
Association for Information Systems
AIS Electronic Library (AISeL)

MCIS 2018 Proceedings Mediterranean Conference on Information Systems
(MCIS)

2018

Data Storage in Internet of Things: A Proposed
Distributed Model
Kostas Kolomvatsos
Department of Informatics and telecommunications National and Kapodistrian University of Athens, kostasks@di.uoa.gr

Panagiota Papadopoulou
Department of Informatics and telecommunications National and Kapodistrian University of Athens, peggy@di.uoa.gr

Stathes Hadjiefthymiades
Department of Informatics and telecommunications National and Kapodistrian University of Athens, shadj@di.uoa.gr

Follow this and additional works at: https://aisel.aisnet.org/mcis2018

This material is brought to you by the Mediterranean Conference on Information Systems (MCIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in MCIS 2018 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Kolomvatsos, Kostas; Papadopoulou, Panagiota; and Hadjiefthymiades, Stathes, "Data Storage in Internet of Things: A Proposed
Distributed Model" (2018). MCIS 2018 Proceedings. 22.
https://aisel.aisnet.org/mcis2018/22

https://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmcis2018%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/mcis2018?utm_source=aisel.aisnet.org%2Fmcis2018%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2018%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2018%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/mcis2018?utm_source=aisel.aisnet.org%2Fmcis2018%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/mcis2018/22?utm_source=aisel.aisnet.org%2Fmcis2018%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018

DATA STORAGE IN INTERNET OF THINGS: A PROPOSED

DISTRIBUTED MODEL

Kostas Kolomvatsos, Panagiota Papadopoulou, Stathes Hadjiefthymiades

Department of Informatics and telecommunications

National and Kapodistrian University of Athens

Panepistimiopolis, Ilisia, 15784

{kostasks, peggy, shadj}@di.uoa.gr

Track No 8 Internet of Things for Smart Living and Smart Business

Abstract

In Internet of Things (IoT), numerous devices are able to collect and report data while they can exe-

cute simple processing tasks to produce knowledge. IoT Nodes exhibit limited computational re-

sources, thus, they can only perform a limited number of tasks and store a short version of the collect-

ed data. In this paper, we propose a scheme that focuses on a distributed model for data storage in a

group of IoT nodes. Nodes cooperate each other exchanging statistical information for their data. Our

work aims to provide a model for the selection of the node where the incoming data should be stored

irrelevantly of the node in which they are initially reported. The selection process involves a decision

making process that adopts a statistical similarity model of the incoming data with the datasets pre-

sent in the group, the estimation of the load of each node and the in-network communication cost. All

these parameters are fed into a multi-class classification scheme for the final decision. Our aim is to

have a view on the statistics of the available datasets beforehand, thus, facilitating the post-processing

and the production of knowledge. We report on the evaluation of our scheme and present experimental

results towards the presentation of pros and cons of our model.

Keywords: IoT, Data storage, Data management, Recommendation system.

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 2

1 Introduction

Several efforts in both, academia and industry, recognize that the massive volume of data generated

and collected by nodes present in Internet of Things (IoT) can be as problematic as valuable for cur-

rent and future IoT-based applications. A number of studies have proposed to remove the computation

load from mobile devices to the Cloud or introduce cloudlets as a middle tier between devices and the

Cloud. However, IoT data pose storage and computational requirements which are hard to be covered

by nodes or Cloud resources. On the one hand, IoT data requirements surpass the limited storage and

computational capabilities of nodes; the transfer of data to the Cloud creates latency (Satyanarayanan,

2015) that can often be not acceptable, especially for time critical applications, even with the use of

cloudlets. Edge computing (Roman et al., 2018) has been a popular topic in IoT research literature as

an alternative solution against Cloud. Edge computing eliminates the delays caused by device-to-cloud

round trip. Storing and processing data at the Edge reduces latency and increases responsiveness.

