Association for Information Systems

AIS Electronic Library (AlSeL)

Wirtschaftsinformatik 2023 Proceedings Wirtschaftsinformatik

10-9-2023

The Broken Leg of Algorithm Appreciation: An Experimental Study
on the Effect of Unobserved Variables on Advice Utilization

Dirk Leffrang
Paderborn University, Germany, dirk.leffrang@upb.de

Follow this and additional works at: https://aisel.aisnet.org/wi2023

Recommended Citation

Leffrang, Dirk, "The Broken Leg of Algorithm Appreciation: An Experimental Study on the Effect of
Unobserved Variables on Advice Utilization" (2023). Wirtschaftsinformatik 2023 Proceedings. 19.
https://aisel.aisnet.org/wi2023/19

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AlSeL). It has been accepted
for inclusion in Wirtschaftsinformatik 2023 Proceedings by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.


https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2023
https://aisel.aisnet.org/wi
https://aisel.aisnet.org/wi2023?utm_source=aisel.aisnet.org%2Fwi2023%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2023/19?utm_source=aisel.aisnet.org%2Fwi2023%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Broken Leg of Algorithm Appreciation:
An Experimental Study on the Effect of Unobserved
Variables on Advice Utilization

Research Paper

Dirk Leffrang!

Paderborn University
dirk.leffrang @uni-paderborn.de

Abstract. Despite the widespread use of machine learning algorithms, their effec-
tiveness is limited by a phenomenon known as algorithm aversion. Recent research
concluded that unobserved variables can cause algorithm aversion. However, the
impact of an unobserved variable on algorithm aversion remains unclear. Previous
studies focused on situations where humans had more variables available than
algorithms. We extend this research by conducting an online experiment with
94 participants, systematically varying the number of observable variables to the
advisor and the advisor type. Surprisingly, our results did not confirm that an
unobserved variable had a negative effect on advice-taking. Instead, we found a
positive impact in an algorithm appreciation scenario. This study provides new
insights into the paradoxical behavior in which people weigh advice more despite
having fewer variables, as they correct for the advisor’s errors. Practitioners should
consider this behavior when designing algorithms and account for user correction
behavior.

Keywords: Algorithm aversion, Data, Decision-making, advice-taking, Human-
Computer Interaction

1 Introduction

Algorithms are playing an ever-growing role in a wide range of decision-making pro-
cesses, from the workplace to our personal lives (Maedche et al. 2019). Algorithm-
powered systems offer valuable support thanks to their unparalleled ability to process
large amounts of data. Not least because of this property, algorithms have been out-
performing human experts in terms of accuracy for decades (see Grove et al. 2000).
While algorithms have the potential to offer many benefits, sometimes their use is met
with skepticism and distrust compared to human advisors. This phenomenon, known as
algorithm aversion, has been studied in various contexts (Jussupow et al. 2020). For ex-
ample, people prefer human advice to algorithmic advice when predicting the success of
students (e.g., Dietvorst et al. 2015). However, inconclusive results exist as the opposite
observation was made as well, termed algorithm appreciation (Logg et al. 2019).

One possible explanation for algorithm aversion is that algorithms may not take
unique circumstances into account (Longoni et al. 2019). The "broken leg" scenario,
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proposed by Meehl (1954), illustrates how algorithms can overlook unique characteristics.
While an algorithm may be good at predicting the probability of an event, it may fail to
account for unobserved variables, such as a broken leg. In contrast, a human expert who
is aware of the broken leg can use this information to make a more informed decision.

In summary, algorithms’ strengths lie in processing large amounts of data. Weak-
nesses arise when the algorithm suffers from unobserved variable bias. Based on these
two considerations, the broken leg scenario appears to be unfair to the algorithm as the
human expert had more observed variables. Therefore, we pose the research question:
What is the impact of an unobserved variable on algorithm appreciation?

