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ABSTRACT  

Source code classification is an important step in archiving and reusing the code. Given the complex nature of software, source 

code is often organized into categories manually by field experts. Such categorization process not only requires a pre-existing 

category schema, but also is labor intensive which is difficult to keep up with the fast-growing available source codes. In this 

paper, we proposed an innovative method that can automatically classify a set of source codes into clusters based on similarity 

of their functionalities. We used a neural-network-based algorithm, Self-Organizing Maps (SOM), to cluster a list of source 

code extracted from an open-source software application site, SourceForge (sourceforge.net). Experiments have been 

conducted to test the feasibility of our approach. The research results showed SOM can automatically and effectively cluster 

source code with proper training. The implication of this study is discussed. 
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INTRODUCTION 

Code reuse is a useful tool for reducing the cost of software projects and for teaching software development (Stiller and Leblanc 

2006). Despite the possible benefits of code reuse, it has had limited practical success for a variety of reasons (Frakes and Kang 

2005). One of those reasons is the difficulty of finding reusable code fits to the task. To facilitate the search of code, it is 

important that we can classify available source codes quickly and accurately. Although classification can be done by the field 

experts, this process is often time consuming. As the number of source codes increases every day, human-based classification 

or clustering has become more and more costly and even impractical.  

In this paper, we proposed to use a neural network based clustering algorithm, Self-Organizing Maps (SOM) (Kohonen 1995), 

to classify software source codes with little human intervention.  

LITERATURE REVIEW 

Searching for source codes to reuse is an important part of a software development project. A 1997 case study by Singer et al. 

(1997) noted that “search is done far more often [by software engineers] than any other activity.” A more recent study by 

Sadowski et al. (2015) found that Google developers wrote an average of 12 search queries to their internal code repository 

every weekday. To improve the accuracy of searches, the internal code repository needs to be well organized, e.g. classified.  

Document classification is a well-established field, with a large number of techniques available for different types of 

categorization. Source code and text documents are similar enough that document classification schemes could be adapted for 

code classification. Ugurel et al. (2002) conducted a proof of concept experiment testing the accuracy of a set of machine 

learning models used for document classification, and applying the best model to code. They found that Support Vector 

Machines (SVMs) were able to classify code by category and language. SVMs are a machine learning model that uses 

supervised learning: training data is labeled with a desired category, and the system’s accuracy is then tested using unlabeled 

testing data. 

Other approaches to code classification focus on unique attributes of code. McMillan et al. (2011) tackled the problem of 

classification where source code is unavailable by extracting API references from executable files. Using SVM to classify a set 

of code, they found that using known terms gave the best result, but concluded that classification by API packages “are a good 

alternative to terms in the case when the terms are not available.” 
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Classification often relies on existing category schemes while such schema may not be available. The objective of this project 

is to organize the source codes into groups based on their functionalities without prior knowledge of categories. We call such 

process as clustering. In order to cluster the source codes without much human intervention, unsupervised machine learning 

techniques are usually preferred.  

Self-Organizing Maps (SOM) is a neural-network based algorithm that focusing on unsupervised machine learning. SOM 

algorithm can condense high-dimension data into a two dimensional map that represents the data set. SOM was widely used to 

cluster images, texts, documents, and other high dimensional data. For example, Li (2007) successfully grouped semi-structured 

web pages into clusters using SOM without human intervention. 

In this research, we proposed to apply SOM algorithm in the domain of software source code and conducted experiment to test 

the feasibility of our approach.  

RESEARCH METHOD AND RESULTS 

Software source codes contains a list of documents: libraries, code files, readme files, and documentations etc. In essences, the 

source codes are semi-structured or unstructured textual and high-dimensional data. We argue that SOM can effectively 

categorize those source codes. The proposed research approach had four phases: data source selection, data pre-processing, 

clustering, and validation.  

Data source selection. Our data samples were obtained from SourceForge (SoureForge 2015), an open source software 

application site.  SourceForge was chosen because it offered a large sample pool and the source codes are categorized by 

application type and programming language. For simplicity, ten applications were chosen from five categories, all coded in 

C++, for a total of fifty. The pre-existing category schema can be used as correct answers to assess the effectiveness of machine 

clustering. At the time of experiment, we assumed that extracted source codes were un-clustered. The fifty software applications 

were randomly sorted into a training dataset (thirty-three applications) and a testing dataset (seventeen applications). 

Data pre-processing. The objective of data pre-processing is to transform the raw data into a smaller dataset in a format that is 

acceptable to SOM while still can represent the original dataset. Each extracted application source codes contains large amount 

of information including readme file and tens of individual C++ files. It’s a complex and difficult process to decide what portion 

of the raw data should be used for clustering. In fact, the data pre-processing task itself makes a standalone research project.  