The storage of data involves the decision regarding (a) if the collected data should be stored or they

should be discarded; (b) if the data should be stored and processed at the Edge, at the collection tier, or

they should be transferred to the Cloud/Fog; (c) if the data not sent to Cloud/Fog are stored locally, in

the node where they were collected or they should be transferred to other peer nodes. Ideally, data

should be stored and processed on the device where they are reported to minimize the latency in their

processing. However, apart from the apparent problems of storage and computation inadequacy of a

node, such an approach cannot ensure efficiency in responses to data-related queries. Since a node

does not operate in isolation but it is part of a group of nodes associated spatially and logically, this

group could be leveraged to improve data storage and processing. Previous studies have focused on

storing data to the node that collects them and then transferring them from the node they are stored to

the node that needs them for a particular task (D’ Andria et al., 2015). Data storage followed by on

demand data migration (Tai et al., 2017) entails an important overhead. Data, instead of being stored

to the node of collection, could be allocated to the most appropriate node of the group, according to

the similarity of the data, the node load and the network latency. This approach allows for a pre-

processing of data, so that they can be grouped based on their similarity to the respective node. This

allows for efficiency in using data for responding to task requests. In practical terms, having a view on

the available data, we can easily support efficient responses to queries asking for analytics. For in-

stance, we can avoid setting a query in the entire network but we can ‘guide’ the queries to the appro-

priate nodes. This decision becomes more imperative in the IoT domain where numerous distributed

datasets are located in various places. In this aspect, we need an ‘indexing’ model over the available

data to speed up the allocation of queries and the provision of responses. In any case, the allocation of

data to IoT nodes remains a topic that is largely unaddressed.

The aim of this paper is to attempt to address this gap, focusing on the storage of data to IoT nodes.

We propose a distributed model for solving the problem. The innovation is that our model adopts mul-

tiple technologies to deliver the appropriate place where data should be stored. The decision is basical-

ly made under the rationale that ‘similar’ data should be kept at close locations. The model is based on

a Decision Making System (DMS) for the selection of the node where the data should be stored. Data

storage takes place within a group of nodes and involves the allocation of data among them, irrelative-

ly to the collecting node. The recommended selection of the node to store the data is made taking into

account the statistical similarity of the incoming data with the datasets present in the group, the load of

each node and the in-network communication cost. The aforementioned parameters are fed into a clas-

sification module responsible to deliver the final decision. However, the proposed DMS is not just a

simple classification scheme but a complete multidimensional data processing model.

The structure of the paper is as follows. Section 2 reviews the related work. The third section presents

the high-level description of the DMS for data allocation in IoT nodes. Section 4 presents the decision-

making process. Section 5 presents our experimental evaluation and results. The paper ends with the

conclusions, including our future research plans.

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 3

2 Related Work & Contribution

IoT and the management of data emanating from it have received research attention in several works,

in conjunction with other topics such as Cloud, Edge and Fog computing. A state-of-the-art review is

offered in Escamilla-Ambrosio et al., (2018) with a comparison of the aforementioned technologies

against Cloud, complemented with a practical approach of the topic through the presentation of use

cases. IoT-based big data storage in Cloud computing is examined by Cai et al. (2017), who provides a

review of acquisition, management, processing and mining of IoT big data. Challenges and opportuni-

ties in current research for IoT applications associated with big data are also presented. Dolui and Dat-

ta (2017) present a comparison of Edge computing implementations, discussing Fog computing,

cloudlets and mobile Edge computing. After a comparative analysis of three implementations along

the dimensions of node devices, location, architecture, context awareness, proximity, access mecha-

nisms and internode communication, the authors present the parameters, namely, physical proximity,

access mediums, context awareness, power consumption and computation time, which can be lever-

aged for an DMS to decide on the selection of the appropriate implementation for a particular use case.

In addition to overviews and surveys that greatly facilitate our understanding of the current issues in

IoT data, previous research with a more specific focus has proposed several frameworks for data stor-

age and management. Ruiz-Alvarez and Humphrey (2012) proposed a model for data storage in

Cloud. The decision for data allocation is based on a mathematical model that takes into account re-

source characteristics such as storage and compute cost and performance factors such as latency,

bandwidth and turnaround time. The authors present the algorithm and show that its implementation

provides solutions for the optimal assignment of datasets to storage services and of application runs to

compute services. Jiang et al. (2015) proposed a data storage framework for enabling efficient storing

of massive IoT data, integrating both structured and unstructured data. The framework can combine

and extend multiple databases and Hadoop to store and manage diverse types of data. Habak et al.

