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TUPLESPACE-BASED INFRASTRUCTURE FOR 
DECENTRALIZED ENACTMENT OF BPEL PROCESSES 

 

Daniel Wutke, Daniel Martin, Frank Leymann1 
 
 
Abstract 
Business processes in WS-BPEL are a manifestation of the two-level-programming paradigm 
where remote-accessible Web services are composed to potentially complex orchestrations. WS-
BPEL processes are executed by Workflow Management Systems that navigate through the process' 
activities and interact with the orchestrated services. While Web service technology enables 
interactions with remote services, process navigation is typically done in a centralized manner. 
Especially in scenarios of complex interactions between multiple distributed process participants, 
this way of process enactment has several drawbacks. In this paper, we outline those drawbacks 
and propose an alternative approach to execution of BPEL processes in a distributed, 
decentralized manner. 
 
1. Introduction 
 
The Service Oriented Architecture (SOA) [1] is an approach to integrating enterprise applications 
in a flexible and loosely coupled manner. SOA is built on the notion of services, which are 
realizations of self-contained business functions and provide a service requester with an abstract 
view on business functions. An important aspect of SOA is service composition, in this context also 
referred to as service orchestration. 
 
The Web Service Business Process Execution Language (WS-BPEL or BPEL for short) [4] is the 
de-facto standard for describing workflow-like orchestrations of Web services. Following the two-
level-programming paradigm [5], compound services, i.e. business functions, are composed to new 
composite applications which then again can be exposed as services to facilitate further 
composition. BPEL offers a range of activities comprising (i) activities for defining process control 
flow (e.g. sequence, flow, switch, while), (ii) activities describing interaction with Web services 
(e.g. invoke, receive, pick, …), and (iii) activities that provide the necessary glue between activities 
(e.g. assign). In addition, BPEL defines the concept of variables for storing process-internal data 
such as intermediate processing results on a per-instance basis. To enable process execution, a 
BPEL process model, once created, is deployed to a Workflow Management System (WfMS); in 
case of BPEL, the WfMS exposes the process to potential users after process deployment through a 
Web service interface. Triggered by incoming user requests that match the conditions defined in the 
process model, processes are instantiated and their execution is started which comprises continuous 
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evaluation of process control flow and execution of activity implementations. Process execution in 
BPEL is control-flow driven; process control flow is defined through so-called structured activities 
which, similar to control constructs known from other programming languages, define the order of 
activity execution or the flow of the program. As of today, process control flow is typically 
evaluated by the navigator component of a centralized WfMS. The term centralized refers to the 
workflow engine conceptually being regarded as one single entity. Note that while it is possible to 
provide an implementation of a WfMS that can be distributed among a number of nodes in a 
clustered environment [6], the general assumption still is that the clustered nodes operate within the 
same administrative domain, for instance the same department of an enterprise. During evaluation 
of process control flow, the navigator component of the WfMS decides based on the current state of 
a process instance which BPEL activities are to be executed next and starts their execution. This 
navigation process continues until process instance execution is completed. While structured 
activities define the order in which activities are executed basic activities reflect pieces of 
application code that are to be evaluated during process execution; two classes of basic activities 
can be distinguished according to whether they involve interaction with WfMS-external 
applications or not. Activities such as assign or wait are provided by the WfMS itself, hence their 
execution does not require any interaction with WfMS-external entities. Interaction activities, 
which interact with the actual compound application logic (i.e. the “business functions”) 
orchestrated by the process such as invoke and receive, trigger an interaction of the WfMS with 
WfMS-external applications. Since, in case of BPEL, these applications are Web services [2, 3] 
which can be invoked remotely using potentially various network transport protocols ( enabled 
through the mechanism of Web service bindings ), BPEL allows for distributed application logic. 
Hence one can say that the current way of executing BPEL processes relies on centralized (i.e. 
local) execution of process control flow and distributed application logic through the use of Web 
service technology. 
While the aforementioned way of executing BPEL processes is appropriate for a wide range of 
scenarios, it has severe drawbacks in other scenarios. These are discussed in Section 2 where we 
motivate our work through an example scenario and a discussion of the benefits resulting from 
decentralized execution of process control flow. In Section 3, we introduce the proposed approach 
to decentralized execution of BPEL processes and outline the process model and the system 
architecture; this comprises a description of (i) the functional building blocks of the system and (ii) 
how they interact in order to facilitate decentralized process execution. In addition, the supported 
spectrum of distributed process execution is presented and discussed in detail. Section 4 provides 
an overview of related work in the area of distributed workflow management systems, process 
fragmentation and process outsourcing. Section 5 concludes the paper and gives directions for 
further research. 
 
