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ABSTRACT 

Recent growth in social media platforms has produced huge amount of user-generated content. This huge commingled data 

set is a collection of both “factual information” like breaking-news posted by a user, as well as individual “user’s opinion”. 

For information extraction applications like news media, factual data are more relevant rather than user opinions and 

conversely for many opinion-mining applications, user’s perceptions are more important than “factual information”. Hence, 

separating news from opinion offers distinct advantage for both information extraction systems and opinion mining 

applications. In this study, we have identified limitation of existing lexicon based, subjectivity detection techniques in noisy 

microblog domain. We present a novel algorithm that automatically separate news from opinions from the mixed social 

media corpus. We used “Twitter” as our data corpus and evaluated our algorithm with eight machine-learning classifiers 

against the baseline. Our algorithm demonstrates significant improvement in classification accuracy over the existing 

baseline.  
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INTRODUCTION 

In the current landscape of social media blogosphere, especially in microblogs like Twitter, posts related to any events are a 

mixed corpus of facts and opinion. Many opinion-mining applications, irrespective of their objectives like information 

extraction, or polarity summarization system fetch their content from the same mixed corpus and perform various 

classification tasks. An application that focuses on extracting facts tends to ignore individual non-factual opinions and 

conversely, opinion mining services that aim to analyze users” perception about a specific entity or event, find factual 

disclosures less relevant for their objective. For example, “factual” data consumers like news media, policy makers, research 

institutes or other individuals, usually interested in knowing any newly reported case of  “H1N1 influenza” epidemic, exact 

score of any sporting event, or battery-life of the newly launched smartphone. People's perception, sentiment, or subjective 

opinions are not so important for them. According to Pew Research Center’s 2016 study, nearly 62% of adult population in 

USA get their news from social media. Identifying and verifying new information quickly are critical for journalists who use 

social media. However, for many corporations or businesses, it is about assessing people’s perception towards a certain 

events or entities. The reported case of any epidemic has huge impact on many economic decisions, primarily for industries, 

that related to with hospitality and tourism industry. For example, they can decide on continuing or suspending operations 

from West Africa. For another example, economic crash is an observed fact, but for many retail businesses, the objective is to 

uncover people’s opinion towards it. Decisions regarding expansion or contraction of product or services in certain 

demographics or market segment depend on this. In the context of comingled social media data, we aim to improve the 

accuracy of fact-seeking information retrieval systems and opinion mining applications by separating their respective initial 

feed from social media. The contributions of this work include: (1) the development of algorithm to classify factual content 

or news and opinion from the co-mingled social media corpus, leveraging contextual metadata and (2) demonstration of the 

efficacy of the algorithm by comparing it with existing lexicon-based subjectivity detection method. Experimental results 

indicate that our approach is highly effective in classifying news from opinions in noisy microblog domain. 

LITERATURE REVIEW 

Earlier work (Riloff, Wiebe and Wilson 2003; Wiebe 2002; Yu and Hatzivassiloglou 2003) has addressed this need of 

Opinion Identification from subjective test passages from news articles and extended reviews. However, in the context of 

noisy microblogs, we face certain unique challenges in dealing with short texts. These distinct features includes data 
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sparseness (not enough words), large scale (data labeling bottlenecks), immediacy (real time - velocity), non-standardization 

(noisy data- misspellings) (Song, Ye, Du, Huang and Bie 2014). Traditional classification approaches using BOW (Bag of 

Words), TF-IDF (Term Frequency- Inverse Document Frequency) and different variation of n-grams may not perform as 

good as, compared to content which are formally expressed in long text format (Sriram, Fuhry, Demir, Ferhatosmanoglu and 

Demirbas  2010). 