We address our research question by systematically varying (1) human versus algo-
rithm advisors and (2) unobserved versus observed variables. We conducted an online
experiment with 94 participants. To measure the weight participants gave to the received
advice, we used the Judge-Advisor System (JAS) framework, which we will explain
later in the paper (Bonaccio & Dalal 2006, Logg et al. 2019). Surprisingly, our findings
contradicted the idea that an unobserved variable would lead to less weight on advice.
Participants gave more weight to the advice. Varying advisor types, we found algorithm
appreciation. We found no significant interaction between these effects.

This study extends previous research by providing empirical evidence that algorithms
lacking an unobserved variable can lead to less advice-taking compared to a human
advisor who observes that variable. The findings highlight how people weigh advice more
heavily even when they have an unobserved variable. This paradoxical behavior may be
due to people correcting for the advisor’s errors. To address this paradoxical behavior,
practitioners may need to design algorithms that account for their user’s correction
behavior or provide more transparent explanations.

2 Related Work & Hypothesis Development

2.1 Related Work

The Judge-Advisor System (JAS) is a framework for assessing how much people integrate
advice from external sources into their own decision-making. A judge — whether a
decision maker in a real-life scenario or a participant in an experiment — faces a prediction
task and makes an initial prediction. Afterward, she may consult an advisor, for example,
an algorithm or a human expert. The judge forms her final prediction by combining
the initial prediction with the advisor’s prediction, which is discounted and weighted
depending on factors such as the advisor’s characteristics (Bonaccio & Dalal 2006).

There is an ongoing debate on whether people generally have an aversion to or
appreciation for algorithms. One of the factors related to algorithm aversion is the
decision context. Research has observed that algorithm aversion tends to be lower in
more objective tasks (Castelo et al. 2019). People view actions that benefit others as more
significant for their own personal development than actions that are motivated by financial
gain. As a result, they place a greater value on exhibiting empathy and independence
when making decisions in situations where others are the primary beneficiaries (HeBler
et al. 2022). In our study, we focus on objective tasks to minimize any unintended
correlations with the decision maker’s personal characteristics.



2.2 Hypothesis Development

Similar to current research on algorithm aversion, research in psychology has examined
the effectiveness of human clinical judgment versus algorithmic approaches. In this con-
text, Meehl’s "broken leg" scenario is a thought experiment highlighting the limitations
of relying solely on algorithmic approaches to make a prediction, such as predicting the
probability of a person going to the cinema (Meehl 1954). The human expert had more
information about the broken leg than the algorithm in this scenario.

However, algorithmic approaches generally outperformed humans by 10% in terms
of accuracy, according to a meta-review of Grove et al. (2000). The only systematic
factor that can give humans an advantage over algorithmic approaches is having access to
more data, as highlighted by the authors. Building on these insights from psychological
research, we wanted to reproduce the anecdotal scenario of Meehl (1954):

Hypothesis 1: In an objective prediction task, people will use the advice of an
algorithm less when it suffers from an unobserved variable than the advice of a human
expert who observes it.

Meehl (1954) varies two factors simultaneously. Table 1 shows two situations that
the scenario does not address. First, it is unclear whether an unobserved variable such as
the broken leg would hinder advice-taking from the algorithm as much as it benefited the
human expert. Second, it remains unclear whether advice from a human expert would be
preferable if she suffered from the same unobserved variable.

Table 1. Potential outcomes in the broken leg scenario of Meehl (1954).

Unobserved variable Observed variable

Algorithm yes ?
Human ? yes

People exhibited algorithm aversion when the algorithmic advisor was imperfect
(Dietvorst et al. 2015). Although subsequent studies failed to establish a general pattern
of aversion, Prahl & Van Swol (2017) did find evidence of algorithm aversion after
receiving bad advice. However, after non-significant differences directly after bad advice,
Leffrang et al. (2023) reported increasing algorithm appreciation over time. In another
study, participants only exhibited aversion if they had previously seen the advisor’s
prediction performance (Berger et al. 2021).