Our study focused on proof of concept on clustering and we simplified the data pre-processing process.  

For each application, we examined all files associated with it and manually selected a few ones that better represent the 

application. Then a list of keywords was extracted from the selected files. After that, common words were removed from the 

word list. The common word was composed of a generic list of commonly used words and words occurred in every data sample. 

Words that appeared in every data set were also removed. The word list was very long, we kept the top 50 words to represent 

the corresponding software application. As the result, each software application had a text file containing a list of keywords. 

At the end, each text file was tokenized in a format required by SOM.  

Clustering. In this study, we used SOM as clustering engine. The SOM implementation we used has four parameters: x 

dimension, y dimension, neighborhood size, and final iteration. The performance of on the parameter values chosen for a certain 

application domain (Polani and Uthmann 1993). We created a SOM parameter pool by trying all combinations of values in a 

pre-defined range. The value range as shown in table 1, is adapted from Li 2007.  

x dimension y dimension Neighborhood size Final iteration  

3 – 10 3 – 10 2 – 6 5000 – 60000 

                       Table 1. SOM Parameter Value Range. (Note: the final iteration is increased by 5000).  

 

The SOM clustering engine needs to be trained before it can be used for classification. The training process is illustrated in 

figure 1. The original data set was randomly divided into a training dataset (two third) and a testing dataset (one third). For the 

training dataset, a set of parameter values first was retrieved from the value pool and used by SOM to cluster the training 

dataset. An F-measure (explained in the next section) was calculated for the clustering results. The process repeated for the 

next set of parameter values in the pool. The output of the training is the parameter value set that has the best F-measure value. 

The trained SOM clustering engine then was used to cluster the testing dataset and the effectiveness of the result was evaluated.   

Evaluation.  The effectiveness of our proposed clustering approach can be measured by comparing the clustering results of 

SOM with the ones of field experts. The pre-existing category scheme from SourceForge was used the clustering results from 

domain experts. F-measure (Larsen and Aone 1999) (Stein and Eissen 2002), a standard evaluation metric in the field of 

information retrieval, was used as main performance metric. F-measure provided an overall estimate of the combined effect of 
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cluster recall and precision. F-measure is a value between 0 and 1. In general, the higher the f-measure value, the better the 

clustering result.   
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Note: CR-cluster recall. CP-cluster precision. BETA is the relative importance of Recall vs. Precision. We assume CR and CP 

are equally important and thus set BETA as 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Program Flow of SOM Clustering Training Process 

 

In our experiment, we were able to identify the best SOM parameter values for the training set with F-measure value of 0.36. 

Then we used those parameter values to cluster the testing data set and F-measure value is 0.32 for the resulting clusters.   

CONCLUSION AND DISCUSSION 

In this paper, we proposed a novel approach to automatically cluster software source codes using Self-Organizing Maps. We 

designed and implemented a proof of concept system. Our experiment results showed that, with proper training, our approach 

can effectively cluster a group of software application source codes extracted from SourceForge. Our approach contributes to 

the software development community by enabling more accurate search through better organization of the source codes. Oour 

approach also explored the applicability of SOM in a different domain.  

Our study has several limitations. First of all, we made some assumptions and simplified data pre-processing phase since our 

focus was on the clustering. We manually reduce the large data set into small ones and the keywords extraction and selection 

was also streamlined with arbitrary decisions by the authors. As a result, the performance of the clustering engine is only 

moderately well with f-measure value of 0.32 for the selected testing data set. More research need to be done on selecting a list 

of keywords that can better represent the corresponding source codes in the clustering process. The efficiency of the data 

processing is also a concern especially when dealing with source codes containing lot of data. We are investigating ways to 

streamline the process and reduce the processing time.  

Another limitation is the training of SOM. The performance of SOM relies on the parameter values it uses. In this study, we 

created a permutation of parameter values sets for SOM based on a pre-defined range for each parameter value. We need a 

more systematic approach to identify the best SOM parameter values for a given data set. We are investigating using genetic 

algorithm as the mechanism to fine the optimal or near optional SOM parameter values from a very large pool of value set 

candidates.  

The study can be extended in the direction of the visualization of the clusters. The clustering result is presented in textual file 

which is fine for search engine to use, but it’s not friendly for humans to view the categories and interact with. We are examining 

available tools to present clusters on a two dimensional map and allow users to interact with the clusters on the map.  

SOM Parameter 

Values Pool 
SOM Clustering 

Engine 

Result Evaluation 

Best SOM Parameter 

Value 

Training Data Set 
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