2. Motivation for Decentralized BPEL Navigation 
 
In Figure 1, a common business process scenario is presented. Process participant P1 provides the 
depicted process model to users through a regular, centralized BPEL engine which is responsible 
for evaluating process control flow (depicted as drawn through arcs) that defines the order in which 
the activities (depicted as black filled circles 1,…,6) are executed. Process instance data is stored in 
variables a and b. Variable access is depicted through dashed arcs; for the examples presented in 
the paper no distinction is made between read- and write access. Activities 2, 4 and 5 are 
interaction activities (e.g. invoke activities) that involve remote communication with WfMS-
external Web service implementations provided by process participant P2. Note that the output 
value a of interaction activity 2 is used as input for interaction activity 4. Suppose that remote Web 
service interactions between P1 and P2 are relatively expensive due to e.g. low communication 
channel bandwidth and high latency and suppose furthermore that the data contained in variable a 
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is rather large in size. If the process is executed as depicted in Figure 1 (i.e. following the 
established model of BPEL process execution through centralized process navigation), each invoke 
activity results in one remote interaction between P1 and P2. This in turn requires shipping the 
result of the Web service interaction with P2 through activity 2 back to the process engine at P1 and 
subsequently passing the same received value again back to P2 as part of the Web service 
interaction through activity 4.  

 
Abbildung 1: Centralized Process Execution 

 
Clearly, the traditional BPEL model of centralized process execution and distributed Web service 
business logic is sub-optimal in the presented scenario, since it requires (i) a high number of remote 
interactions which might have an impact of the performance of process execution due to e.g. high 
latency of the communication channel and (ii) unnecessary shipping of potentially large amounts of 
data between P1 and P2.  

 
Abbildung 2: Decentralized Process Execution 

 
In Figure 2, the same process model and Web services are presented; however, in this scenario, the 
execution of the BPEL process itself is split among P1 and P2 by moving the execution of the 
orchestration of activity implementations 2, 4 and 5 along with variable a from P1 to P2. As a 
result, after activity 1 has completed successfully, process control flow is passed to activity 2 which 
is provided by P2. Activities 2, 4, and 5 are then executed by P2, including the involved 
interactions with the WfMS-external Web services and the WfMS-internal storage of the process 
instance data in variable a. Since this interaction is done directly at the side of P2 (e.g. within the 
same local network), impact of communication between WfMS and service on service invocation 
time is reduced. Note that since there are no additional inter-dependencies between activity 3 and 
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activities 2, 4, 5, activity 3 can run at P1 independently of P2; furthermore, the need for shipping 
the data of a between P2 and P1 is removed. Once execution of activity 5 has finished, process 
control flow is passed back from P2 to P1. When both 3 and 5 have completed their execution 
successfully, the condition for the execution of activity 6 is fulfilled and process execution 
continues at P1. 
While the aforementioned example scenario focuses on the performance increase resulting from 
shifting evaluation of process control flow as close to the actual compound business functions that 
are orchestrated by the respective process, other reasons can be decision drivers for this approach 
as well. Process models might be fragmented among a number of participants, for instance different 
departments of the same company for organizational reasons, or even different companies for the 
reasons of process outsourcing [7]. 
 
3. System Model and Architecture 
 
To counteract the aforementioned drawbacks that result from the traditional model of centralized 
execution of BPEL process control flow and distributed business functions in form of Web 
services, we proposed another approach to execution of BPEL processes that allows for arbitrary 
distribution of process control flow execution among the participants of a process [8]. As discussed 
in Section 2, the basic goal of the approach is to shift coordination logic (i.e. the evaluation of 
process control flow) as close to the orchestrated application logic as reasonable. This is achieved 
through a token passing and sharing technique over remotely accessible, shared and distributed 
tuplespaces. 
 
Tuplespaces have their origin in the Linda coordination language, defined by [9] as a parallel 
programming extension for traditional programming languages (e.g. C, Prolog) for the purpose of 
separating coordination logic from program logic. The Linda concept is built on the notion of a 
tuplespace. A user interacts with the tuplespace by storing and retrieving tuples (i.e. an ordered list 
of typed fields) via a simple interface: tuples can be (i) stored (using the out operation), (ii) 
retrieved destructively (in) and (iii) retrieved non-destructively (rd). Tuples are retrieved using a 
template mechanism, e.g. by providing values of a subset of the typed fields of the tuple to be read 
(associative addressing). Matching tuples are selected non-deterministically. Also, concurrent 
destructive reads are non-deterministic, i.e. the receiver of the tuple is chosen randomly. With 
respect to the degree and dimensions of decoupling they provide, Tuplespaces are conceptually 
similar to e.g. message-oriented middleware (see [10, 11,12] for comparisons of both technologies). 