Overall, research found algorithm appreciation in multiple contexts (e.g., Dijkstra
et al. 1998, Logg et al. 2019). Human reliance on automation can also lead to a bias
known as automation bias (Goddard et al. 2012). In light of these findings, algorithm
aversion appears to be more prevalent in temporal or subjective settings. Therefore, we
propose:

Hypothesis 2: In an objective prediction task, people will use the advice of an
algorithm more than the advice of a human expert.

In a prior study, participants could choose four of five variables as input data for
an algorithm. The participants’ choice of input variables did not significantly affect



algorithm aversion (Jung & Seiter 2021). However, participants had no choice about
the number of observable variables and could not choose for the human condition.
Incomplete information can lead to suboptimal decision-making, as demonstrated in
Akerlof (1970)’s study on market signaling. In the broken leg scenario, the author
considered human experts superior to formal methods when they had more information
(Meehl 1954). Given that more variables theoretically enable better predictions, we
propose independent of the advisor type:

Hypothesis 3: In an objective prediction task, people will use the advice of an
advisor less when the advisor suffers from an unobserved variable than the advice of an
advisor who observes it.

Einhorn (1986) discusses the implications of deterministic and probabilistic world-
views for prediction. In a deterministic world, everything is causal and every event can
be perfectly predicted. In contrast, a probabilistic world contains random errors that can
prevent perfect predictions. Humans have a tendency to reinterpret the past in a way that
reflects a deterministic worldview. However, if individuals rely on this reinterpretation
to predict the future, they may encounter inconsistencies between their predictions and
reality due to the probabilistic nature of events. Models behind algorithms are simplified
representations of reality as they are limited by their input data. Instead of assuming per-
fect predictability, algorithms aim to minimize errors by taking a probabilistic approach,
according to the author.

Algorithm aversion arises from people’s tendencies to overlook the probabilistic
nature of predictions and overestimate the human ability to make deterministic predic-
tions based on intuition and experience (Highhouse 2008). For example, people may
resist medical algorithms out of fear that the algorithms might overlook their unique
characteristics (Longoni et al. 2019). Human advisors may receive more credibility than
algorithms when an unobserved variable is present because the advisors can compensate
for the missing information using their intuition and experience. Since its invention,
machine learning has built on the idea of enhancing its performance through data and
experience in an inductive manner (Mitchell 1997). Empirically, demonstrating the algo-
rithm’s ability to improve its prediction performance could mitigate algorithm aversion
(Berger et al. 2021). Based on the idea that algorithmic performance improves with more
variables, we hypothesize:

Hypothesis 4: The effect of advisor type on advice-taking is greater for an advisor
when the advisor suffers from an unobserved variable compared to an advisor who
observes it.

3 Research design

To test our hypotheses, we conducted a reward-based online experiment. We pre-
registered the experiment before we ran it'. While incentivization may not always

! Note that we reworded the research question and hypotheses to provide a better reading flow,
but did not change their meaning https://aspredicted.org/QzS_8R9


https://aspredicted.org/QZS_8R9

improve performance, previous studies suggest it can enhance performance in prediction
tasks (Camerer & Hogarth 1999). This is why incentivized experiments are frequently
utilized for algorithm aversion investigations (see Burton et al. 2020).

Due to uncertainty about the training data for the algorithm, we opted not to use the
broken leg scenario. Instead, we chose to use a typical objective task that has been used
in previous research, namely the staffing of a call center (e.g., Berger et al. 2021).

3.1 Procedure

Participants accessed the instructions for the experiment through an online survey tool
(LimeSurvey). They had to imagine themselves as a manager in a call center, assigned
the responsibility of managing staff. The call center had recently gained a new client, and
as a result, it was necessary to make regular estimates of the number of incoming calls.
This was crucial for the call center to make informed decisions about staffing. Figure 1
shows the produre of the experiment. The task assigned to participants was to predict the
number of calls for a specific day by following these steps:

Instructions

/ Main Experiment \

4 * Warm-up + 12
J

E-R/8 v

Initial Final prediction
prediction with advice Feedbaj
Questionnaire

Figure 1. Procedure of the experiment.

