
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2003 Proceedings European Conference on Information Systems
(ECIS)

2003

Using Online Services in Untrusted Environments:
A Privacy Preserving Architecture
Claus Boyens
Humboldt-University, Berlin, boyens@wiwi.hu-berlin.de

Oliver Guenther
Humboldt-University, Berlin, guenther@wiwi.hu-berlin.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2003

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2003 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Boyens, Claus and Guenther, Oliver, "Using Online Services in Untrusted Environments: A Privacy Preserving Architecture" (2003).
ECIS 2003 Proceedings. 9.
http://aisel.aisnet.org/ecis2003/9

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2003%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2003?utm_source=aisel.aisnet.org%2Fecis2003%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2003%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2003%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2003?utm_source=aisel.aisnet.org%2Fecis2003%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2003/9?utm_source=aisel.aisnet.org%2Fecis2003%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Boyens, Günther Using Online Services in Untrusted Environments

Using Online Services in Untrusted Environments:
A Privacy-Preserving Architecture

Claus Boyens*

Institute of Information Systems, Humboldt University Berlin
Spandauer Str. 1, 10178 Berlin, Germany

Phone: +49-30-2093-5742, Fax: +49-30-2093-5741
boyens@wiwi.hu-berlin.de

Oliver Günther
Institute of Information Systems, Humboldt University Berlin

Spandauer Str. 1, 10178 Berlin, Germany
Phone: +49-30-2093-5742, Fax: +49-30-2093-5741

guenther@wiwi.hu-berlin.de

Abstract

While online service providers are sometimes accused of forwarding identifying customer
information as name and address to untrusted third parties, comparatively little attention is
paid to the input data that customers provide explicitly to the service. If the input data is
sensitive but the service provider is not completely trustworthy, this constitutes a serious
privacy problem. From a privacy-defending point of view, the most desirable situation would
be for the service not to require any kind of sensitive information at any time, while still
yielding useful results for the customer. This paper presents a service architecture that
allows for the use of a restricted number of services without requiring the transmission of
unencrypted customer data to the service provider. The supported services include the
execution of basic database and arithmetic operations that can be combined in numerous
useful ways. The basic idea of this architecture is to transform sensitive data on the client
side before transferring it to the service provider. The latter processes the transformed data
without being able to draw any further conclusions from it. The pseudo-result obtained is
returned to the customer who applies a special retransformation to obtain the actual result.

Keywords

Electronic Commerce, Privacy Protection, Service Architectures, Encryption

1 Introduction

When it comes to the protection of sensitive user data in online services, the danger most
often described is the forwarding of identifying information as user name, address, e-mail or
telephone number to an untrusted third party. This mainly happens for marketing purposes in
related branches of a similar industry, e.g. when hotel chains acquire airline customer lists.
Comparatively little attention is drawn to the information that is needed to perform the
service, i.e. its input data. However in some particular areas as financial and human resource
services, the data to be processed contains important details. One often observes a mismatch
between the actual aim of the service provision and potential privacy violations. For example,

* This research was supported by the Deutsche Forschungsgemeinschaft, Berlin-Brandenburg Graduate School

in Distributed Information Systems (DFG grant no. GRK 316/3)

Boyens, Günther Using Online Services in Untrusted Environments

a company’s wage accounting system may be designed to issue the monthly payments or to
calculate aggregate figures, but it could easily give out the number of hours that a particular
person was absent in a given period of time.

The problem is that the services mentioned above require (unencrypted) client data. If the
data is sensitive and the service provider is not completely trustworthy, this may be an
argument for not using the service at all. Note that service features as “secure encrypted data
transfer” just relate to the communication channel that connects the machines of client and
server. Still, data is stored in plaintext format in the service provider’s database and is of
course not encrypted for processing purposes. The threats to these assets are manifold:

• External attack of the provider’s database.

• Malicious or incompetent staff on the provider’s part (esp. database and system
administrators).

• Bankruptcy of the provider with consequential insecurity about data property.

As most of the leading data centres have installed robust protection means against attacks
from outsiders, more importance should be assigned to the two latter threats. As the CSI/FBI
Computer and Crime Survey (Power 2001) shows, the financial damage caused by
unauthorized insider access is an order of magnitude higher than that caused by external
system penetration ($1.01M vs. $0.17M). Furthermore, the study shows that disgruntled
employees are the most likely source of attacks, even more likely than independent hackers
or competitors (81% vs. 77% / 44%, resp.). Database and system administrators with
extensive rights are potentially able to acquire almost all the information in the customer
database if they should so choose. The other important threat assumes an incident which is all
too common among new economy firms: Customer data is sold once the service provider has
run out of money. Who could guarantee customers that their most sensitive data does not end
up at their direct competitor?