(2015) propose a system for leveraging mobile co-located devices to provide Cloud services at the

Edge. Their system provides a multi-device mobile Cloud. Mobile devices can be part of a cluster

managed by a controller. The computational capability of each device is estimated to determine that

which can be available for sharing as a Cloud service. The controller is responsible for the addition of

devices to the cluster and for task allocation to the devices. Shafagh et al. (2017) present a blockchain-

based design for storage and sharing of IoT data that allows for secure and resilient distributed access

control and data management. They propose the storage of time-series IoT data at the Edge of the net-

work through a locality aware decentralized storage system managed with blockchain technology.

Fu et al. (2018) propose a framework for secure data storage and retrieval in the context of industrial

IoT. According to their design, the data collected from physical devices are sent to the Edge server

where they are preprocessed. Time-sensitive data are extracted and stored locally, while non-time-

sensitive data are sent to the Cloud server for storage and retrieval. The framework integrates Fog and

Cloud computing, focusing on security. Xing et al. (2018) propose a distributed model for IoT data

storage with a multi-level storage system for Edge computing. The model is based on a multiple factor

replacement algorithm which solves the problems of limited data storage space and data loss caused

by network instability. Storage levels are composed of devices on the Edge. According to the algo-

rithm, when the storage space of a node is exhausted, part of the data of the node is selected and trans-

ferred to the upper level. The selection of data to be uploaded considers use frequency of data and the

importance of data.

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 4

3 Preliminaries

We consider a set of IoT nodes i.e., having specific characteristics concern-

ing their computational capabilities and resources. They are capable of observing their environment

and performing simple processing tasks on top of the collected data. As their resources are limited,

nodes should store only the necessary data for processing. These data are updated while the remaining

are sent to the Fog/Cloud. Nodes may execute tasks locally on top of the stored data. The selected data

should fit into the available resources and assist in the provision of efficient responses to us-

ers/applications. For instance, nodes may decide to keep only a portion of the collected data or exclude

data considered as outliers. When data are not selected to be locally stored, they are transferred either

to the peer nodes or to the Fog/Cloud. It should be noted that, when nodes rely on the Fog/Cloud for

the processing of data, they enjoy increased latency (Satyanarayanan, 2015). In this aspect, we envi-

sion an ensemble storage mechanism where the nodes are coordinated to store data that they consider

important for further processing.

We propose a distributed data storage scheme applied in IoT nodes. Our model acts proactively and

decides the nodes at which the incoming data should be stored. Our aim is to support the real time pre-

processing of data streams. An efficient allocation is realized when similar data are gathered to the

same node. Having a view on the statistics of data facilitates the provision of efficient query execution

plans
1
. Actually, there are two ways to manage data. The first involves the concentration of data in a

centralized point and, afterwards, their processing. The second approach deals with the pre-processing

of data preparing them for the upcoming step. The former approach suffers from the increased time

required to process huge volumes of data. For instance, for delivering analytics, we should eliminate

outliers, missing values or any other ‘harmful’ data that may jeopardize the quality of the final result.

However, applying machine learning or computational intelligence on top of huge volumes of data

may require increased time and computational resources. In this paper, we focus on the latter approach

providing a mechanism that proactively allocates the data to the appropriate node instead of separating

them in a centralized system.

We consider that data are received and stored in the form of multivariate vectors i.e.,

 where is the number of dimensions. Let be the dataset stored in with

. should be ‘solid’ meaning that the distance between the available

data should be minimized. Nodes should identify if the incoming data ‘match’ the local data or any

other dataset in the network. In addition, nodes should check if the load of peers and the communica-

tion cost makes the migration of the incoming vector disadvantageous. If no dataset is ‘similar’ to the

incoming vector, or the migration is judged as disadvantageous, is transferred to the Fog/Cloud for

further processing. At pre-defined intervals, nodes exchange information about the statistics of their

data and their load while they calculate the current communication cost. In addition, every node ap-

plies a sliding window approach i.e., only W (recent) vectors are stored. When the storage capacity is

exhausted and a new vector is decided to be locally stored, the oldest one is evicted and transferred to

the Fog/Cloud. This way, nodes rely on ‘fresh’ data. In addition, the discussed approach facilitates the

‘natural’ evolution of data obviously affecting their statistics, thus, future decisions as well.

