
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1985 Proceedings International Conference on Information Systems
(ICIS)

1985

Occidental Versus Oriental I.S. Professionals'
Perceptions on Key Factors for Motivation
J. Daniel Couger
University of Colorado, Colorado Springs

Juzar Motiwalla
Institute of Systems Science

Follow this and additional works at: http://aisel.aisnet.org/icis1985

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1985 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Couger, J. Daniel and Motiwalla, Juzar, "Occidental Versus Oriental I.S. Professionals' Perceptions on Key Factors for Motivation"
(1985). ICIS 1985 Proceedings. 11.
http://aisel.aisnet.org/icis1985/11

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1985%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985/11?utm_source=aisel.aisnet.org%2Ficis1985%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Occidental Versus Oriental I.S. Professionals' Perceptions on
Key Factors for Motivation

J. Daniel Couger
Distinguished Professor

Computer and Management Science
University of Colorado, Colorado Springs

Juzar Motiwalla
Director

Institute of Systems Science
Singapore

ABSTRACT

A comparison of perceptions of analysts and programmers in Singapore versus the United
States identifies many more similarities than dissimilarities. The Singapore sample consisted
of 1,179 persons (31% of the entire I. S. population). The U. S. data base is comprised of more
than 8,000 persons. Similarities were statistically significant on 9 of 12 factors compared for
system analysts and on five of 13 factors compared for programmers. On six of the eight fac-
tors where programmers are significantly different, changes underway have a strong likeli-
hood of eliminating those differences. On the most important factor that distinguishes I.S.
professionals in the U.S from other U.S. professionals, individual growth need strength
(GNS), Singaporean I.S. professionals are not significantly different from their U.S. counter-
parts. This is the first of six studies comparing American I.S. professionals to I.S. profes-
sionals in Singapore, that they perceive motivational issues much like their American counter-
parts.

Introduction An earlier study by Couger and Zawackil compared
motivational data from seven countries in the far east:

In January and February of 1985 a motivation survey was Singapore, Taiwan, Korea, Hong Kong, Thailand,
conducted of computer professionals in Singapore. Malaysia and Indonesia. The research indicated more
Responses were received from 1,179 persons represent- similarities than dissimilarities between computer profes-
ing 32 organizations from government and industry. sionals in these countries. It also identified a number of
Since this constitutes over 31 percent of the total popula- similarities with U.S. computer professionals. However,
tion of approximately 3,800 computer professionals1, it the data points were too few to develop motivation norms
is an excellent sample. The Computer Board of Singa- for each country, as has been done in the U.S. by Couger
pore took on the responsibility of insuring that the survey and Zawacki3.
was representative. A major possibility of bias was elim-
inated by taking a 100 percent sample of representative The massive sample in Singapore enables such a compar-
organizations rather than a partial sample of all Singa- ison. The objective was identification of significant dif-
porean organizations. Careful selection of organizations ferences between the computer populations of the two
insured representativeness. countries. In the conclusions to the paper, we will discuss

other factors which relate to the question of the degree to
Survey responsiveness was aided by the Singaporean which Singapore is representative of the Southeast Asian
government objective to become the leading software motivational environment.
producing country in Southeast Asia. The National Com-
puter Board requested the survey and development of Over the years, some interesting results have been pro-
Singapore motivation norms for computer professionals duced by research on the differences in Western versus
to enable a comparison to the U.S. norms, as an aid in Eastern hemisphere management styles. The earlier,
determining if software objectives were realistic. better-known works were 71:e Silent Izinguage, by Hal14

105

and Natural Symbols: Exploration in Cosmology by ent level of knowledge and skills. The U.S. norms show
Douglass. In recent years Hofstede is probably the best- that GNS for system analysts is highest of any occupation
known researcher in this area. He has published a series ever measured, higher than any of the 500 occupations in
of papers in Academy of Management Review on this the Hackman-Oldham data base. The survey reveals that
research. For example, in "Motivation, Leadership and GNS for Singaporean analysts is not significantly differ-
Organization: Do American Theories Apply Abroad,"6, ent than that of their U.S. counterparts.
he identifies far more differences than similarities in
managerial styles as a result of comparing data from a The Singapore survey also shows that system analysts
variety of countries. Despite the body of evidence to the perceive a need for a richer job. Figure 1 depicts that sit-
contrary on management styles, it is our hypothesis that uation. In Figure 1 the U.S. norms are reflected by the
perceptions on motivation of computer professionals horizontal bar at the top of the chart, designed to provide
have little cultural dependence. Singapore is the first a common scale for the means for the two variables.
country where this hypothesis has been tested. Thus, GNS and MPS for the U.S. (left side of the figure)