It seems reasonable, therefore, to attempt to protect sensitive client data in the described
service environment. Whereas organizational and legal measures may alleviate some of the
potential threats, the question for technical measures then arises. The strongest claim possible
is not to give away any kind of sensitive information to the service provider at any time,
while still allowing for the requested service to be carried out. This paper presents a service
architecture that allows for the outsourcing of a restricted number of simple services without
revealing plaintext data. It includes the execution of basic database and arithmetic operations
without revealing any kind of information to the service provider. The principle of this
architecture is to transform sensitive data on the client side before transferring it to the
service provider. The provider can process the transformed data but not draw any further
conclusions from it. The result of the service request, which still carries no meaning to the
service provider, would then be returned to the client who re-transforms it into the actual
term in plaintext.

The triple threat described above is emphasized by the current privacy policy of Amazon.com
(2002), the world’s biggest online retailer:

“…we might sell or buy stores, subsidiaries, or business units. In such transactions, customer information
generally is one of the transferred business assets... Also, in the unlikely event that Amazon.com, Inc., or
substantially all of its assets are acquired, customer information will of course be one of the transferred
assets…”

In spite of numerous protests since the introduction of this policy (Darrow 2000), the only
effective measure that protects user data from being sold is not to use the service.
Nevertheless, some technical countermeasures are currently being developed.

Boyens, Günther Using Online Services in Untrusted Environments

Private Information Retrieval (PIR) was first presented by Chor et al. (1995). It allows users
to query a database server, revealing neither the query nor the result of the query to the
server. This is facilitated via a secure hardware device, a secure coprocessor (Smith and
Weingart 1999), which is the only place where the query is decrypted and processed. Asonov
and Freytag (2002) adopted PIR for practical deployment.

Hacigumus et al. (2002) present a client-server approach that allows the elementary database
operators to be executed over encrypted data. They fragment the data on the client side,
where also some of the processing such as sorting data sets must be done.

Data Disclosure Protection deals with (mostly statistical) tables that are anonymized before
their publication. Denning (1982) first showed that from aggregate data, conclusions can
often be drawn for single values. Recently, Sweeney (2001) revealed potential privacy
breaches in published health care tables and proposed more efficient anonymization
techniques.

This paper takes advantage of theoretical foundations in cryptography and derives a new
privacy-preserving service architecture. A specific algorithm is adopted to allow for more
functionality in practically relevant cases. We map important database and arithmetic
operations from the untransformed to the transformed data and we present sample services
that can be carried out within the framework. We also evaluate the approach with regard to
memory and performance requirements and we propose different implementation methods.

Section 2 presents the new architecture. Section 3 is dedicated to the corresponding data
transformation algorithm. The extent of the feasible services is described in section 4. In
section 5, we present some sample services and discuss performance and implementation
issues. We conclude with a discussion of opportunities and limitations of the approach as
well as with further research ideas.

2 A privacy-preserving approach to protect sensitive
client data

In this section, we present a service architecture that allows for processing data with ultimate
privacy, i.e. sensitive data is not only withheld with respect to non-trusted third parties, but
also to the service provider itself. The service provider will not dispose of any unencrypted
client data at any time. Contrary to the concept of Private Information Retrieval, no hardware
equipment is involved. Our approach requires the service provider to work directly with
encrypted data.

Following the approach of public key infrastructure first proposed by Rivest et al (1978b),
the basic idea is to transform the sensitive data with the help of a secret key only known to
the client. The service provider uses the corresponding public key in order to process the
encrypted data. Without the private key, the server cannot see any sensitive information in
plaintext (as is intended by the client). Without the public key, it cannot even compute the
data.

From an infrastructural point of view, the architecture requires:

• The creation of a private key and its safe-keeping.

• The creation of a public key and distribution of it to the service provider.

• The equipment of client software with the transformation algorithm.

• The adoption of the server’s business logic such that encrypted data can be processed.

Boyens, Günther Using Online Services in Untrusted Environments

How these requirements are dealt with in practice is discussed in section 5.3. The volume of
infrastructure requirements implies that the approach is more suitable for Application Service
Provider (ASP)-like solutions which allow at least for some customizing than for fine-
grained, standardized web services.