We propose the use of a DMS that is responsible to decide the node (or the Fog/Cloud) where will

be allocated. The decision is made on top of the distribution of the local data and the data present in

peer nodes as well as their load and communication cost. The proposed DMS considers load balancing

1https://www.brentozar.com/archive/2013/08/query-plans-what-happens-when-row-estimates-get-high/

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 5

aspects to secure that no node will be overloaded. When a node is overloaded means that data are

quickly refreshed jeopardizing the ‘solidity’ of the dataset. Our aim is to evenly distribute the appro-

priate data (if they are similar to the underlying dataset) into the network forming a ‘cooperative stor-

age’, however, taking into consideration the ‘solidity’ of the datasets. In an upcoming step, every pro-

cessing task submitted to the network will be allocated, for execution, to the appropriate node i.e., the

node that ‘owns’ the dataset that matches to tasks’ requirements.

Consider that a vector (k is the discrete time, k=1,2,…) arrives in a node .

The corresponding DMS i.e., RSi, initially, should calculate the similarity of the incoming vector with

the available datasets. This will be realized with the adoption of the available statistics and the use of

an ensemble similarity model (see next Section). The proposed scheme incorporates into the RSi the

statistical similarity of with every dataset. The ideal case is when is stored locally where it is

reported as no communication (migration) cost will accrue. The second step is to estimate the load of

its peers. This will be realized by the use of an ensemble estimation scheme. We rely on a set of esti-

mators and, accordingly, we aggregate their results to produce the final estimation. Based on the simi-

larity with each dataset, the estimated load and the communication cost, produces a set of Nodes’

Status Vectors (NSVs) . It stands true that (in the case of

storing locally the incoming vector). On top of the NSVs, adopts a multiclass classification scheme

to deliver the node where will be allocated. The multiclass classification scheme follows the one-

over-all methodology (Han et al., 2012) based on a set of binary classifiers. These classifiers have the

form of decisions trees built with the adoption of the C4.5 algorithm.

Figure 1. The envisioned architecture.

4 The Decision Making Process

4.1 Retrieving the Similarity with Datasets

We propose a scheme for calculating the distance between every and (is the th vector of

means for each variable). We rely on two widely adopted techniques, i.e., the Euclidean distance (Han

et al., 2012) and the cosine similarity (Manning et al., 2009). Among all available similarity tech-

niques, we rely on two simple, however, efficient methods to be capable of producing the final out-

come immediately. At predefined intervals, nodes exchange information about the statistics of their

datasets and their load. In addition, they calculate the communication cost to conclude the NSVs. Let

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 6

us consider the behaviour of node . receives vectors with the mean values for each variable, i.e.,

. Our aim is to allocate the incoming vector to the most simi-

lar dataset keeping the deviation from the mean low. For calculating the similarity between and

, we adopt a ‘combination’ of the Euclidean distance and the cosine similarity model.

The Euclidean distance for vectors and is calculated as follows: . The

Euclidean distance looks at the ‘direct’ distance between the two vectors and is adopted when the

magnitude of vectors matters. It performs better with numerical results. To ‘transform’ the Euclidean

distance to a similarity measure, we rely on the inverse of distance, i.e., . The cosine simi-

larity is also applied. Hence, our model delivers similarity values. These values are measures that

represent the cosine of the angle between the examined vectors. Based on the vector representation of

the mean values and the incoming vector , calculates similarity scores as follows: .

The numerator represents the dot product of and defined as the simple multiplication of the

values contained in each vector, i.e., . The denominator represents the product of

the Euclidean lengths of the two vectors, i.e., , . The cosine similari-

ty is used as a metric for measuring the distance when the magnitude of vectors does not matter. It is

more ‘generic’ technique meaning that it can be efficiently used when we consider e.g., textual data.

