hymn-Sheet
Daniel Dresner
University of Manchester, daniel.dresner@manchester.ac.uk

Joy Garfield
Worcester University, j.garfield@worc.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/ukais2015

This material is brought to you by the UK Academy for Information Systems at AIS Electronic Library (AISeL). It has been accepted for inclusion in
UK Academy for Information Systems Conference Proceedings 2015 by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

Recommended Citation
Dresner, Daniel and Garfield, Joy, "Requirements and Risk: Singing From the Same Hymn-Sheet" (2015). UK Academy for Information
Systems Conference Proceedings 2015. 20.
http://aisel.aisnet.org/ukais2015/20

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fukais2015%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2015?utm_source=aisel.aisnet.org%2Fukais2015%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2015?utm_source=aisel.aisnet.org%2Fukais2015%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais?utm_source=aisel.aisnet.org%2Fukais2015%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2015?utm_source=aisel.aisnet.org%2Fukais2015%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2015/20?utm_source=aisel.aisnet.org%2Fukais2015%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1
determining derived requirements_jeg03_v3_dgd06.docx

Requirements and risk: singing from the same hymn-sheet

Dresner, D.G.1 and Garfield, J.E.2

1 School of Computer Science, The University of Manchester, Oxford Road, M13 9PL.
2 Worcester Business School, University of Worcester, City Campus, Worcester, WR1 3AS.

Abstract

Failing to elicit requirements is as much of a risk in the traditional, negative sense as successfully
defining requirements is a positive step towards successful systems development. The discipline of
risk management has long since had to deal with the spectre of emergent risk and its inherent lack
of predictability. Just as risk management considers how any number of vulnerabilities in a system
may be exploited by accident or by malicious intent that preys upon exposure to otherwise
independent factors, so successful requirements elicitation is beholden to the ability to recognise
the need for, and define, derived requirements. In this paper we suggest that risk assessment and
requirements elicitation are two manifestations of the same activity: creating trustworthy software1.
We propose the research and development of a methodology where the two disciplines converge.

Keywords: Derived requirements, elicitation, design, risk management, trustworthy
software.

Introduction

Requirements that are not fully explored during the early phases of development run the
risk of an adverse impact on the development of systems (Fuxman et al., 2003) in much the
same way that realised risk can have undesirable outcomes (Swann, 2000). Indeed there is
much evidence to suggest the need for ascertaining good requirements early in
development (Orr, 2004; Kauppinen, 2005) as a foundation for further development
(Hofmann and Lehmer, 2001). Complexity reveals an ever growing catalogues of defects
(like the Common Weakness Enumeration - CWE). Manifestations of these emerging defects
cause us to ask if the formality and rigour we expect in the software engineering discipline is
better described by the process of scientific discovery espoused by Koestler’s sleepwalkers
(Koestler, 1959) creating a growing case study of emergent risk and derived requirements.

However, in many approaches to development, functional and non-functional requirements
are gathered hastily (e.g. McAllister, 2006), followed by the rapid development of design,
system coding and implementation, e.g. Rapid Application Development (Martin, 1991). This
almost certainly leads to the development of an information system which is not
strategically viable and will not add value. A number of studies have shown that the cost of
fixing requirements errors grows dramatically the later they are corrected (Soni, 2014;
Axelrod, 2013) and this is in line with the study of quality defects in manufacturing (Crosby,
1979). Further consequences of which can at best affect the success of the system – such as
the Libra court-management system - which automated defective processes rather than re-

1
 BSI, PAS 754:2014, Software Trustworthiness. Governance and management. Specification, 2014

2
determining derived requirements_jeg03_v3_dgd06.docx

engineering them - and at worst the entire organisation and even people’s lives – 28 people
were killed as a result of a Patriot missile failure based on a poorly derived requirement for
accuracy (Dresner, 2011).

This paper focuses on the objective of successfully eliciting derived requirements during the
design of systems at the same time as considering risks whose treatment will be effected
and affected by the system as written. This contrasts with the expensive (and potentially
catastrophic) emergence of requirement of a system in use where risks are realised with
expensive consequences for recovery and rework. We contend that considering risk
management as a separate discipline to requirements elicitation is inefficient and
dangerous. It creates an air-gap between processes that have for too long been
overshadowed by the enthusiasm to produce tangible code and the viament of satisfying
new and emerging requirements as maintenance rather than admitting to the truth of
earlier failures and a need to budget for new development.