SERVERCLIENT

Tp(D)

S

S(Tp(D))

Input: D Tp

Output: S(D)
Tp

-1

S(Tp(D))

Tp(D)

Legend:

D: Client data

T: Transformation function

S: Service to be performed

: Data transfer

: Data processing

qqpp

p: Private key

q: Public key

DB

Figure 1: Sketch of the proposed service architecture

Figure 1 describes the general service procedure: The client C wants the service provider to
perform some service S on the confidential data D she provides. After installing the key
infrastructure, critical data is marked up as “sensitive” and the application running on the
client machine encrypts it using the provided transformation scheme T and the private key p.
The server, who only sees encrypted data, now uses the public key q to perform the requested
service S. Once the server has performed its service, the encrypted pseudo-solution S(T(D))
is retransferred to the client who applies a re-transformation (usually T-1) to obtain the
desired result S(D).

The whole procedure is summed up in Figure 2.

Boyens, Günther Using Online Services in Untrusted Environments

1. Install key infrastructure

i) C creates two large secret primes p (=: private key) and p´ (e.g. 128 bit
numbers)

ii) 2. C computes q= p*p´ (=: public key, e.g. 256 bit number)

iii). C keeps the private key p and transfers the public key q to the Server

iv). The Plaintext domain now is Zp, the Ciphertext domain is Zq

2. C encrypts the sensitive data with Tp

3. C transmits the transformed data Tp(D) to the service provider

4. The service provider carries out the service S on the transformed data Tp(D)

5. C receives the encrypted result S(Tp(D)) from the server

6. C decrypts the result to S(D) with the inverse transformation function T-1 and
eventually performs some post-processing

Figure 2: The proposed service procedure

An example:

Let us give a short example. Suppose C is a company that outsources its human resource
(HR) management system to a service provider. C requests: “Give me the total number of
absence hours in the treasury department for October 2002!” This would fit into the proposed
terminology as follows:

C: The company that outsources its HR Management System

D: The transferred employee data that is stored in the encrypted database at the server.

S: “Calculate the average over the absence hours in October in the Finance Department!”

T: The transformation scheme that maps employee data to encrypted data

3 Encryption and decryption (How data is transformed)

3.1 Cryptographic background: Privacy homomorphisms

The “transformation schemes” referred to in the previous section actually are encryption
functions in the cryptographic terminology. These functions map plaintext, the readable
sensitive data, to ciphertext, its encoded counterpart. Cryptanalysts determine the security of
an encryption scheme in terms of its resistance against five attacks of increasing scale. In
order to simplify the framework, we will denominate the most unsafe encryption scheme
level-1-secure and the safest one level-5-secure. For a detailed discussion of the actual scale
from “ciphertext-only-resistance” to “chosen-text-resistance”, see Stallings (1999).

Boyens, Günther Using Online Services in Untrusted Environments

The architecture presented in this paper is based on a particular class of encryption functions,
so-called privacy homomorphisms (PHs). Rivest et al. (1978a) introduce them as “encryption
functions that permit encrypted data to be worked with without preliminary decryption of the
operands”. The sample PH they describe yields that the multiplicative product of two
encrypted numbers is equal to the encryption of the corresponding cleartext product.

T(d1)*T(d2)= T(d1*d2)

Applying the inverse function gives

T-1(T(d1)*T(d2))= T-1(T(d1*d2))= d1*d2

To employ PHs in service environments, the basic idea would be to transfer the encrypted
data T(d1) and T(d2) to the service provider instead of the cleartext pair d1 and d2. The
provider then computes the pseudo-solution T(d1)*T(d2) which is, due to T’s homomorphic
property, equal to T(d1*d2). Applying the inverse function T-1 then decrypts the pseudo-
solution and yields the desired result d1*d2. Figure 3 shows this basic idea:

d1, d2

T(d1) ? T(d2)

T(d1), T(d2)

d1 ? d2

=
T-1 (T(d1) ? T(d2))

??

T

T-1

Plaintext
(Client)

Ciphertext
(Provider)

Figure 3: Scheme of a privacy homomorphism T

If one considers “multiplication” as a simple kind of service, T thus guarantees ultimate
privacy because the customer may use the service while revealing neither the factors nor the
result to the service provider.