 
Abbildung 3: Process navigation through token passing 

The overall approach to BPEL process navigation is depicted in Figure 2. Control flow is 
represented as control flow (CF) tokens (C1, C2, C3). CF tokens are encoded as tuples and 
communicated between the activities the process is composed of (depicted as boxes 1, 2, 3, 4) by 
storing them to and retrieving them from remote-accessible tuplespaces (depicted as circles); note 
that the term “activity” does not only refer to the Web services that the process orchestrates but also 
to activities whose implementations are provided by a WfMS itself, e.g. the assign activity. CF 
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tokens comprise information such as identifiers of the process model and process instance the CF 
token belongs to and the control flow link that the token represents. Negative process control flow, 
i.e. errors occurring during activity executions, is propagated between activities through so-called 
dead path (DP) tokens that are analogous to CF tokens in structure. DP tokens are necessary to 
facilitate dead path elimination [4]. A more detailed description of the Petri net-based process 
model is available in [8,25]. 
 
Activity implementations are realized as tuplespace clients waiting for their starting condition 
being fulfilled; in the remainder of the paper, activity implementations are also referred to as 
activity clients. The starting condition of an activity is expressed by the activity client through (i) 
templates describing the CF or DP tokens produced by its predecessor activity (or activities in case 
of activities that join multiple concurrent execution paths) and (ii) identifiers of the tuplespaces the 
corresponding tokens are to be consumed from. In Figure 2, CF token consumption operations are 
depicted as incoming arcs of an activity implementation. Note that these consumption operations 
are always synchronizing, i.e. they block until all input tokens are available and can be consumed 
by the respective activity client. Once the starting condition of an activity client is fulfilled, the CF 
or DP tokens are destructively consumed by the respective activity client and the corresponding 
application logic of the activity is executed. For activity executions most activity implementations 
require access to process instance data, i.e. variables; in the proposed model, process instance data 
is represented as a certain token type, called DATA token, that associates a certain variable of an 
instance of a particular process model with a value. If necessary, process instance data is consumed 
non-destructively or updated by the activity client during its execution (depicted as dashed 
incoming arcs of an activity client). Once the execution of a client’s application logic has finished, 
corresponding CF, DP or DATA tokens are produced (in case of CF and DP) or updated (in case of 
DATA) depending on success or failure of activity execution; the produced tokens are stored in the 
tuplespace(s) the subsequent activity clients monitor for control flow tokens (depicted as outgoing 
arcs of activity clients). 
 
As one can see from the aforementioned high-level description of the proposed model, tuplespaces 
are used as buffers for any kind of data that is communicated between the entities participating in 
process execution; this comprises both tuples representing process control flow (communicated via 
token passing) and tuples representing process instance data (communicated via token sharing). A 
number of reasons motivate choosing the tuplespaces as communication paradigm and platform 
underlying the presented approach; these are outlined in the following. 
 
Tuplespaces have a clearly defined interface that is characterized by a number of unique features 
not found in alternative communication middleware such as e.g. messaging technology [13]. This 
interface supports operations for destructive consumption of tuples, necessary for consumption of 
control flow tokens, and operations for non-destructive consumption of data tuples. Furthermore, 
tuplespaces can be associated with Uniform Resource Identifiers (URI) [14] for unique 
identification of tuplespaces. Using a naming service, a URI can be mapped to a Uniform Resource 
Locator (URL) [15] which reflects the physical address of the machine that provides the tuplespace. 
The location transparency provided by tuplespaces allows clients interacting over a tuplespace to 
use the same communication primitives no matter whether interactions involve a remote 
communication with clients e.g. residing on different machines or only local interactions with 
clients residing on the same physical machine. Moreover, the mechanism of associative addressing 
enables clients to describe both their starting conditions and data access using the same language 
and conceptual model. In addition associative addressing frees tuplespaces from being bound to any 
inherent ordering of data exchanged (c.f. FIFO- or priority-based ordering of messages in message-
oriented middleware systems) which facilitates e.g. co-locating DATA and CF or DP tokens within 
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the same tuplespace without preventing themselves from being consumed. Finally, tuplespaces 
ensure synchronized access to the tuples that are contained in a tuplespace; effectively freeing 
clients from any direct client-to-client interaction. 
Given a system as described above, where process control flow and process instance data is 
communicated between process participants through remote-accessible tuplespaces, a wide 
spectrum of scenarios for decentralized process execution (i.e. decentralized evaluation of process 
control flow) can be supported using one and the same process navigation technique but different 
deployments of activity clients and tuplespaces; this is elaborated in the following. 