Derived requirements

A derived requirement is defined by Young (2004) as one that is further refined from a
higher-level requirement or a requirement that results from choosing a specific
implementation or system element. This is compatible with the SWEBOK’s label of emergent
properties (IEEE, 2014) which depend on the interoperation of components of the software.
Leffingwell and Wigreg (2000) state that important requirement characteristics for derived
requirements are traceability, consistency and abstraction. As derived requirements can
change as a result of changes in the design, usually without reference to the customer, it is
important to keep track of what is derived and what is not (Brooksby, 2003) in much the
same way that the balance of risk must be tracked for its sensitivity to changes in probability
and impact. Figure 1 shows the relationship between derived requirements and customer
requirements. The loops between design and derived requirements indicate the many
possible levels of design. A successful design derives non-functional requirements with the
same priority as those elicited directly from the customer, baking in the trustworthiness
(BSI, 2014).

Figure 1: Requirement types (Brooksby, 2003)

3
determining derived requirements_jeg03_v3_dgd06.docx

Although derived requirements are not elicited directly from the customer/user they need
to be treated just like other requirements in the system (Brooksby, 2003). Not satisfying
them negatively impacts system performance, their absences constitutes risk, and
consequently reduces customer satisfaction (Leffingwell and Wigreg, 2000). It does however
tend to be more difficult to elicit derived requirements, and some of them may be
overlooked in the process (Leffingwell and Wigreg, 2000) particularly when stakeholders
have not been consulted (Checkland, 1981 and Carr, 2003). They should however be easier
to change than user requirements and can be derived and deleted. But it is not always easy
to know when the derivation of requirements should finish and when a derived requirement
should have been part of the core requirements elicitation.

Known and unknown requirements and risks

Governance (BSI, 2014) sets out the involvement – or teamwork – that is needed to derive
requirements and an understanding of risks to a system (Carr, Konda, et al., 2003). The
categorisation of risk is based on CMU SEI’s taxonomy, which describes risks as having one
of three characteristics: known risks that are well understood and will surface time after
time in a risk assessment; unknown risks that did not make it into the risk register because
the assessment did not call on the right kind of expertise; and unknowable risks that could
not have been reasonably predicted even with a wide enough representation from the
contemporary knowledge base.

Figure 2 : Known and unknown requirements

Derived requirements may manifest in any part of the quadrant (Figure 2) to show the
direction requirements elicitation should take to derive as many requirements as honest
governance drives. This quadrant was originally drawn up to consider risks which are ‘easily’
identified (known), those which are identified by specialist stakeholders (Alexander, 2007)
involvement (known unknowns), those which would have been assessed had the

4
determining derived requirements_jeg03_v3_dgd06.docx

appropriate stakeholder been consulted (unknown knowns) and the ‘black swan’ risks which
were outside contemporary knowledge (Taleb, 2008). For teamwork in particular
consideration of a ‘worldview’ is needed to create the conditions for derived requirements
to emerge early enough to remove or reduce the cost of rework and increase the risk of
system success. Checkland (1981) incorporates this aspect into the ‘Weltanschauung’ of the
Soft Systems Methodology. Just as the management process of risk assessment (and then
treatment) surrounds a system asset with the means of its protection, so the requirements
elicitation process needs to consider treating the risks that would prevent a requirement
being met, and the positive treatment of what needs to be done to develop the certainty
that the requirement will be realised Figure 3. These are two manifestations of risk
treatment which we suggest can be handled together.

For example, the methodology to achieve for software trustworthiness (BSI, 2014)
establishes a Trustworthy Software Constraint and Dependency Model before
implementation to include external dependencies, such as customers and how they form an
supply chain. The ‘Trustworthy Software Framework’ establishes a demand to understand
the use cases for software and elicit derived requirements from them. This leads to risk
management considerations - such as privacy and cryptography – being built into the design
at an early stage. This is an efficiency shown in Crosby’s Quality Management Grid (Crosby,
1979) which shows the cost of quality based on removing defects. The cost of removing
defects reduces the earlier in the life cycle it’s done, and the maturity of the organisation
required to achieve this increases. The consolidation of processes such as requirements
elicitation and risk management is likely to be a metric of maturity. Security is a primary
system/software quality characteristic (ISO, 2011) so security vulnerabilities and breaches
are manifestations of quality defects and remedial controls are tantamount to derived
requirements.