Whereas this multiplicative PH is a very secure one (level-4), performing addition on
encrypted data turns out to be a more complicated issue. Ahituv et al. (1987) show that an
additive PH may reach at most level-2 security. Brickell and Yacobi (1988) are the first to
present an R-additive PH that permits the addition of up to R numbers with level-1 security.
Finally, Domingo-Ferrer and Herrera-Joancomartí (1998) present a PH allowing all field
operations (addition, subtraction, multiplication and inverse multiplication) on an arbitrary
number of ciphertexts. Though it is just level-1 secure, it would still force the potential
attacker to acquire plaintext information from the client in order to be successful (Boyens and
Günther 2002), which transfers at least some of the responsibility from the service provider
to the customer. If a plaintext-ciphertext pair has been known to the attacker, it will be
difficult for the customer to deny at least part of the responsibility for the break-in. We will
now describe the PH in use with the proposed architecture.

Boyens, Günther Using Online Services in Untrusted Environments

3.2 The transformation scheme deployed in the proposed
architecture

The PH we base our architecture on is adapted slightly from the scheme proposed by
Domingo-Ferrer and Herrera-Joancomartí (1998). After installing the key infrastructure, the
procedure depicted in Figure 4 is applied.

Input

p: The private key

q: The public key

a: A secret number Œ Zp

d: Some kind of sensitive data AUS Œ Zp

Output

Tp(d): The sensitive data encrypted with the private key p

Encryption procedure

Solve the modular equation a*x = d (mod p) for x Œ Zp

Tp(d)= a*x (mod q)

Figure 4: The encryption procedure

Note that this scheme differs from the PH proposed by Domingo-Ferrer and Herrera-
Joancomartí (1998) in the sense that a is not chosen arbitrarily but as a fixed and secret prime
Œ Zp. As modular equations a*x= d (mod p) have unique solutions for a, x, d Œ Zp, unique
plaintext identifiers have the same ciphertext correspondents. This would not have been the
case if a had been chosen arbitrarily. This feature is important since, for instance, primary
keys for a database can now be addressed by a unique ciphertext. The check for equality
allows for picking single records out of the encrypted database, thus permitting the updating,
deleting and retrieving of records that already exist in the database.

The decryption works in a similar manner. The difference consists of the fact that A can be
chosen arbitrarily, as the transformation scheme guarantees the plaintext originally provided
as the result (Figure 5).

Boyens, Günther Using Online Services in Untrusted Environments

Input

p: The private key

q: The public key

t: Some encrypted data Œ Zq

Output

Tp
-1(t): The plaintext corresponding to t

Decryption procedure

Pick AŒZq arbitrarily

Solve the modular equation A*y = t (mod q) for y Œ Zq

Tp
-1(t)= A*y (mod p)

Figure 5: The decryption procedure

3.3 Another example

As a simple example, we will compute the product of 3 and 5 with a small (5-bit) prime p.

Given

p= 17

p’= 31

a= 13, aŒ {2, 3, 4, …, 16}

q= 17*31= 527

d1= 3 (ŒZ17)

d2= 5 (ŒZ17)

Encrypt

‡ Solve a*x= 13*x= 3 (mod 17) ‡ x= 12; a*x= 156 (mod 527)= T17(3) ŒZ527

‡ Solve a*x= 13*x= 5 (mod 17) ‡ x= 3; a*x= 39 (mod 527)= T17(5) ŒZ527

Calculate product on encrypted data

T17(3) *(mod 527) T17(5) = 156*139= 6084 (mod 527)= 287

Decrypt

Boyens, Günther Using Online Services in Untrusted Environments

Pick A arbitrarily Œ Zq: A= 412

Solve A*Y= 287 (mod 527), A*Y= 25056

T17
-1(T17(3) *(mod 527) T17(5))= 25056 (mod 17)= 15

4 „Enabled Services“: Which services can be performed?

4.1 Processing the encrypted data

Now that the basic service idea and the corresponding transformation scheme are introduced,
we will discuss which actual services the server is able to carry out on the modified
information he disposes of. Naturally, encrypted data cannot be processed with the same
extent of operations as unencrypted data would allow to. As already indicated in section 2,
we will distinguish between two different elementary service types.

The first elementary service type concerns basic database queries, such as retrievals and
updates. We will analyze the basic relational operators concerning their suitability for
handling encrypted records and give examples in section 4.2.

The second elementary service type consists of the basic arithmetic operations, addition and
subtraction, multiplication and division. We will show to which extent and on which kind of
plaintext data these operations can be applied in section 4.3.