1. We presented them with data for a particular day and asked them to make a prediction
for that day’s incoming calls.

2. After submitting their prediction, we displayed an advisor’s estimate for the same
day using past data. They then had the possibility to revise their initial forecast.

3. Finally, we informed them of the actual number of phone calls.

As per our instructions, the number of calls on a specific day is primarily influenced
by six variables:



Quarter of the year (Q1 to Q4)

Day of the month (1 to 31)

Day of the week (Monday to Friday)

Running of a promotion campaign (yes or no)
Recent sales (above or below average)

Recent website traffic (above or below average)

Berger et al. (2021) described the generation process behind the data in detail.
Multiplying the factors for these six variables with a random influence determined the
number of incoming calls. As in the experiment of Berger et al. (2021), we did not
provide exact effect sizes of the variables. Instead, we showed visualizations displaying
the effect sizes in comparison to an average day. For instance, the call center received an
average amount of calls when there was no promotion and 20% more calls when there
was a promotion. Participants also learned that the average daily call volume is 5000.
We excluded the first four tasks as warm-up exercises from the subsequent data analysis.

3.2 Conditions & Participants
We employed a 2x2 within-subjects design with four conditions, varying in two factors:

1. Human versus algorithm
2. Unobserved versus observed variable

The only distinction in the first factor was the origin of the advice provided. We
informed the treatment group that the advice came from "an algorithm", while the control
group received advice from "an expert". However, the actual advice given to both groups
was the same.

Importantly, we informed participants in the unobserved variable condition that the
advisor did not have the variable "promotion" when making predictions. Figure 2 shows
an example of the stimuli in the experiment.

*You now have the possibility to adjust your initial estimate.
The estimate of the expert was: 3674
What is your estimate for the number of calls on the specified day?

Unfortunately, the expert was lacking the variable 'running a promotion campaign' when making this prediction.

Average number |Quarter of the| Day of the Day of the | Running a promotion | Recent |Recent website
of calls year month week campaign sales traffic

5000 Q1 8 Wednesday yes -5% -10%

Figure 2. Screenshot of the human condition with unobserved variable.

The experiment took place between February 2nd and February 13th. We offered an
online experiment to third-year bachelor’s students in a business informatics course at a
medium-sized, IT-focused university in Europe. Participants got a bonus point for their
final exam when they passed all attention checks and had a mean absolute percentage
error (MAPE) below 0.1. They learned about these restrictions before the experiment and



participation was voluntary. We excluded data from participants who failed to answer
all of our questions, failed attention checks, consistently provided the same answers, or
completed the tasks too quickly (i.e., less than 90 seconds for all tasks) or too slowly (i.e.,
more than two standard deviations above the mean participation time). We determined
the necessary sample size for detecting a medium effect using G*Power (Faul et al.
2007), and the result was a minimum sample size of approximately 50. The test was a
repeated measure, within factors test with Cohen’s f = 0.25 (Cohen 1988), indicating a
medium effect size (o = 0.1, power: 0.9, 1 group, 2 measurements).

3.3 Model Specification

In our experiment, we utilized the JAS paradigm and measured the Weight of Advice
(WOA) as the dependent variable for each subject-task combination. WOA indicates the
degree to which participants adopt either human or algorithmic advice (see Bonaccio &
Dalal 2006):

| final prediction — initial prediction|

WOA = (1

|advisor’s prediction — initial prediction|

A value of zero indicates no adoption of the advice, while a value of one corresponds
to full advice adoption. Based on earlier studies on algorithm appreciation (e.g., Logg
et al. 2019), we performed Winsorization on any WOA values that were above 1 or
below 0.