align exactly with the horizontal bar. (MPS is a 3-digit
METHODOLOGY figure because it is computed from the core job dimen-
The survey instrument used in this research project was sions.) Singapore norms are shown on the right side of
the Couger-Zawacki version of the Job Diagnostic Sur- the figure. While GNS for Singaporean system analysts
vey (JDS) developed by Hackman and Oldham. The is not significantly different from U.S. GNS; MPS is.
validity and reliability of the JDS was substantiated in
19757. While preserving the integrity of the generic Table II indicated another area in common between the
instrument, Couger and Zawacki added sections peculiar two countries-problems in supervisory feedback. On
to the I.S. field. The modified instrument, called the the two variables feedback in general and feedback spe-
JDS/DP, was validated in 1977 [(3, Appendix V)]. The cific to goal accomplishment, system analysts in both
Couger-Zawacki, data base is quite rich, containing countries rate their supervisors low (Table H). Nor are
information on more than 8,000 U.S. computer per- differences significant on the two satisfaction variables:
sonnel and over 2,000 foreign computer personnel. The general satisfaction and supervisory satisfaction (Table
body of research using this data base has produced moti- III).
vation norms for 18 job types within the computer field.

Table IV identifies another area of commonality even
In addition to a tailor-made program to compute and though the two norms are significantly different (Pa.001
analyze survey results, the authors utilized the SPSS level). Social need strength (SNS) of Singaporean
package. These analytical tools were used to compare the analysts (4.83) is higher than that of their U.S. counter-
two populations against 27 survey variables. Definitions parts (4.25). Nevertheless, SNS of analysts in both coun-
of the variables whose results are reported in this paper tries appears to be significantly lower than that of other
are provided in Appendix II. professionals. The database on U.S. computer personel,

compared to the Hackman-Oldham data base on 500
other occupations, identifies this difference. Although
there is no data base on other Singaporean occupations,

Analysis of Results discussions with leaders in that country suggests that
Singaporean computer professionals also have much

COMPARING SYSTEM ANALYSTS lower SNS than other occupations.

The Singaporean system analysts have more in common As to why Singaporean analysts (and programmers, also)
with their U.S. counterparts than differences. Table I have higher SNS than comparable U.S. professionals, we
provides a comparison of results on the five core job must also speculate. In the presentation of these results
dimensions, determined by Turner and Lawrences as key to more then 150 managers across the Singaporean com-
to motivation. On two of the variables the difference sta- puter industry, there was a consensus that Singaporeans
tistically significant (ps.001). For the other three core job place great emphasis on teamwork-from childhood on.
dimensions, the differernces are not statistically signif- This early life conditioning appears to raise their SNS
icant. However, the responses on the two variables cause above their U.S. counterparts whose conditioning tends
the MPS (Motivating Potential Score) to be significantly to be more along the lines of individual accomplishment.
different; MPS is comprised by the five core job dimen-
sions.

COMPARING PROGRAMMERS
However, the key variable on determining difference
between the two populations is GNS (Growth Need Although there are differences between programmers in
Strength). GNS is the need for personal accomplishment the two countries, an area of similarity is their perception
and for learning and developing beyond a person's pres- on maintenance of existing applications. The Couger-

106

TABLE I
Comparison of U.1/Singapore System Analysts on Core Job Dimensions

(All responses on a scale of seven)

Core Job Dimensions U.S. Norm Singapore Norm

Skill Variety 5.55 5.22
Task Identity 5.35 5.42
Task Significance 5.75 5.37 *

5.30 5.25Autonomy
4.82 *Feedback From the Job 5.20

MRS 155 135 *

*Difference statistically significant at the p < .001 level.

TABLE H
Comparison of U.1/Singapore System Analysts on Feedback Variables

Variable U.S. Norm Singapore Norm

Feedback from Supervisor 3.95 3.91
Feedback of Goal Accomplishment 4.00 3.85

TABLE III
Comparison of U.1/Singapore System Analysts on Satisfaction Variables

Variable U.S. Norm Singapore Norm

General Satisfaction 5.10 -4.88
Supervisory Satisfaction 4.65 4.54

TABLE IV
Comparison of U.1/Singapore System Analysts on Social Need Strength

Variable U.S. Norm Singapore Norm

Social Need Strength 4.25 4.83 *

*Difference statistically significant at the p < .001 level.