Of course, real-life services would often include both types. A sample service of practical
relevance is discussed in section 5.1.

4.2 Database operators

Here we introduce an example that will serve as a reference throughout the rest of this paper.
The client is a company who wants to outsource part of its HR Management System. It
transfers information about its employees and about the monthly wage accounts in the
following two tables.

• employee (employee_no, name, year_of_birth, department);

• monthly_account (employee_no, month, absence, overtime, payment);

The employee table contains general information about the staff as employee number, name,
year of birth and department. A typical data record would contain the following.

(432321, 'Schmidt', 1963, 'Finance')

The monthly_account table in contrast yields information about the monthly payment
account as absent hours, overtime hours and payment.

(432321, 'AUG 2002', 12, 23, 3247)

We will now explain if and how standard Structured Query Language (SQL) queries can be
mapped such that the encrypted database can be accessed.

Selection
(“SELECT name, year_of_birth FROM employee WHERE (department=’Finance’)”)

The value to retrieve is simply encrypted in the query

 “…WHERE department= Tp(ascii(’Finance’))”, where ascii(‘Finance’) would be the
corresponding ASCII coding. The exact and complete value must be specified, as the

Boyens, Günther Using Online Services in Untrusted Environments

transformation scheme does not allow for “partial encryption”. Therefore, working with
wildcards (“…WHERE (department LIKE ’F%’)”) is not possible.

Projection
(“SELECT name, year_of_birth FROM employee WHERE (department=’Finance’)”)

Projection is possible without restrictions, as usually all the attribute names must be specified
with their exact and complete names. Furthermore, it is up to the client to decide whether just
to encrypt the values or to encrypt the attribute names, too. In the latter case, the query would
start with:

(“SELECT Tp(name), Tp(year_of_birth)…”)

Join
(“SELECT payment FROM employee e, monthly_account m WHERE (e.employee_no =
m.employee_no)”)

The Join command for data from different tables works well as long as the matching is done
with complete attributes (no wildcards). The privacy homomorphism guarantees that
identical unencrypted values will have the same ciphertext correspondent. For example,
Tp(employee_no) will be the same in table employee as in the table monthly_account.

Sorting
(“SELECT name, year_of_birth FROM employee SORT BY year_of_birth)”)

The ability to sort presumes the existence of a total order over the encrypted data. However,
Rivest et al. (1978a) show that PHs that preserve total order in spite of the transformation
cannot be even level-1-secure. Therefore, “SORT BY” cannot be conducted at all over
encrypted data. An approach concerning how to facilitate this with some involvement of the
client was recently proposed by Hacigumus et al. (2002).

In order to modify the encrypted database, additional operators are necessary for record
insertion, deletion or updating. However, they all depend on the discussed query operators.
Hence e.g. deletion is possible for specifically selected values, but not for wildcard values.
As a result, all records whose “name” attribute is equal to “Miller” could be deleted, but not
those with “name” attributes starting with “M%”, as discussed for the “Selection” operator.

Table 1 sums up these results:

OPERATOR FEASIBLE ON TP(D)? REMARKS

Selection Partially No wildcard selection possible

Projection Yes Attribute name not necessarily encrypted

Join Partially Only over exactly matching data

Sorting No Impossible on secure data

Table 1: Database query operators on transformed data

4.3 Arithmetic operations

All arithmetic operations discussed are principally modular operations. Yet on the plaintext
domain Zp, the very large prime p allows for the calculation of large sums and products
without creating remainder terms through division by p. Hence addition, subtraction and

Boyens, Günther Using Online Services in Untrusted Environments

multiplication can normally be used as if the algebraic space was the regular algebraic ring
(Z, +, *). Furthermore, as (Zp, +mod p, *mod p) is equivalent to an algebraic field, it allows for
the computation of multiplicative inverses. All these properties are transferred to the
algebraic space (Zq, +mod q, *mod q) after applying the transformation scheme presented in
section 3.2. The basic difference between (Zp, +mod p, *mod p) and (Zq, +mod q, *mod q) lies in the
fact that every unencrypted datum is converted into a cipher of almost the same bit length as
q, i.e. up to 256 bits. That means that e.g. the addition of salaries, say of 3275$ and 4023$
turns from the addition of 12-bit-integers to the addition of its 256-bit-long encrypted
correspondents.

In the following, we will discuss the four basic arithmetic field operations. Afterwards, we
will indicate for which aggregate operations the algorithm fits best.