To analyze our data, we employed a linear mixed-effects model with varying in-
tercepts for condition, participant, and task. Our dependent variable was WOA, and
we defined each of the twelve prediction days as tasks. A combination of participant
and task defined a task. We randomized the order of conditions for each participant. A
dummy variable indicated whether the participant was in the algorithm (Algorithm =
1) or human (Algorithm = 0) condition. Another dummy variable indicated whether
the advisor had the promotion as an unobserved variable (Unobserved variable = 1). It
resulted in the following generic model specification:

Yi= B + Yalgorithm]i] + 5unobserved variable[i] + Cpm‘ticipant[i] + Ntaskl[i] +€

4 Results

4.1 Model-Free Evidence

We obtained predictions from 145 people. After applying the exclusion criteria and
dropping the warm-up tasks as mentioned above, 94 participants remained with 1128
predictions. Figure 3 displays the WOA by condition. There are no obvious differences
between the algorithmic and human conditions. Surprisingly, the distributions indicate
higher levels of WOA for the conditions where there was an unobserved variable. It
appears that participants weighted the advice more if the advisor suffered from an
unobserved variable.
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Figure 3. Violin plots for WOA values by condition.

Especially in the unobserved variable conditions, WOA took the value one which
indicates potential overshooting due to the Winsorization. Overshooting happens for
example when the participant’s initial prediction was 80 and the advice was 100, but
the final decision is 120. In this case, WOA takes a value greater than 1. However,
Winsorization limits WOA to the value of 1. Figure 4 shows the fraction of overshooting
by condition and by WOA values being bigger than 1. Notably, when the advice was
greater than the pre-advice prediction of the participant in the algorithm, unobserved
variable condition, 34.9% of the final predictions overshooted the advice. For the human,
unobserved variable condition, 24.6% of the final predictions overshooted the advice. In
67.1% of all predictions, the participants’ initial estimate was smaller than the advisor’s
predictions.
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Figure 4. Overshooting plot for WOA values by condition.



4.2 Estimation Results

Our first hypothesis claimed that in an objective prediction task, people will use the
advice of an algorithm that lacks an unobserved variable less than the advice of a human
expert who observes it. In order to test this hypothesis, we generated a subset for the two
conditions presented in Table 1 in the Hypothesis Development (indicated by the label
"yes"). We introduced a new variable "Broken leg algorithm", which took the value one
if algorithm = 1 and unobserved variable = 1. The variable took the value zero if both
were Zero.

To test our hypothesis, we regressed WOA on the experimental condition described
above, with participant and task differences taken into account as controls. We omitted
observations that had undefined WOA differences (due to division by zero). Table 2
model (1) shows the results regarding our first hypothesis.

Table 2. WOA regressed on conditions.

Dependent variable:

WOA
(1 2 (3)
Constant 0.4227** 0.420"** 0.4217**
(0.035) (0.032) (0.033)
Broken leg 0.136™**
algorithm (0.024)
Algorithm 0.047*** 0.046™
(0.017) (0.025)
Unobserved variable 0.089™** 0.088***
(0.017) (0.025)
Algorithm: 0.002
Unobserved variable (0.036)
Participant? v v v
Task? v v v
Observations 564 1,128 1,128
Log Likelihood -167.373 -297.528 -299.936
Akaike Inf. Crit. 344.746 607.055 613.872
Bayesian Inf. Crit. 366.422 637.225 649.070
Note: *p<0.1; **p<0.05; ***p<0.01

Surprisingly, the findings indicate that we cannot support our first hypothesis. On
the contrary, the results suggested that for algorithms with an unobserved variable, there
was about 13.6%-point more weight of advice compared to human advisors who observe



that variable. This result was statistically significant (p < 0.01) and appeared to be
economically meaningful with regard to an average WOA of 0.559 across all conditions.