The proposed scheme tries to combine the aforementioned techniques and derive the final result taking

into consideration many aspects of the examined vectors. We combine two techniques with different

characteristics to provide a more efficient result. The Euclidean distance focus on the magnitude of the

vectors while the cosine similarity aims to incorporate their orientation into the final outcome. We

adopt a linear combination scheme , where is a fuzzy number that af-

fects the final result. When , the final outcome is delivered mostly based on the Euclidean dis-

tance. When , the final is delivered mostly based on the cosine similarity. is affected by the

variance of the mean vectors . When is high, the mean vectors are spread from the mean, i.e.,

there are high fluctuations which lead to the conclusion that datasets present in the nodes are com-

pletely different each other. In such cases, we do not want to pay attention in the Euclidean distance

and take into consideration the magnitude of the vectors. On the other hand, when the variance is low

means that the mean vectors are close to each other, thus, the datasets present in nodes are similar. In

this case, we want to focus more on the Euclidean distance and the magnitude of the vectors to care-

fully select the most appropriate dataset. is calculated through the use of a sigmoid fuzzy member-

ship function. We consider an upper limit for the variance above which the realization of is close to

zero. Hence, for delivering the following equation stands true: , where and are

parameters of the sigmoid function.

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 7

4.2 Estimating the Load of Nodes

Our scheme tries to evenly allocate the incoming vectors to the entire set of nodes. This decision is

based on the load that each node exhibits. The load is depicted by the number of vectors stored in each

node. We consider that the load is represented by a value in the interval [0,1]. We also consider that

there is a maximum number of vectors (differs from ,) that each node could store. Let

us consider the discrete time . At each a number of vectors are allocated at . When decided that

vectors will be allocated to at , the load approaches to unity. When decided that no vectors will be

allocated to , then the load approaches to zero. The load realizations are recorded and adopted for

delivering the future estimation for each node. This future estimation is critical for the conclusion of

any allocation in the network. This is because the proposed system incorporates a load balancing as-

pect in the allocation of the incoming vectors trying to avoid any overloading. Overloading may nega-

tively affect the statistics of datasets as multiple vectors present in a dataset are substituted abruptly.

For deriving the estimation of the future load, we rely on an ensemble scheme. Ensemble estimation is

a common way to improve the performance of an estimation compared to single models. An ensemble

of individual estimators performs better, in average, than a single estimator (Shafagh et al., 2017). The

proposed scheme tries to deal with errors arising from the uncertainty associated with the dynamics of

the environment. The uncertainty is related to the number of vectors allocated in every node. Different

estimators exhibit different characteristics and performance related to the estimation error. In our

work, we adopt the solution presented in Kolomvatsos et al., (2015). We consider estimators

where that adopt different methodologies for deriving the final result. These es-

timators are: linear, polynomial, cycle, exponential, moving average and seasonal naive. Every

takes into consideration the historical load data exchanged though the above discussed messages and

results a value in the interval [0,1] that represents the future estimated load. The proposed ensemble

estimation scheme consists of the integration of multiple estimators. The ensemble forecasting model

is based on a fusion function, i.e., where is the final estimated value and is the fusion

function applied on the vector of estimators results . In our work, we consider that (for delivering a

fast response) is the mean of the estimations. is a mapping that derives the final estimated value

i.e., (without loss of generality, we consider all values in the interval [0,1]).

4.3 Classifying the Incoming Data

We focus on a binary classifier i.e., a classifier that decides if should be allocated in a node .

Recall that we consider that arrives in . The classification part of the proposed DMS should de-

cide the efficient location where will be allocated. Our classifier is based on a decision tree built

with the C4.5 algorithm. The input of the algorithms is a training dataset containing vectors as follows:

. Each vector represents a combination of the similarity between and a

potential host (i.e., a peer node), the estimated load and the communication cost. For each variable i.e.,

, the algorithm calculates the gain ratio to decide the formation of the decision tree. The algo-

rithm tries to calculate the ‘split information’ of each variable as follows:

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 8

. The discussed value represents the potential information gener-

ated when we split the dataset into partitions for a specific variable. The number of training vectors

where a variable has a specific value is normalized against the total training vectors. The final gain

ratio is calculated as follows: , where is the information gain for a variable

defined by: . In the aforementioned equation, we have:

 and . In our model, for the binary

classifier, we consider two classes i.e., and .