Addition d1 + d2:= Tp
-1(Tp(d1) +(mod q) T p(d2))

The regular (non-modular) addition of the unencrypted data is mapped to the modular
addition of the encrypted numbers. It works for all d1, d2 ŒZp , as long as [d1+d2 < p], which
is not a strong condition because p is large.

Subtraction d1 - d2:= Tp
-1(Tp(d1) -(mod q) Tp(d2))

As Zp does not contain negative integers, this only works as long as d1 > d2. From [(d1-d2) >
0] and [(d1-d2) < d1 < p] then follows [(d1-d2) ŒZp]

Multiplication d1 * d2:= Tp
-1(Tp(d1) * (mod q) Tp(d2))

This works as regular (non-modular) multiplication as long as [d1*d2 < p]. This can actually
turn out to be a strong condition if the number of factors is very high.

Inverse Multiplication d1 * d2
-1:= Tp

-1(Tp(d1) * (mod q) Tp(d2)
-1)

This only works as the common "division" as long as d2 in fact divides d1. If division leads to
a remainder, one may still compute the multiplicative inverse of Tp(d2), but the decrypted
product does not correspond to the a readable figure (as d1 DIV d2, the integer division,
would). It should therefore only be used as the regular division when the property d2 divides
d1 can be ensured beforehand.

Table 2 sums up these findings.

OPERATION FEASIBLE ON TP(D)? CONDITIONS

Addition Yes d1+d2 < p

Subtraction Partially d1-d2 > 0

Multiplication Yes d1*d2 < p

Division Partially d2 | d1

Table 2: Arithmetic operators on encrypted data

Boyens, Günther Using Online Services in Untrusted Environments

5 Practical applications

5.1 Sample services from the HR area

In this section, we will discuss a few sample services based on the encrypted employee and
monthly_account tables presented in the previous paragraph. We think that HR data is
particularly appropriate for this purpose, for two reasons. First, sensitive data can be found in
various forms such as regular wages and bonus payments, absent and overtime hours, and
sometimes even church affiliation. Second, HR Management tools are often subject to
outsourcing and therefore represent a suitable application field for the proposed architecture.

S1: Mean monthly absent hours in specific departments

Formally, this figure is calculated as the average µi over the absent hours of the employees e
in department dep1

µdep1= (_(e.department= dep1) e.absence) / |{e | e.department= dep1}|

In order to calculate the mean absent hours for the ‘Finance’ department in August, the
following actions are required on the provider’s part.

1) Retrieve the absence attribute of all employees in the finance department.

SELECT absence AS department_absence FROM employee e, monthly_account m
WHERE (e.employee_no = m.employee_no) AND (e.department = Tp(‘Finance’))
Note that this query includes a join over encrypted data, namely the employee number in
both tables.

2) Calculate the sum over department_absence.

sum‘Finance’= _(e.department= Tp(‘Finance’) e.absence

3) Return the encrypted sum‘Finance’ and the plain record_count‘Finance’= |{e | e.department=
‘Finance’}| to the client.

4) The client decrypts the sum and divides it by the count to obtain the result µdep1 finally.

µ ‘Finance’= Tp
-1(sum‘Finance’) / record_count‘Finance’

Note that lacking the possibility of dividing the two numbers leads to at least some
involvement of the client. A good example for a service that does not need any kind of client
intervention is the multiplication of matrices, as only multiplication and addition is required.

S2: Standard deviation of payments among departments

This metric measures the income disparities among different departments. We will use a
service similar to S1 to calculate µi

* , the mean incomes per department.

_ all = ((_(departments i) |µall - µi
*|2) / |{ i | depi is department }|) _

with µall= (_(departments i) µi
*) / |{ i | depi is department }|

1) Compute the mean payments µi
*

 for all departments using a similar service to S1.

2) Compute the average µall over all µi
* 's using S1 again.

3) Compute the sum of the squared differences: squared_dev:= _(departments i) |µall - µi
*|2.

4) Return squared_dev and the number of departments department_count to the client.

Boyens, Günther Using Online Services in Untrusted Environments

5) The client decrypts squared deviation sum, divides it by the department count and draws
the square root.

Again, some client involvement is required. However the major part of the calculation is
done by the provider, which especially pays off if the underlying databases are large.