 
Abbildung 4: Centralized Process 

On one side of the spectrum, as presented in the scenario depicted in Figure 4, a process is 
deployed on one single WfMS and executed using the token-passing technique outlined above. 
Activity clients 1,…,5 are depicted as black filled circles. Tuplespaces are depicted as smaller, 
unfilled circles. In this scenario all tuplespaces used for communicating control flow tokens 
between activity clients reside on the same physical machine. Note that for the sake of clarity 
access to process instance data has been omitted from the scenario descriptions and each control 
flow link uses one single tuplespace for communicating the corresponding control flow tokens 
representing that link; under the assumption that the tokens (i.e. tuples) are self-contained in the 
sense that they provide all the information necessary to identify a particular control link within a 
certain instance of a certain process model, it is however possible collate multiple tuplespaces into 
one single tuplespace. Since in this deployment scenario all activity implementations and 
tuplespaces reside on the same machine, the tuplespace interface as defined above can be used 
efficiently using only local interactions. 

 
Abbildung 5: Fully decentralized process 

 
The other side of the spectrum of decentralized process execution supported by the proposed 
approach is depicted in Figure 5. Here the same process has been split into five fragments with each 
fragment containing one activity client and each of those being deployed on a different machine. In 
general, a process fragment refers to a part of the overall process, i.e. a subset of activities and 
process variables. The scenario furthermore presents two possible deployment scenarios for the 
tuplespaces used for communicating process control flow and instance data. The communication 
carried out between activity 1 and 3, for instance, is conducted over a tuplespace that is located in 
between the two activity clients and neither resides on the same machine as activity client 1 nor 
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activity client 3. The interaction between activities 1 and 2, in contrast, is conducted over a 
tuplespace that resides at the partner providing activity client 2, hence interactions initiated by 1 
(e.g. writing of positive or negative control flow tokens) are remote interactions and interactions 
initiated by 2 (e.g. waiting for the availability of control flow tokens and their destructive 
consumption) are local interactions. 
 
Obviously, fully decentralized evaluation of process control flow as presented in Figure 5 
introduces a huge amount of potentially unnecessary remote communication since each activity 
execution involves at least one remote interaction for the next navigation step (two in case of the 
tuplespace not residing on the side of either sender or receiver), so this is typically not desired. As 
presented in the motivating scenario (Section 2), it is often rather desired to combine multiple 
activity implementations into the same segment, based on the structure of the process model or the 
deployment of the orchestrated services. 

 
Abbildung 6: Process fragments (partially decentralized) 

 
The way how this can be achieved is presented in Figure 6. In this case, the process is split among 
two participants: Activity clients 1, 2, 5 are provided by the left process participant and activity 
clients 3 and 4 are provided by the right participant. Similar to the deployment scenario presented 
in Figure 4, communication and coordination among activities 1, 2, 5 and 3, 4 (i.e. the intra-
fragment communication) is achieved using local communication, while communication between 1, 
3 and 4, 5 is carried out over through remote communication. Note that similar to the description in 
Section 3 the same tuplespace communication paradigm and primitives are used for (i) intra-
fragment communication to trigger execution of subsequent activity implementations within the 
same fragment and to facilitate fragment-local variable access and (ii) for inter-fragment 
communication to pass control flow to an activity or a set of activities located in an adjacent 
process fragment or facilitate remote access to process instance variables. 
 
As a summary, the spectrum of process distribution supported by the proposed method of 
decentralized execution of BPEL process control flow ranges from the most centralized scenario 
with all activity clients of a process residing on the same physical machine and both process control 
flow as well as process instance data tokens being exchanged over one tuplespace residing on the 
very same machine to processes where each activity client of a process and each tuplespace is 
provided on another physical machine. 

 
3.1. Structure of Activity Clients 
 
As described above, the infrastructure that allows for execution of processes following the 
proposed approach for distributed execution of BPEL processes comprises two entities: activity 
clients and tuplespaces. In Figure 7, the logical view upon an implementation of an activity client is 
depicted. An activity client comprises coordination logic, which defines the conditions under which 
a particular activity implementation can be executed and the client’s computation logic that defines 
the actual application logic of the activity implementation. In tuplespace-based applications, the 
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coordination logic is generally provided by a template. A template allows defining constraints on 
the structure and values of a tuple through a mechanism known as query by example [16]. 