Figure 3: Known process elements for risk-based requirements elicitation

5
determining derived requirements_jeg03_v3_dgd06.docx

The risks of placing transient content onto websites may result in advertisements (for
example) appearing with other material with which the advertisers do not want to be
associated. Assessing the software requirements derives the need to manage such risk, but
this calls for the knowledge of the content owners that such a technology is available and
could be used and for them to define what is acceptable to them and to the website
designers and programmers to recognise where constraints can or cannot be made. It may
be an instance where a risk is accepted or the facility rejected on account of the risk. An
extrapolation of this example is the lack of control afforded to an advertiser placing adverts
on a social networking site and the freedom of users to define content outside the close
control of the website2.

Moreover the choice of solution may reveal or create another, even more complex problem
(Rittel and Webber, 1984) which may be expressed as a measure of risk. Derived
requirements could therefore be termed as ‘wicked’ problems. ‘Wicked’ problems are
typically characterised by uncertainty, conflict and uniqueness (Fischer et al., 1991).
Conflicts may result from trade-offs with other requirements. And as the size of systems
project increases so too does the complexity and the risk of errors. Therefore, derived
requirements must be consistent with respect to the other requirements (Leffingwell and
Wigreg, 2000).

ISO/IEC 25010 (and its predecessor ISO/IEC 9126) has long since defined a requirements
framework for systems and software quality based on characteristics which must be defined
by a system’s requirements. PAS 754 (BSI, 2014) isolates five non-functional requirements as
being the defining characteristics of trustworthy software these are: safety, reliability,
availability, resilience and security (Watson, 2014). We suggest that a method can be
defined that benchmarks requirements decisions for their impact on these five
characteristics to enable emergent properties of a system to be teased out. Throughout
development – and subsequently managed change – the understanding of system’s safety,
reliability, availability, resilience and security must be whole. This would refine and integrate
current practice to create a more sensitive method than expressing the impact of software
risk in terms of probability and information asset value.

Systems frequently fail to adequately protect the assets in their charge (Price Waterhouse
Cooper, 2014). The UK Trustworthy Software Initiative (www.uk-tsi.org) reports that 90% of
the incidents reported to GovCERTUK (Computer Emergency Response Team (CERT) for UK
Government) can be attributed to software bugs. The failure of the body of knowledge to
encourage such protection (Dresner and Jones 2014), has led us to focus on the security
vector in particular although as security comprises confidentiality, integrity, and availability
(ISO, 2013), it is inseparable from common requirements that may be expected in every
system depending on the risk decisions made during times of design or change.

We have already seen that the requirements that take into consideration human factors can
be measured against the security controls adopted by the system. Figure 4 draws on
research by Dresner and Garfield (2014) and shows the areas of adequate and inadequate

2
 http://news.bbc.co.uk/1/hi/uk_politics/6929161.stm, 08 August 2007

http://www.uk-tsi.org/
http://news.bbc.co.uk/1/hi/uk_politics/6929161.stm

6
determining derived requirements_jeg03_v3_dgd06.docx

requirements. The better that the system has security controls built in – defined here as the
manifestation of the system owner’s risk attitude – then the less reliant that the system’s
assets are on its customers and actors for their security and by implication the other (non-
functional) quality requirements as expressed by quality characteristics of the system.

Figure 4: Adequate and inadequate requirements

Conclusion

It could be said that requirements always tend to be incomplete. And the complex or
otherwise termed ‘wicked’ (Rittel and Webber, 1984) nature of derived requirements makes
their determination difficult as does the nature of emergent risk to the elicitation of building
in risk treatments to a system. The process of risk assessment and treatment is part of
requirements elicitation and vice versa. Considering measures for monitoring and elicitation
of derived requirements could go some way toward lessening the impact that lack of
elicitation may cause in the same way that mitigating actions, or controls, are derived to
reduce the impact of negative risk and similarly – albeit culturally less often – increase the
risk of success. The sooner that risk management and requirements elicitation are brought
together into a single discipline, the sooner we may approach the nirvana of trustworthy
software.

References

Alexander, I.F. (2007). A Taxonomy of Stakeholders: Human Roles in System Development,
Issues and Trends in Technology and Human Interaction, Editor(s): Bernd, Carsten, Stahl (De
Montfort University, UK) IRM Press. 25-71 pp.