Our second hypothesis stated that people will use the advice of an algorithm more
than the advice of a human expert. Just like for the previous hypothesis, we controlled
for participant and task differences in model (2). The results implied that algorithms
increase the weight of advice by 4.7%-points in comparison to humans (p < 0.01). Hence,
we find support for our second hypothesis.

Our third hypothesis stated that people will use the advice of an advisor that lacks
an unobserved variable less than the advice of an advisor that observes it. In contrast
to our hypothesis, the coefficient in model (2) was positive and significant (p < 0.01).
The results indicated that an unobserved variable increases the weight of advice by
8.9%-points. Therefore, we cannot support our initial hypothesis.

Our fourth hypothesis stated that the effect of advisor type on advice-taking is greater
for an advisor who lacks an unobserved variable compared to an advisor who observes
it. To test this hypothesis, we created model (3) which also examines the interaction
effect of the algorithm and an unobserved variable. Our results did not provide sufficient
evidence for an interaction effect, as they did not reveal significant differences regarding
the interaction term (Algorithm:Unobserved variable, p > 0.10). Thus, we do not find
support for our last hypothesis.

The models had an intra-class correlation (ICC) of 0.27, 0.30, and 0.30 for the
Participant variable. For the Task variable, the ICC was 0.06, 0.04, and 0.04. The ICC for
Task (less than 0.05) suggests that it could be excluded. Doing so only lead to minimal
changes to the coefficients of interest, and the p-value for the coefficient of algorithm in
model (3) was significant at the 5% level.

5 Discussion

In this paper, we examined the impact of an unobserved variable on algorithm aversion.
We conducted an incentivized online experiment in a call center setting to address our
research question. Surprisingly, we were unable to generalize the insights of the broken
leg thought experiment to empirical advice-taking in a repeated measures design. Our
results suggest an underlying effect of unobserved variables leading to more advice-
taking.

We can confirm algorithm appreciation for an objective prediction task. Prior research
argued that algorithm aversion is more likely for subjective tasks (Castelo et al. 2019).
Algorithm appreciation is not necessarily a cognitive bias as algorithms have been
outperforming humans for several decades (e.g., Grove et al. 2000). However, we gave
imperfect advice and did not observe algorithm aversion as in prior studies (e.g., Dietvorst
et al. 2015).

In a similar setting, researchers observed different levels of algorithm aversion and
appreciation depending on the familiarity with the algorithm (Berger et al. 2021). In
contrast to this study, we measured WOA at different time points. There can be temporal
fluctuations in algorithm appreciation depending on the prediction performance (Prahl &
Van Swol 2017). Therefore, we controlled for task-level differences between the time



points. In the long run, we can confirm a general algorithm appreciation for objective
tasks (Leffrang et al. 2023).

We cannot confirm that people use the advice of an advisor less when the advisor
suffered from an unobserved variable. On the contrary, our results imply that people
weighted the advice stronger if the advisor suffered from an unobserved variable. We
did not observe a significant interaction effect of advisor type and unobserved variables.
The ability to choose input variables for an algorithm had no significant impact on
advice-taking in prior research (Jung & Seiter 2021). We extend this observation by
identifying the number of observable variables as a relevant factor.

One possible explanation for our results could be that people corrected for the
mistake the advisor made because of the unobserved variable. As highlighted in Figure
4 in the model-free evidence, there was more overshooting in the unobserved variable
condition compared to the observed variable condition when the advice was greater than
the pre-advice prediction. Participants knew that promotions increase the number of
calls by approximately 20%. This is particularly noteworthy considering that 67.1% of
the initial predictions fell below the advisors’ predictions. Instead of discounting the
quality of the advice, people corrected the advisor’s mistake. Paradoxically, correcting
for an unobserved variable could lead to a greater weight being assigned to the advice
compared to when the variable is observed.