Social media has emerged to be news platform for many as it reaches out to a huge audience way faster than traditional media 

to report an event. Consequently, study related to identifying and monitoring events from social media has gained significant 

attention. (Atefeh and Khreich, 2013) has provided a detail literature survey on this. However, the captured events or content 

from social media has issues with credibility of user, description of irrelevant private events or exaggerated narrative. The 

objective of our study is to isolate news from opinion from social media postings. Assessing “truthfulness” of the news is 

beyond the scope of this study. Assuming “news” are factual information; we adopt the definition of our construct from 

extant literature. “Facts” are objective expressions about entities, events and their properties and “opinions” are usually 

subjective expressions that describe people’s sentiments, appraisals or feelings toward entities, events and their properties 

(Liu 2010). For this classification task, the technique of “subjectivity detection” appeared to be a common approach in 

previous studies. It analyzes the linguistic expression of somebody’s opinions, sentiments, emotions, evaluations, beliefs and 

speculations known as private states (Wiebe and Riloff 2005). Existing lexicon based subjectivity detection methods tokenize 

each word and compare it to a predefined set of opinionated words. However, noisy words in twitter like “grt” or “scarrry” 

does not have any match in that dictionary and hence often ignored. Also, though news or “factual-information” are often 

objective in nature, factual statements sometimes bear strong subjective cues like “horrible accident happened..”. We have 

identified the following research gaps. At a conceptual level, we have seen that subjectivity detection technique often 

depends on the theme of the topic. Existing approach, identifies many news or factual-information as “subjective opinions”, 

simply because they contain words that bear subjective cues. In addition, from an operational perspective, we have seen that 

socio-linguistic or lexicon-based approach may not be suitable in the context of microblogs, due to its inherent noisy nature.  

RESEARCH DESIGN 

Our proposed artifact is development of a novel algorithm that automatically classifies factual-information from personal 

opinion in microblog. We have selected Twitter as the context of our study and treated each tweet post as a single document. 

Along with the tweet message, we also leveraged other relevant contextual metadata of the user, like “follower - followee 

ratio”, “user description”. As part of design evaluation, we have evaluated our algorithm against leading opinion detection 

tool, OpinionFinder (Riloff et al. 2003; Wiebe and Riloff 2005) by well-defined statistical benchmark of accuracy, precision, 

recall and f-measure. Based on earlier studies, extant literature and heuristics (Sriram et al. 2010), (Castillo, Mendoza and 

Poblete 2011), we identify some distinguishing features that can classify a tweet into either “factual-information” or 

“opinion” category. Noting that a news or factual-information can often influence in generating user-opinions, we treat a 

tweet as “opinion” in our algorithm, if it contains both facts and personal opinion. Presence of external references like “http”, 

“www” or mention of news media in post or user-description attributes often appears to be a potential indicator of a factual 

narrative. Formalized presentation, like capitalized first letter in a grammatically correct sentence are also some of the others 

indicators of a tweet, likely presenting a “factual-information”. Simultaneously, presence of emoticons, abbreviation, 

shortening of words, slang and other Twitter terminologies are stochastically strong indicators of the post being an opinion. 

Our algorithm also leverages a list of prominent news and institutional agencies, popular social media terminology, common 

spam words and phrases as our reference data set.  

Our proposed algorithm captures real time data from twitter based on a set of keywords. Along with the tweet, it captures all 

other attributes related to user profile. It scans the tweet message and other attributes like user descriptions, counts of friends 

and followers, etc. against the identified feature set. The resultant binary values, then goes through a machine learning 

classifier. We have experimented with eight classifiers and selected maximum entropy classifier, a discriminative classifier 

that does not assume conditional independence of the feature set. The output labels a tweet into "fact" or "opinion" category. 

EXPERIMENT AND EVALUATION 

We retrieved around 400k tweets for the keyword “Wells Fargo” using twitter API. After filtering out irrelevant and non-

English tweets, we passed a sample data set of 5000 tweets and the rating protocol to two independent coders for manual 

labeling. The Kappa Statistics is 0.75, indicating substantial inter rater reliability (Landis and Koch 1977). The experiment 

dataset is a balanced one with 41.76% as facts and 59.24% labelled as opinions. We have experimented with the following 

eight machine learning classifiers to compare our algorithm with the existing baseline: Naïve Bayes (NB), Maximum Entropy 

(ME), Support Vector machine (SVM) with linear and non-linear kernel, decision tree classifier, which is a modified version 

of CART similar to C4.5, Neural Network (NN), Random Forest (RF) and Logistic Regression (LR). We evaluated our 
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algorithm with each of these eight classifiers against the baseline opinion finder (OF), with 10-fold cross validation. Below, 

we present the output for each standard statistical benchmark namely accuracy, precision, recall and F-measure for each 

iteration for each classifier.   