Axelrod, C.W. (2013) Engineering safe and secure software systems, Norwood,
Massachusetts: Artech House.

7
determining derived requirements_jeg03_v3_dgd06.docx

Brooksby, R. (2003) Requirements and change, Cambridge: Ravenbrook Ltd.

BSI (2014) PAS 754:2014 Software trustworthiness – Governance and management –
Specification, British Standards Institution

Carr, M.J., Konda, S.L., et al. (2003) Taxonomy-Based Risk Identification, Software
Engineering Institute.

Checkland, P. (1981) Systems thinking, systems practice, London: John Wiley and Sons Ltd.

Crosby, P. (1979). Quality is free: The Art of Making Quality Certain, McGraw Hill.

Dresner, D.G., (2011) A study of standards and the mitigation of risk in information systems,
A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy
in the Faculty of Humanities

Dresner, D. G., Jones, N. (2014) The Three Laws of Information and Cyber Security, Cybertalk
Issue 6, Softbox

Dresner, D.G. and Garfield, J.E. (2014) Balancing risk appetite and risk attitude in
requirements: a framework for user liberation, UK Academy for Information Systems (UKAIS
2014), St Catherine’s College, University of Oxford, Oxford, 7 – 9 April 2014.

Faisandier, A. (2012) Systems architecture and design, Belberaud, France: Sinergy'Com.

Fischer, G., Lemke, A.C., McCall, R. and Morch, A. (1991) Making argumentation serve
design, Human Computer Interaction, 6 (3-4), 393-419.

Fuxman, A., Liu, L., Pistore, M. and Roveri, M. (2003) Specifying and analysing early
requirements: some experimental results, Proceedings of the 11th IEEE international
conference on Requirements Engineering, Monterey Bay, California, USA, 8-12 September
2003.

Hillson D., and Murray-Webster, R., (2007). Understanding and Managing Risk Attitude (2nd
edition), Gower Publishing.

Hofmann, H.F. and Lehmer, F. (2001) Requirements Engineering as a success factor in
software projects, IEEE Software, 18(4), 58-66.

IEEE (2014). Guide to the Software Engineering, Body of Knowledge, Version 3.0, SWEBOK®,

ISO (2011) ISO/IEC 25010 Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality models,
International Standards Organisation

ISO (2013) ISO/IEC 27001 Information technology — Securitytechniques — Information
securitymanagement systems — Requirements, International Standards Organisation

8
determining derived requirements_jeg03_v3_dgd06.docx

Kauppinen, M. (2005) Introducing Requirements Engineering into product development:
towards systematic user requirements definition, PhD Department of Computer Science and
Engineering, University of Technology, Espoo, Finland.

Koestler A., (1959) The Sleepwalkers: A History of Man's Changing Vision of the Universe,
Hutchinson

Leffingwell, D. and and Wigrig, D. (2000) Managing software requirements. A unified
approach, London: Addison-Wesley.

McAllister, C.A. (2006) Requirements determination of information systems: user and
developer perceptions of factors contributing to misunderstandings, Ann Arbor, Michigan:
ProQuest.

Martin, J. (1991) Rapid Application Development, New York: Macmillan, USA.

Orr, K. (2004) Agile requirements: opportunities or oxymoron? IEEE Software, 21(3), 71-73.

Price Waterhouse Cooper (2014) Information Security Breaches Survey 2014 Technical
Report, Department for Business, Innovation and Skills (BIS)

Rittel, H.W.J. and Webber, M. (1984) Planning problems are wicked problems, In Cross, N.
(ed) Developments in design methodology, Chichester: John Wiley and Sons, 135-144.

Soni, M. (2014) Defect prevention: reducing costs and enhancing quality, Six Sigma.

Swann, G. M. P., (2000) The Economics of Standardization, Department of Trade and
Industry

Taleb, N. N., (2008) The Black Swan: The Impact of the Highly Improbable, Penguin

Watson, T., Trustworthy software as a foundation for UK cyber security, Cyber Security
Review, Summer 2014

Young, R.R. (2004) The Requirements Engineering Handbook, London: Artech House
Technology Management and Professional Development.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Spring 4-1-2015

	Requirements and Risk: Singing From the Same Hymn-Sheet
	Daniel Dresner
	Joy Garfield
	Recommended Citation

	tmp.1455921433.pdf.eh2bX