107

-- 175

GNS , MPS
6.00 < b. u ; ,- , ; .,0 &' 155 ,-I

- 150 155
(US NORM) 9{ (US NORM)1

11:;jill|1.' "11.1 11, W,11, r -3,00

5,0 - ,.L,4 ," ,/".., 135 - 125

.11j'lj.ll!!!11',iWdl.11!.

4.0 «». -100
6 GNS 4094 MPS GNS MPS
"4„,:„I„„„,;li ·,4,

14#11111111'lil'lill'i'41,!!11!''.3.0 :
'111!111/111>111.:111'11,4:,.'

75

'1..1·lIit'Ii:!'11 1·1:!141,i·, *,91,11117'V11!14,
 2114.1414.1i,14169= - 50ll'y ! 1, ·) »c':!'i;·!Ih.1'1h;,

- 25

ii· ·iill;*jj :j.,;i.i,j:.4
1 MPS

US SINGAPORE

Figure 1

MPS vs GNS for System Analysts

Colter research9 revealed that MPS of a programmingjob different, changes underway have a strong likelihood of
in the U.S. is highly negatively correlated with amount eliminating those differences. On the most important
of maintenance performed. The research showed that factor that distinguishes I.S. professionals in the U.S.
MPS for personnel whose work is over 80% maintenance from other U.S. professionals, individual growth need
is only two-thirds that of personnel who spend twenty strength, Singaporean I.S. professionals are not signif-
percent or less of their time on maintenance. icantly different from their U.S. counterparts.

Figure 2 shows that Singaporeans have a similar percep- These similarities are even more surprising when the dif-
tion. The curves for the two countries are parallel. The ferences in demographics are considered. The analysis of
reason that the curves are not superimposed is that the demographic data reveals some differences between the
norm for MPS for Singaporean programmers is less than two populations. Those differences will be summarized
that for U.S programmers. here from the table provided in Appendix II. Concerning

age, 70 percent of the Singaporean respondents were less
One major difference between programmers in the two than 31 years of age, compared to 36 percent of the U. S.
countries is shown in Table V. The norms for Singapor- respondents. Seventy-one percent of Singaporean re-
ean programmers are significantly lower on all five core spondents obtained a BS degree or higher, compared to
job dimensions. However, on the key discriminating 57 percent of U.S. respondents. Seventy-two percent of
variable, GNS, the norm for Singaporean programmers Singaporean respondents have four years or less exper-
is not significantly lower than the U.S. norm. As a con- ience in the field, compared to 55 percent of the U.S.
sequence, there is a serious mismatch between GNS and respondents. Forty-eight percent of the Singaporean
MPS. Singaporean programmers have a need for chal- respondents are female, compared to 39 percent of the
lenging jobs-just as high as their American counter- U.S. respondents. In summary, Singaporean respondents
parts. However, they perceive their jobs to be deficient are younger, tess experienced, and better educated than
in skill variety, task significance, task identity, autonomy their U.S. counterparts. In addition, only 52 percent are
and feedback from the job. male, compared to 61 percent of U. S. respondents. How-

ever, the U.S. norms show an absence of significant cor-
After seeing the survey results, IS managers attending the relations between GNS and age, education or sex.
Singapore presentation generally agreed that they have
underestimated the needs of programmers and that they On the other hand, Singapore may not be representative
should increase the scope of work. They concluded that of Southeast Asia, despite the similarity in survey re-
both job enlargement and enrichment are needed. After sponses in the earlier survey of seven Southeast Asian
these changes are made, a longitudinal resurvey is countries. That survey was too small to make such pro-
planned. With job enlargement/enrichment, it is ex- jections. Singapore has some advantages over the other
pected that MPS will be raised to a level similar to that Southeast Asian countries. It has a relatively small popu-
of U.S. programmers. These expectations appear reason- lation (less than three million persons) and geographic
able, and, since GNS of the two populations is already size (less than 240 square miles). It is a prosperous coun-
statistically equivalent, the resurvey could be expected to try (favorable balance of trade) and has been governed by
indicate that programming norms of the two countries are a very popular political party for more than 20 years. All
as similar as norms for system analysts. these factors facilitate its ability to obtain consensus on