Classifier: Support Vector Machine; Parameter: kernel=“linear”, C=1 ; 10 fold cross validation 

Scoring 

Parameter 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 

and SD  

Accuracy 0.7192 0.6696 0.7533 0.7841 0.7004   0.7312 0.7533 0.7433 0.6946 0.6858 0.72(+/- 

0.07) 

Precision 0.6704 0.6021   0.7021 0.7528 0.6710 0.6896 0.7111   0.7108 0.6463  0.6718 0.68(+/- 

0.08) 

F-measure 0.6483 0.5989  0.7021  0.7322  0.6 0.6629 0.6956   0.6704  0.6057   0.5477 0.65(+/- 

0.11) 

Recall 0.6276 0.5957 0.7021  0.7127  0.5425  0.6382   0.6808   0.6344    0.5698   0.4623 0.62(+/- 

0.15) 

Table 1: Scoring Parameter Output for linear Support Vector Machine  

 

Classifier: Support Vector Machine; Parameter: C=1000000.0, gamma=“auto”, kernel=“rbf”; 10 fold cross validation 

Scoring 

Parameter 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 

and SD 

Accuracy 0.6929 0.6431  0.7489 0.7489 0.7401   0.7224 0.7356 0.7610 0.7079 0.6150 0.71(+/- 

0.09) 

Precision 0.6153   0.5537 0.6697 0.6637 0.6521 0.6347 0.6416 0.6857 0.6238 0.5319 0.63(+/- 

0.09) 

F-measure 0.6464  0.6232 0.7192 0.7246 0.7177 0.6985 0.7196 0.7272 0.6732 0.5347 0.68(+/- 

0.12) 

Recall 0.6808 0.7127 0.7765 0.7978 0.7978 0.7765 0.8191 0.7741 0.7311  0.5376 0.74(+/- 

0.16) 

Table 2: Scoring Parameter Output for non-linear Support Vector Machine  

 

Classifier: K Nearest Neighbor; neighbors =20;  10 fold cross validation 

Scoring 

Parameter 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 

and SD 

Accuracy 0.7149 0.6475 0.7444 0.7488 0.7136 0.6960 0.7533 0.7566 0.7123 0.6327 0.71(+/- 

0.08) 

Precision 0.6464  0.5603 0.6607 0.6637 0.6 0.5838 0.6637 0.6862 0.6228 0.5471 0.62(+/- 

0.09) 

F-measure 0.6632   0.6190 0.7184 0.7246 0.7280 0.7160 0.7333 0.7179 0.6859 0.5829 0.69(+/- 

0.10) 

Recall 0.6808   0.6914 0.7872 0.7978 0.9255 0.9255 0.8191 0.7526 0.7634 0.6236 0.78(+/- 

0.19) 
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Table 3: Scoring Parameter Output for K-Nearest Neighbor   

 

Classifier: Decision Tree; modified Version of CART similar to c4.5 

Scoring 

Parameter 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 

and SD 

Accuracy 0.6929  0.6475 0.7533 0.7488 0.7400 0.7224 0.7400 0.7610 0.7079 0.6150 0.71(+/- 

0.09) 

Precision 0.6153   0.5603 0.69         0.6637 0.6521 0.6347 0.6446 0.6857 0.6238 0.5319 0.63(+/- 

0.10) 

F-measure 0.6464   0.6190 0.7113 0.7246 0.7177 0.6985 0.7255 0.7272 0.6732  0.5347 0.68(+/- 

0.12) 

Recall 0.6808  0.6914 0.7340 0.7978 0.7978 0.7765 0.8297 0.7741 0.7311 0.5376 0.74(+/- 

0.16) 

Table 4: Scoring Parameter Output for Decision Tree Classifier  

 

Classifier: Random Forest Classifier  10 fold cross validation  

Scoring 

Parameter 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 

and SD 

Accuracy 0.6929  0.6431   0.7488  0.7488  0.7401 0.7224 0.7356 0.7610 0.7079 0.7345 0.72(+/- 

0.07) 

Precision 0.6153   0.5537 0.6697 0.6637 0.6521 0.6347 0.6416 0.6857 0.6238 0.6701 0.64(+/- 

0.07) 