5.2 Performance and memory requirements of the architecture

In order to evaluate the proposed architecture, we created the employee and monthly_account
tables with n=1000 data records. We first built them with unencrypted test data, then
encrypting them using the proposed algorithm and a 32 bit, a 64 bit and a 128 bit key. As we
focus on the protection of sensitive data, especially the transformation of absent hours,
overtime and payment is relevant. The resulting tables have the following shape.

employee (Tp(employee_no), name, year_of_birth, department);

monthly_account (Tp(employee_no), month, Tp(absence),
Tp(overtime), Tp(payment));

The time and memory requirements for the table creation are shown in tables Table 3 and
Table 4.

No key 32 bit 64 bit 128 bit

Creation Time (sec) 9.111 11.818 13.199 19.35

Surcharge for encryption 0% 30% 45% 112%

Table size (KB) 84 120 208 232

Surcharge for encryption 0% 43% 148% 176%

Table 3: Creation times and disk space for the unencrypted and the encrypted employee table

No key 32 bit 64 bit 128 bit

Creation Time (sec) 9.405 11.951 28.236 51.139

Surcharge for encryption 0% 27% 200% 444%

Table size (KB) 80 208 348 456

Surcharge for encryption 0% 160% 335% 470%

Table 4: Creation times and disk space for the unencrypted and the encrypted monthly_account table

Furthermore, we compared the time required to perform the service S1 within the same
framework (Table 5).

No key 32 bit 64 bit 128 bit

S1: Average absence per dept. (ms) 88.2 92.684 95.404 97.762

Surcharge for encryption 0% 5% 8% 11%

Table 5: Service performance duration on unencrypted data and on encrypted data

Boyens, Günther Using Online Services in Untrusted Environments

Although only displaying a rough trend, these figures suggest that service performance
suffers only slightly. On the other hand, the time necessary to create the tables and the space
required to store the encrypted data are not insignificant.

5.3 Implementation issues

The implementation at hand is based on a JAVA applet that performs encryption and
decryption as well as the post-processing on the client side. The applet would be loaded by
the client every time the service is requested.

A more efficient approach would require the service provider to deliver a certified browser
plug-in, which contains the transformation scheme and needs to be installed and
parameterized by the client. The latter includes creation of the secret key. Sensitive data to be
transmitted would then be marked with a specific HTML tag that forces the plug-in to
encrypt the information before sending it.

Enterprise solutions could eventually take advantage of a proxy server through which every
IP packet needs to pass. The proxy could check every packet for marked-up sensitive data
and, if applicable, would transform the tag’s content (Figure 6). This would yield the
advantage that the secret key is only kept at the proxy and not on every client’s machine.

Plug-In Approach Proxy Approach

ClientClientClient

Plug-InPlug-In

ClientClientClient

ClientClientClient

Plain data Transformed data

Plug-InPlug-In

Plug-InPlug-In

Private
Key

Private
Key

Private
Key

Private
Key

Private
Key

Private
Key

Tp(d1)

Tp(d2)

Tp(d3)

ClientClientClient

Packet Filtering

ClientClientClient

ClientClientClient

Private KeyPrivate Key

Proxy
d1

d2

d3

Tp(d1|2 |3)

Plain data Transformed data

Figure 6: Implementation via plug-ins (left) and via proxy server (right)

Both approaches assume the existence of locally installed browsers. In the future, this may
not always be necessary, as new techniques like the remote GUI only require the presentation
layer to be processed at the customer site. With the data management completely shifted to
the central facility, transforming sensitive information must then take place at the (untrusted)
server location.

5.4 Opportunities and limits of the proposed approach

The proposed architecture should not be considered as a “one-size-fits-all” solution that
works for every kind of network services. It focuses on applications that require some basic
database and arithmetic operations on sensitive data. It is especially valuable for service
bundles whose main value lies in their variety and their completeness in many smaller,
granular services.

Boyens, Günther Using Online Services in Untrusted Environments

Different attributes require different encryption measures. The proposed algorithm is best
suited for numbers that will later be processed with arithmetic operators. Primary key values
in contrast often just serve as identification means, and are not subject to later processing.
Hence it would be useful to encrypt these values with a very secure cryptographic algorithm
as RSA (Rivest et al. 1978b). As the private key p has been picked already, it can be used to
encode the key values with this alternate algorithm.

Regarding this, the proposed software solution is not suited for complex calculation
problems, but for the aggregation of many single, rather simple services. A good example is
the calculation of aggregate HR figures discussed previously.