For the delivery of the node that will store , we apply the one-over-all (OVA) methodology (Han et

al., 2012). It consists of a widely adopted technique for multiclass classification. In our scenario,

classes are available, one for each node in the network. We adopt binary classifiers. Actually, we

apply times the same binary classifier for deciding in which nodes the incoming vector could be

allocated. The training set contains vectors for similarity, load and cost and the corresponding class

or . The classification of the unknown vector concerns a voting scheme. If the classifier posi-

tively predicts the th node for (based on the similarity, load and cost values) then the node gets a

vote. If the result is negative all the remaining nodes except get a vote. The node with the most votes

is selected to host .

5 Experimental Evaluation

We report on the performance of the proposed scheme aiming to reveal if it is capable of correctly

identifying the appropriate nodes of the incoming vectors. We provide a synthetic training dataset

where we record various combinations of the discussed parameters (i.e., similarity, load and cost) and

the corresponding class (i.e., or). The class is delivered by =1 when the adopted parameters

(similarity, load, cost) do not violate a set of pre-defined thresholds, otherwise we assign the =0

class. With this setting, we adopt a ‘strict’ scenario (a conjunctive clause) where all the parameters

together should not violate the thresholds. Each training vector consists of the realization of the afore-

mentioned parameters. For the evaluation of the proposed model, we rely on two synthetic datasets

adopting two different distributions, i.e., the Gaussian and the Uniform. Through the adoption of the

Gaussian, we try to simulate scenarios where the collected vectors are around the pre-defined mean.

Actually, the adoption of the Gaussian aims to identify how ‘stable’ data affect the performance of our

scheme. Through the adoption of the Uniform, we simulate a scenario where data change continually

and there is no any guarantee that consecutive vectors will exhibit a low statistical difference.

We aim to evaluate the DMS’s performance, thus, we rely on widely adopted metrics like precision ,

recall and F-measure . These metrics are defined as follows:

where refers to ’true’, refers to ’positive’, refers to ’false’, and refers to ’negative’. Hence,

refers to true positive events, i.e., identified events that had to be identified, refers to false positive

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 9

events, i.e., identified events that had to not been identified, and so on. In addition, we adopt the Mean

Absolute Error (MAE) and the Root Mean Square Error (RMSE). MAE is defined as follows:

 where is the number of the vectors in the dataset, is the actual class and

. MAE measures the average magnitude of the classification errors. RMSE is defined as follows:

. RMSE is similar to MAE, however, RMSE assigns large weight on

large errors. RMSE is more useful when high errors are undesirable. We perform the evaluation of our

scheme for and . We study how and affect the pro-

posed model. Based on these experimental scenarios, we reveal the scalability of the system and see if

the proposed scheme retains the classification performance at high levels.

We report on performance results for . , and are equal to 1.000 except the scenario

where . In this case, we get the values presented in Table 1. We observe that the proposed

technique exhibits high performance with , and equal to 1.0. The ‘worst’ performance is ob-

served when . The increased number of nodes leads to an increased performance with as our

model eliminates false negatives and false positives events. We compare our model with a Naive

Bayesian Classifier (NBC) applied for the same datasets. The performance of the NBC is presented in

Table 2. We observe that NBC’s performance is worse than the proposed scheme. The NBC elimi-

nates the false positives events, however, it suffers from increased false negatives. This leads to low

and , respectively. Concerning the NBC, the average , and are 0.978, 0.581 and 0.726, respec-

tively. The proposed model results 0.999, 0.999 and 0.999 for , and , respectively. In Figure 2, we

plot the false positive rate vs the true positive rate (Receiver operating characteristics - ROC) curve for

comparing the proposed model with the NBC for the same experimentation parameters (M = 5 and

).

 Gaussian Uniform

M

5 0.997 0.994 0.995 0.997 1.000 0.999

20 0.997 1.000 0.999 0.997 0.992 0.994

50 0.996 1.000 0.998 0.998 0.987 0.993

Table 1. Classification Performance for |N = 10|.