national goals, such as the objective to become a software
Like analysts, programmers responses for the two coun- leader. Government is employing considerable financial
tries are not significantly different on the following vari- resources to underwrite this objective. Economic incen-
ables: feedback on goal accomplishment, and super- tives for software companies are in place. But nowhere
visory satisfaction. Differences are significant for feed- is the support better illustrated than in the educational
back from supervision and general satisfaction, reflect- area. Students have strong financial support at both the
ing the problem of mismatch of GNS and MPS. technical school and university level. In addition, a num-

ber of students have scholarships to study abroad and
most of them are in Computer Science/I.S. programs inConclusions the U.S. The same applies to Ph.D. students. An ample
supply of these well-supported students insures that the

The survey results reveal that Singaporean and U.S, proper teaching cadre will continue to exist at the univer-
analysts and programmers have more similarities than sity level.
dissimilarities. Similarities were statistically significant
on 9 of 12 factors compared for system analysts and on Finally, Singapore is the only Southeast Asian country
five of 13 factors compared for programmers (the addi- where English is the standard educational language at all
tional factor for programmers was maintenance). On six levels in the educational system. The ability to easily use
of the eight factors where programmers are significantly U.S. journals, manuals, and books is highly advan-

109

160

150

140

AMOUNT 130

OF
120

MPS U.S.

110

100

90

Singapore80

00 -
20% 40% 60% 80% 100%

% OF MAINTENANCE

Figure 2

Effect of Percent of Time Spent on Maintenance
U.S. Versus Singapore Programmers

110

TABLE V
Comparison of U.S./Singapore Programmers on Core Job Dimensions

Core Job Dimensions U.S. Norm Singapore Norm

Skill Variety 5.25 4.33 *
Task Identity 5.00 4.52 *
Task Significance 5.45 4.90 *
Autonomy 5.15 4.57 *
Feedback From the Job 5.10 4.48 *

MPS 140 99

*Difference statistically significant at the p < .001 level.

tageous in achieving its software objectives. Communi- 6. Hofstede, G., "Motivation, Leadership and Organiza-
cation with American counterparts is greatly facilitated, tion," Organizational Dynamics, AMACOM, Vol.
compared with other Southeast Asian countries. A num- 9, No. 1, 1980, pp. 42-63.
ber of U.S. firms have already located subsidiaries in 7. Hackman, J.R. and G.R. Oldham, " Development of
Singapore and have begun subcontracting software the Job Diagnostic Survey," Journal of Applied
development to Singaporean organizations. Psychology, Vol. 60, No. 2, 1975, pp. 159-170.

8. Turner, A.N. and P.R. Lawrence, Industnat Jobs and
So, while this paper's title is valid in its stated compar- the Worker, Boston, Harvard Graduate School of
ison of occidental to oriental motivational environments, Business Administration, 1965.
Singapore may not betruly representative of either orien- 9. Couger, J.D. and Mel A. Colter, Maintenance Pro-
tal or Southeast Asian motivational environments. Addi- gramming: Improved Productivity Through Motiva-
tional research of this type will be conducted in other tion, Englewood Cliffs, NJ, Prentice-Hall, Inc.,
Southeast Asian countries to clearly determine the 1985.
answer to that question.

Nevertheless, this research project provides an interest-
ing comparison of computer professionals in different Appendix I
cultures. It is the starting point for the Couger-Zawacki
research project to compare motivational norms of com- Definition of Survey Variables
puter professionals throughout the world.

1. Key Job Dimensions: Objective characteristics of the
job itself.

BIBLIOGRAPHY A. SkiU Variety: The degree to which a job re-
quires a variety of different activities in carry-

1. Summary of Findings ofthe Computer Manpower and ing out the work, which involve the use of a
Salary Survey, Singapore, National Computer number of different skills and talents of the
Board, January, 1985. employee.

2. Couger, J.D. and R.A. Zawacki, Conpan'son of SE B. Task Identity: The degree to which the job
Asia Computer Professionals on Key Motivational requires the completion of a "whole" and
Variables, (UCCS Working Paper), Colorado identifiable piece of work-i.e., doing a job
Springs, 1984). from beginning to end with a visible outcome.