6 Discussion and further research

We presented an architecture that allows a service provider to conduct a restricted number of
services on encrypted client data. The fact that no unencrypted information is ever passed to
the provider implies ultimate privacy preservation in the case that the server is not assumed
to be trustworthy. The enabled services include basic arithmetic and database operations. A
good application area is human resource management, as the number of concerned data
records is often high and useful metrics can already be obtained by simply adding,
multiplying and dividing over a specific set of values.

The limited extent of the enabled services of course restricts the architecture’s fit into
arbitrary systems. However, it is still useful to outsource some computations, especially when
basic arithmetical operations are involved (e.g. for matrix multiplication). The proposed
approach could then be part of a hybrid service architecture.

As the service infrastructure requires at least some personalization in the form of secret key
generation and transformation scheme integration, the proposed approach would more likely
be useful in customizable ASP services than in highly standardized, fine-grained web
services. Lack of customer trust is still one of the major impediments in the ASP market and
thus promotes the rise of privacy-preserving service models such as this one.

Future research includes the integration of different encryption schemes for different attribute
types. Integer values, binary values and primary keys cannot be encrypted usefully with just
one transformation scheme. Moreover, it is crucial for the acceptance of such an architecture
that it can be easily installed and maintained. Therefore, a higher level of integration is
necessary when it comes to client functionality, both for Plug-In and for proxy server
solutions.

Acknowledgements
The authors would like to thank Sarah Aerni and Matthias Fischmann for helpful comments
on earlier versions of this paper.

References
Ahituv, N., Lapid, Y., Neumann, S. (1987). Processing encrypted data. In Communications of

the ACM 20:777-780.

Amazon (2002). Amazon.com Privacy Notice
[http://www.amazon.com/exec/obidos/tg/browse/-/468496/103-4360611-7850263].
Viewed 2002/11/07.

Boyens, Günther Using Online Services in Untrusted Environments

Asonov, D., Freytag, J. C. (2002). Almost Optimal Private Information Retrieval. In
Proceedings of the 2nd Workshop on Privacy Enhancing Technologies (PET2002), San
Francisco.

Boyens, C., Günther, O. (2002). Trust is not enough: Privacy and Security in ASP and Web
Service Environments. In Proceedings of Advances in Database and Information
Systems (ADBIS 2002), Bratislava.

Brickell, E., Yacobi, Y. (1988). On privacy homomorphisms. In Eurocrypt’87, Springer,
Berlin.

Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M. (1995). Private Information Retrieval. In
Proceedings of the 36th Annual IEEE Conference on Foundations of Computer
Science, pp. 41-50, IEEE, New York.

Darrow, B. (2000). Amazon.com Move Worries Privacy Pros. In Tech Web News September
4, 2000. [http://www.techweb.com/wire/story/TWB20000903S0001]. Viewed
2002/11/12.

Denning, D. (1982). Cryptography and Data Security, Addison-Wesley.

Domingo-Ferrer, J., Herrera-Joanconmartí (1998). A privacy homomorphism allowing field
operations on encrypted data. In Jornades de Matemàtica Discreta i Algorísmica,
Barcelona.

Hacigumus, H., Mehrotra, S., Iyer, B., Li, C. (2002). Executing SQL over Encrypted Data in
the Database Service Provider Model. In Proceedings of the ACM SIGMOD
Conference on the Management of Data, 2002.

Power, R. (2001). Computer Security Issues and Trends, 2001 CSI/FBI Computer Crime and
Security Survey. Vol. VII No. 1. Computer Security Institute, Spring 2001.

Rivest, R., Adleman, L., Dertouzos, M. L. (1978a). On Data Banks and Privacy
Homomorphisms. In Foundations of Secure Computations, Academic Press, New
York.

Rivest, R., Shamir, A., Adleman, L. (1978b). A Method for Obtaining Digital Signatures and
Public-key Cryptosystems. In Communications of the ACM 21,2.

Smith, S. W., Weingart, S. H. (1999). Building a High-Performance, Programmable Secure
Coprocessor. In Computer Networks, Special Issue on Computer Network Security,
31:831-860.

Stallings, W. (1999). Cryptography and Network Security: Principles and Practice. Prentice-
Hall.

Sweeney, L. (2001). Computational Disclosure Control. A Primer on Data Privacy
Protection. Ph.D. Thesis, MIT.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2003

	Using Online Services in Untrusted Environments: A Privacy Preserving Architecture
	Claus Boyens
	Oliver Guenther
	Recommended Citation

	tmp.1237268952.pdf.LQCcv