To illustrate the logical nature of this paradoxical behavior, let’s consider a simplified
example. Imagine a scenario where a judge initially predicts the number of calls to be
80, while an advisor predicts 100. If participants were to assign equal weight to both
predictions (see Logg et al. 2019), the final prediction would be 90, resulting in a WOA
of 0.5. However, if the judge presumed that the advisor is unaware of a variable that
would increase the prediction by 20%, the corrected prediction from the advisor would
be 120. In such a scenario, giving equal weight to the judge’s initial prediction and the
corrected advisor’s prediction would result in a final prediction of 100. As the advisor’s
actual estimate remains at 100, WOA increases from 0.5 to 1. Consequently, knowledge
about unobserved variables can amplify the weighting of advice.

In Mehl’s thought experiment about estimating the probability of going to a cinema,
a judge would have been able to correct the algorithm’s error if she had the information
that the leg was broken. Since we gave the same numerical advice in our experiment
across all four conditions, such a correction was unnecessary.

Observing a previously unobserved variable but leaving the performance unchanged
might explain differences to Mehl’s thought experiment in the case of a repeated measure
design. In Mehl’s application case, the algorithm predicted that the person will go to the
cinema. However, the human expert predicted that the person will not go to the movies
because of the broken leg. If the person goes to the movies despite the broken leg, then it
will be rational to trust the algorithm next week, since the additional information from
the human expert did not add any value.

We cannot confirm an interaction between the type of advisor and an unobserved
variable. For our fourth hypothesis, we hypothesized that observing a previously un-
observed variable would lead to a more deterministic worldview (see Einhorn 1986,
Highhouse 2008). Future research can investigate to what extent multiple variables lead
to such an effect.



This study adds to the current discussion on algorithm aversion versus appreciation
by highlighting the importance of data. In light of the ongoing discourse surrounding
the impact of Al systems operating as black boxes (Maedche et al. 2019), our research
emphasizes data as an essential property of the decision-making process. Input data into
algorithms can have an impact on decision-making even though the exact function of the
algorithms is not explained (see Wachter et al. 2018). However, more variables do not
necessarily lead to more advice being taken. People can correct mistakes they think the
advisor is making.

Practitioners need to consider these dynamics when designing effective advice-
giving systems. Incorporating human imperfections into recommender systems can
increase overall productivity (Sun et al. 2021). An unobserved variable, while keeping
the performance constant can increase advice-taking. With this knowledge, practitioners
can prevent human behavior from turning a feature into a bug.

6 Limitations & Outlook

It is important to note that our findings were based on a single experimental study.
Although our power analysis suggested that our sample size is sufficient, we acknowledge
the need for future research. To address this limitation, future research should conduct
additional experiments and expand our sample size in order to enhance the robustness
and generalizability of our conclusions.

We did not alter performance to vary only one factor between the conditions. In a real-
world setting, the performance in the unobserved variable conditions will probably be
lower if the advisor does not perform overfitting. Also participants knew the approximate
effect size of the unobserved variable, which is not always possible. Future work can
vary the performance of the advisors and the effect size as additional degrees of freedom.

This research focused on objective tasks. More subjective contexts may trigger
desires in the forms of empathy and autonomy (HeBler et al. 2022). Researchers can
investigate whether there is an interaction between unobserved variables and application
context.

Within-subjects designs bear the risk of carry-over effects. We chose this design
to make it easier for participants to notice the difference between the unobserved and
observed variable conditions. Future work can examine the experimental setup in a
between-subjects design.

Current research frequently utilizes WOA as the dependent variable. However, po-
tential analyses should take into account the limitations of WOA, such as overshooting,
as indicated by Bonaccio & Dalal (2006). We utilized Winsorization to deal with over-
shooting. Future research can examine other measures of advice-taking.

We plan to investigate other properties of data such as the amount of data points and
adding multiple variables to advisors. If we understand algorithms and their interaction
with data better, we can also improve human-computer interaction.
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