3. Couger, J.D. and R.A. Zawacki, Motivating and. C. Task Sign*ance: The degree to which the job
Managing Computer Personnel, New York, John has a substantial impact on the lives or work of
Wiley and Sons, Inc., 1980. other people-whether in the immediate or-

4. Hall, E.T., 71;e Silent language, New York, Fawcett, ganization or in the external environment.
1959. D. Autonomy: The degree to which the job pro-

5. Douglas, M., Natural Symbols: £rploration in Cos- vides substantial freedom, independence, and
mology, New York, Vintage, 1973. discretion to the employee in scheduling his/

111

her work and in determining the procedures to 3. Socia/Need Strength: This is a measure of the degree
be used in carrying it out. to which the employee needs to interact with other

D. Feedback from the Job Itse(f: The degree to employees.
which carrying out the work activities required 4. Goal Clarity and Acconplishment: These scales
by the job results in the employee obtaining measure the degree to which employees understand
information about the effectiveness of his or and accept organizational goals. Further, it taps into
her performance. the employees' feelings about goal setting participa-

2. San's/action Measures: The private, affective reac- tion, goal difficulty, and feedback on goal accom-
tions or feelings an employee gets from working on plishment.
his job. 5. Individual Growth Need Strength: This scale mea-
A. General Satisfaction: An overall measure of sures the individual's need for personal accomplish-

the degree to which the employee is satisfied ment and for learning and developibg beyond his/her
and happy in his or her work. present level of knowledge and skills.

B. Spec{/ic San'sfdctions: These scales tap several 6. Motivating Potential Score: A score reflecting the
specific aspects of the employee's job satisfac- potential of a job for eliciting positive internal work
tion: motivation on the part of employees.

B 1. Pay satisfaction
82. Supervisory satisfaction
B3. Satisfaction with co-workers

112

APPENDIX It

Demographics Comparison: US versus Singapore Survey Participants

Demographic Category U.5. Norm Singapore Norm

(Percentages)

Education
High School 4 12
Some College 39 17
85 50 64
MS 7 6
Ph.D. 1

Experience
Below l year 18 22
1-4 years 37 50

5-8 years 22 16
9-12 years 13 5

13-16 years 5 5
Over 16 years 5 2

Age
Below 31 36 70
31-40 42 28
41-50 15 2
Over 50 7 -

5ex
Male 61 52
Female 39 48

113

Learning from Prototypes

Vasant Dhar and Matthias Jarke
Graduate School of Business Administration

New York University

ABSTRACT
Structured methods for the analysis and design of information systems have largely focused
on representations and control mechanisms for the outcomes of the design process. Proto-
typing methods are more sensitive to critiques during the design process itself but do not pre-
serve knowledge about it explicitly. In this paper, a systems architecture called REMAP is
presented that accumulates design process knowledge to manage systems evolution. To
accomplish this, REMAP acquires and maintains dependencies among the design decisions
made during a prototyping process. It includes a model for learning general design rules from
such dependencies which can be applied to prototype refinement, systems maintenance, and
design re-use.

Introduction ulated explicitly by users or analysts. Second, when sys-
tems are developed in a piecemeal fashion following the

The process of large systems development is often itera- prototyping idea, analysts apply analogies to transfer
tive, involving continuous modifications to programs . experience gained from one subsystem to "similar com-
before a "satisfactory" design emerges. Designers have ponents" of another. Unfortunately, current develop-
attempted to use aprototyping approach whereby a work- ment methodologies preserve none of these aspects of
ing prototype system is assembled quickly on the basis of process knowledge, making the process of prototype
an initial assessment of a a problem situation, and then refinement and transfer of experience ad-hoc and sus-
refined repeatedly in response to critiques from users or ceptible to error.
design personnel. While this approach may offer signifi-
cant advantages over "structured" approaches in terms It appears that the systems development process would
of earlier user involvement, a major drawback is that the benefit greatly if the dependencies among decisons could
initial construction of the system and the process of suc- be represented explicitly, and more importantly, if the
cessive refinement can be haphazard, failing to take cog- general basis for them could be extracted dun'ng the
nizance of the rationales for the initial design decisions course of analysis and development. This could lead to a
and for successive changes in these decisions. more systematic modification of prototypes and im-