 Gaussian Uniform

|N|

10 0.964 0.697 0.809 0.995 0.529 0.691

100 0.979 0.494 0.656 0.999 0.503 0.669

500 0.984 0.578 0.728 0.999 0.401 0.572

1,000 0.985 0.553 0.709 0.998 0.294 0.454

Table 2. Classification Accuracy of a Naive Bayesian Classifier for M=5.

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 10

Figure 2. The ROC curves comparison between the proposed model and NBC.

In Figures 3, 4 and 5, we plot the MAE and RMSE for the Gaussian and the Uniform distributions and

for . When M = 5, the increased number of nodes (i.e., |N|) positively affects the per-

formance as MAE and RMSE decrease. In average, the adoption of the Gaussian distribution results in

higher error compared to the Uniform case (0.0248 for the RMSE-Gaussian combination and 0.0179

for the RMSE-Uniform combination). A high number of nodes, e.g., |N| = 1,000 results MAE equal to

0. An increased number of variables/dimensions leads to low MAE and RMSE. In average, we take

MAE {0.0006, 0.0009} for the Gaussian and MAE {0.0028, 0.0043}. In addition, we get RMSE

{0.0189, 0.0206} for the Gaussian and RMSE {0.2150, 0.0315}. In such cases, the proposed mod-

el has the opportunity to combine multiple values when calculating the final similarity between vectors

as already described.

Figure 3. MAE and RMSE for M = 5.

Figure 4. MAE and RMSE for M = 20.

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 11

Figure 5. MAE and RMSE for M = 50.

Finally, concerning the required time for training the adopted classifier, we get a mean time equal to

0.0027, 0.0119, 0.0475 and 0.0981 seconds for |N| {10, 100, 500, 1000}, respectively. We observe

that the proposed mechanism requires training time below 0.1 second which is capable of supporting

applications demanding for real time responses.

6 Conclusions and Future Work

This paper proposes a distributed model for data storage in IoT. Our focus is on an IoT setting where

multiple nodes could be adopted for collecting data and executing various processing tasks. We aim to

create a storage scheme where every node stores a specific part of the incoming data that exhibit simi-

lar statistical characteristics. We propose the real time processing of the incoming data that arrive in

the form of vectors. Every time a vector arrives in a node, the node selects the host of the data based

on a decision mechanism that combines statistical measures, forecasting techniques and a classifica-

tion model. We present our model and provide experimental results which show that our scheme is

capable of exhibiting high performance in the classification process. We also compare the model with

another classification scheme and present comparative results. The advantage of the proposed model is

that it can deliver the final decision in the minimum time, thus, it can support real time applications.

On the other hand, the scheme requires the presence of a training dataset. Our future research plans

involve the inclusion of outlier detection techniques in nodes’ decision making. The discussed tech-

niques will identify if a vector is an outlier compared to the entire set of data stored in the nodes.

The paper contributes to IoT data storage research by proposing a system that extends previous works

for identifying the appropriate nodes for allocating IoT data based on dataset similarity, node work-

load and data classification. Its research contribution lies in the maintenance of the ‘solidity’ of each

dataset enabling the efficient definition of query response plans adopted to support intelligent analytic

in IoT.

The paper has also implications for practice as it can easily be used to support various applications in

diverse domains. The model can be adopted for receiving immediate response to real-time business

analytics queries. As an example, a data demanding field in terms of storage and processing in which

the proposed system can be adopted is supply chain management. With the increasing use of IoT in

supply chain management, multiple IoT nodes in a supply chain can collect data related to supply

chain services such as the monitoring of shipments. The collected data can be processed and trans-

ferred from the collecting node to the node selected as appropriate for storage based on our proposed

system. Decisions regarding data allocation to nodes could be facilitated by a model that shows the

appropriate locations to be used for decision making. Supply chains and shipments in particular, can

be tracked in real time through a combination of sensors, tracking devices and communication net-

works which enable the exchange of data that are processed and stored in nodes. The proposed system

for data allocation and storage can effectively promote the optimization of supply chain operations and

management, allowing for the efficient provision of analytics at every stage of the supply chain.