 
Abbildung 7: Logical View of activtiy implementations 

As part of the runtime infrastructure, a parameterizable implementation of each BPEL activity’s 
application logic is provided. In case of e.g. the BPEL assign activity, this comprises the 
consumption of the input variables, the application of the assign expression and the update of the 
value of the output variable. Activity clients are parameterizable through external configuration 
data in such a way, that the URIs of the tuplespaces containing inbound and outbound control flow 
tokens and data tuples and corresponding templates describing the tuples to be consumed can be 
defined. Since activity clients will typically be deployed on a number of different physical 
machines, remote configuration (i.e. parameterization) of activity clients must be supported. 
For facilitating efficient communication between activity clients deployed on one physical machine 
for intra-segment communication as well as remote communication between activity clients 
deployed on different machines for inter-segment communication, two communication protocols 
for the interaction between activity clients and the provided tuplespace are supported. 
 
4. Related Work 
 
In [18], a motivation for distributed execution of workflows is presented and a description of the 
abstract components which form a distributed workflow application and their relations is presented. 
In addition, the authors provide an overview of existing distributed WfMS. In [19], the authors 
introduce a workflow management system architecture for supporting large-scale distributed 
applications, called Mentor, which is based on TP monitors and object request brokers. 
Decentralized workflow execution in Mentor is achieved by partitioning a workflow based on 
activity and state charts into a set of sub-workflows which are then enacted by a number of 
distributed workflow engines that are synchronized using Mentor; hence, in this approach, the 
minimal unit of fragmentation is a (sub-) process and not an individual activity as in the approach 
presented in this paper. In [20], AdeptDistribution, a similar approach to workflow partitioning and 
decentralized execution is presented that supports dynamic assignment of workflow partitions to 
so-called execution servers. Another approach to enacting workflows in a mobile, pervasive 
environment which relies on passing control flow between distributed BPEL engines is presented in 
[21]. However, no insight is given as to which extend this approach supports BPEL’s advanced 
features such as fault- and compensation-handling and dead path elimination. In [22], the 
distributed workflow engine OSIRIS is presented which is based on the concept of a hyper-
database. The hyper-database is a distributed peer-to-peer database system that offers a number of 
global services with ACID transactional semantics and is realized by a hyper-database layer on 
each node participating in the process execution. A distributed publish-subscribe infrastructure is 
used for keeping data relevant for process instance execution on participating nodes in sync. In [7], 
an approach to fragmenting BPEL process for the purpose of business process outsourcing is 
presented which involves (i) a local BPEL workflow engine at each partner participating in the 
workflow execution and (ii) a centralized coordinator in between partners that is necessary for 
supporting certain BPEL constructs such as scopes and while loops split across multiple partners. A 
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BPEL process model is manually split by a user in a number of fragments and a corresponding 
BPEL process (along with necessary deployment information) is created for each fragment. 
Exchange of process instance data and passing control flow between fragments is realized by 
introducing additional invoke and receive activities in each process fragments, for sending (i.e. 
pushing) a message containing instance data to be passed to another fragment on one side and 
receiving potentially multiple messages containing instance data from different partners (through 
so-called receiving flows) on the other side. While this method retains standards-compliance by 
reusing existing Web service standards (e.g. WS-Coordination) it requires a centralized coordinator 
in cases where loops or scopes are split among partners. In addition, since process instance data is 
communicated between process participants through a push mechanism, complex data flow 
analysis is required on the sender’s side to determine the data that needs to be communicated. In 
[23], a cost model and algorithm for automatically splitting BPEL processes among a number of 
participating BPEL workflow engines is presented that is based on program dependence graphs. 
Similar work focused on more dynamic, mobile scenarios is presented in [24]. 
 
5. Conclusions and Future Work 
 
In the paper we have presented an infrastructure and conceptual model for decentralized, 
distributed execution of business processes in BPEL that allows for arbitrarily distributed 
evaluation of process control flow. We have motivated the need for distributed evaluation of 
process control flow through an introductory example. The supported spectrum of process 
distributed has been discussed and the basic building blocks of the system architecture have been 
described. In contrast to existing models and techniques the approach as proposed in the paper 
allows for arbitrarily fragmented processes while using the same mechanisms (but different 
transport protocols) for evaluation of process control flow at the side of one process participant and 
between process participants. A tuplespace prototype that provides the necessary functionality for 
communicating process control flow between local activity clients has been implemented. While 
the broad spectrum of process fragmentation supported by the proposed system, allows for a wide 
range of optimizations depending on a user’s requirements, it requires the definition of an 
corresponding algorithm for automatic creation of those fragments. The definition of such an 
algorithm, based on process models, infrastructure descriptions and user requirements and the 
extension of the current prototype to support decentralized process deployment is considered future 
work. 
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