F-measure 0.6464 0.6190 0.7192 0.7246 0.7211 0.6985 0.7196 0.7272 0.6732 0.5347 0.68(+/- 

0.12) 

Recall 0.6808   0.6914 0.7765 0.7978 0.7978 0.7765 0.8297 0.7741 0.7311 0.4193 0.73(+/- 

0.22) 

Table 5: Scoring Parameter Output for Random Forest Classifier  

 

Classifier: Logistic Regression  10 fold cross validation  

Scoring 

Parameter 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average 

and SD 

Accuracy 0.7017 0.6431 0.7488 0.7577 0.7004 0.7224 0.7400 0.7699 0.7079 0.7477 0.72(+/- 

0.07) 

Precision 0.6226  0.5537 0.6697 0.6666 0.6710 0.6302 0.6446 0.6880 0.6097 0.6764 0.64(+/- 

0.08) 

F-measure 0.66         0.6232  0.7192  0.7393 0.6          0.7042 0.7255 0.7425 0.6944 0.7076 0.69(+/- 

0.09) 

Recall 0.7021  0.7127 0.7765 0.8297 0.5425 0.7978 0.8297 0.8064 0.8064 0.7419 0.75(+/- 

0.17) 

Table 6: Scoring Parameter Output for Logistic Regression Classifier 
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Maximum-Entropy 100 

Iteration, MAXENT GIS ; 

Naïve Bayes Configuration: 

10 Iteration 

0.725663716814 

0.66814159292 

0.752212389381 

0.778761061947 

0.761061946903 

0.734513274336 

0.725663716814 

0.769911504425 

0.742222222222 

0.688888888889 

0.734513274336 

0.690265486726 

0.747787610619 

0.743362831858 

0.752212389381 

0.690265486726 

0.730088495575 

0.721238938053 

0.702222222222 

0.671111111111 

Mean : 73.47040315% Mean : 71.83067847% 

Table 7:  Classification Accuracy for Naïve Bayes and Maximum Entropy Classifier 

On average, in terms of accuracy measure, our algorithm performs significantly better (72.00%) than opinion finder 

(46.29%), with highest being observed with maximum entropy classifier (73.47%). Recall (from 48.52% to 70.00%) and F-

Measure (37.78% to 70.00%) have also shown significant improvement. Precision measure has also shown a moderate 

improvement (from 62.29% to 72.00%). Figure1 summarizes the performance metrics of precision, recall and F-Measure for 

each class, namely news or factual-information dented as “F” and opinion, dented as “O”.  

 

Figure 1:  Class wise performance metrics comparison between baseline and classifiers 

In terms of precision measure for the news or “fact” class, average precision observed in our approach is 74.14 against 43.18 

for the baseline - opinion finder. However, in terms of recall measure, baseline (94.98) outperforms our average recall value 

68.35 with the highest value (80.00) observed in SVM linear kernel. For both recall and F-measure statistics our algorithm 

demonstrates significant better performance that the baseline. Our average recall and F-measure are 72.74 and 69.13 again 

the baseline value of 12.02 and 20.81 respectively. The most important features that distinguishes a fact from opinion 

emerged to be the presence of external reference. Mentioning of news media in tweet is another important distinguishing 

factor that supports our assertion. 

CONCLUSSION  

In this paper, we conclude that a pre-determined, lexicon corpus based, subjectivity detection method does not perform well 

in the context of noisy microblog. We proposed an alternative method to classify news from opinion in Twitter. Our 

algorithm leverages a rich set of metadata from users profile, message propagation and publicly available reference data of 
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social media terminology along with the post. The extracted feature-set from Twitter are experimented with eight machine-

learning classifiers, in a supervised setting. The study empirically demonstrates a significant improvement in classification 

accuracy of our algorithm over the existing baseline. In terms of future research direction, we would like to enhance this 

algorithm to attain language independence by experimentation with different non-English social media data corpus and 

associated reference dataset. For practical implication, we may integrate our algorithm with other opinion-mining 

applications like election polling predictions or consumer sentiment evaluation where user’s opinion are more relevant than 

factual description of an event. Subsequently online applications that capture breaking news from social media may find our 

algorithm appropriate to filter out user’s opinion to facilitate their focus on captured factual narratives.    
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