Kolomvatsos et al. /Data storage in Internet of Things: A Proposed Distributed Model

The 12th Mediterranean Conference on Information Systems (MCIS), Corfu, Greece, 2018 12

7 Acknowledgment

This work is funded by the European Commission (H2020 FIRE+) that aims to provide research, tech-

nological development and demonstration under the grant agreement no 645220 (RAWFIE).

References

Cai H., Xu B., Jiang L. and Vasilakos, A.V., ’IoT-based big data storage systems in Cloud computing:

Perspectives and challenges’, IEEE Internet of Things Journal, 2017, 4(1): 75-87.

D’ Andria, F., et al., ’Data Movement in the Internet of Things Domain’, in Proc. of the European

Conference on Service-Oriented and Cloud Computing, Taormina, Italy, 2015, pp. 243–252.

Dolui, K. and Datta, K. S., ’Comparison of edge computing implementations: Fog computing, Cloud-

let and mobile edge computing’, IEEE 2017 GIoTS, 2017.

Escamilla-Ambrosio P.J., et al., ’Distributing Computing in the Internet of Things: Cloud, Fog and

Edge Computing Overview’, In: Maldonado Y., Trujillo L., Schütze O., Riccardi A., Vasile M.

(eds), Studies in Computational Intelligence, vol 731. Springer, 2018.

Fu, J.-S., Liu, Y., Chao, H.-C., Bhargava, B. K. and Zhang, Z.-J., ’Secure Data Storage and Searching

for Industrial IoT by Integrating Fog Computing and Cloud Computing’, IEEE TII, 2018.

Habak, K., Ammar, M., Harras, K.A. and Zegura, E., ’Femto Clouds: leveraging mobile devices to

provide Cloud service at the edge, In IEEE 8th CLOUD, 2015, pp. 9–16.

Han, J., Kamber, M., Pei, J., ’Data Mining, Concepts and Techniques’, Morgan Kaufmann Publishers,

2012.

Jiang, L., et al., ’An IoT-Oriented Data Storage Framework in Cloud Computing Platform’, IEEE

Transactions on Industrial Informatics, 2015, 10(2), 1443-1451.

Kolomvatsos, K., Panagidi, K., Hadjiefthymiades, S., ’A Load Balancing Module for Post Emergency

Management’, Elsevier Expert Systems with Applications, 42(1), 2014, pp. 657-667, 2015.

Manning, C. D., Raghavan, P. Schutze, H., ’An Introduction to Information Retrieval’, Cambridge

University Press, 2009.

Roman, R., Lopez, J., Mambo, M., ’Mobile edge computing, Fog et al.: A survey and analysis of secu-

rity threats and challenges’, Future Generation Systems, 78(2), 2018, pp. 680–698.

Ruiz-Alvarez, A. and Humphrey, M. (2012). A Model and Decision Procedure for Data Storage in

Cloud Computing. 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Compu-

ting (CCGrid), May 13-16, Ottawa, ON, Canada.

Satyanarayanan, M., ’A brief history of cloud offload: A personal journey from Odyssey through

cyber foraging to cloudlets’, Mobile Computing Communications, 18(4), 2015, pp. 19–23.

Shafagh, H., Burkhalter, L., Hithnawi, A. and Duquennoy, S., ’Towards Blockchain-based Auditable

Storage and Sharing of IoT Data’, 9th ACM Cloud Computing Security Workshop, 2017.

Tai, J., Sheng, B., Yao, Y., Mi, N., ’Live data migration for reducing sla violations in multi-tiered

storage systems’, In Proc. of the 2014 IEEE Int. Conf. on Cloud Engineering, 2017, pp. 361–366.

Wichard, J., Ogorzalek, M., ’Time Series Prediction with Ensemble Models applied to CATS Bench-

mark’, Neurocomputing, vol. 70(13-15), 2007, 2371-2378.

Xing, J., Dai, H. and Yu, Z., ’A distributed multi-level model with dynamic replacement for the stor-

age of smart edge computing’, Journal of Systems Architecture, 83, 2018, pp. 1-11.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2018

	Data Storage in Internet of Things: A Proposed Distributed Model
	Kostas Kolomvatsos
	Panagiota Papadopoulou
	Stathes Hadjiefthymiades
	Recommended Citation

	tmp.1546591084.pdf.7dPod