proved maintenance of full-blown implementations. Per-
This paper employs a case study in the oil industry to haps more importantly, this knwledge could be used to
analyze these shortcomings in some depth, and presents identify analogous features of different systems pre-
an artificial-intellignece based architecture called cisely, enabling the use of cumulative learning for sub-
REMAP (REpresentation and MAintenance of Process sequent designs in the same general application area.
knowledge) which enhances the iterative design proce-
dure typical for the prototyping approach by the capa- The paper is organized as follows: Section 2 begins with
bility of preserving knowledge about the design process, a brief description of the prototyping process; detailed
and applying this knowledge in analogous design situa- real-world examples are then used to show the need to
tions. maintain process knowledge. A formal model of our

approach is presented in section 3, along with an over-
The case study has revealed several types of process view of a partial implementation of the REMAP archi-
knowledge that appear to be central to systems develop- tecture. Section 4 provides a discussion relating the
ment. First, the design process consists of a sequence of model to previous work in systems analysis and artificial
interdependent design decisions. The dependencies intelligence. We conclude with a summary of possible
among decisions are typically based on general applica- applications which may benefit from the REMAP
tion-specific rules; however, these rules are seldom artic- approach.

114

The Need for Process Knowledge diagram is a network where the nodes represent pro-
cesses, external entities, or data stores (files), and
directed arcs represent the data flows from one node to

REVIEW OF PROTOTYPING another. Process nodes are frequently called "bubbies";
each bubble can be decomposed into a lower-level data

Prototyping is an iterative systems design and develop- flow diagram. Bubbles at the bottom level have asso-
ment methodology. Figure 1 provides a highly simplified ciated mini-specs on which the program designs are
illustration of the main steps involved (Jenkins, 1983). based. Data flow and data store information is managed
After an initial design has been established, the method in data dictionaries, Figure 2 shows the notational con-
follows an assessment/revision/enhancement cycle of ventions used in this paper.
working prototype refinement. Driven by user critiques,
this cyclic process continues until a satisfactory system,
the "operational prototype", has been inplemented Part of the structured top-down design of OC's Sales sub-

(right branch of Figure 1). However, if systems require-
system is illustrated in figures 3 through 6. Figure 3

ments change subsequently (dashed line in Figure 1),the
shows level 0 of the system. In this example, since Sales

system leaves the steady state achieved in the "opera- comprises the entire system, this can also be used as the

tional prototype" and enters a new refinement cycle. In
context diagram which depicts the relationship ofthe sys-
tem to external entities. Figures 4,5, and 6 are data flow

large systems development, where a single user cannot
completely understand the reprecussions of requested

diagrams for levels 1 and 2 of the sales system. Level 2

changes, designers frequently employ a "protocycling., (fgures 5 and 6) are the bottom level decompositions ofthe bubbles 1 and 3. Each ofthe bubbles at this level have
approach which permits user critiques at multiple levels
of a quasi life-cycle approach such as the data flow dia- an associated mini-spec (not discussed here).

gram or the program specification level (Balzer et al., We now illustrate the problem of design adaptation using
1982). three scenarios. Each requires a different extent of modi-

Prototype refinement as well as requirments modification fication to the original design, and illustrates the need for

frequently involve a reconsideration of the design devel-
a different aspect of process knowledge. All of the

oped in earlier cycles. It is the purpose of the REMAP
examples involve external requirements changes (dashed

approach reported in this paper to accumulate the knowl-
line in Figure 1) but similar problems also occur during

edge gained in every cycle in order to focus and facilitate the refinement cycle.

later revision and enhancement steps of the cycle.

SCENARIO 1: THE ROLE OF
A CASE STUDY GENERAL AND SPECIFIC

KNOWLEDGE
In order to establish a context for the discussion, we shall
use an example obtained from the case study of a very "London Sends Formatted Invoices". In the original
large systems analysis and design project. The problem design, the difference between the New York and Lon-
involves the design and subsequent maintenance of a don invoices was that the former were accessable for-

series of sales accounting systems for different products maned whereas the latter were received unfonnatted, on
of an oil company, here referred to as OC. OC sells oil magnetic tape. Hence, a minor "convert" operation was
and natural gas-based products with different character- required to bring the inputs into a format required by the
istics to its subsidiaries and to outside customers in dif- "verify and correct on line" operation (bubble 1.1).
ferent parts of the the world. Sales Accounting at OC's
Corporate Headquarters requires generating various As a simple change, suppose that the London office
integrated reports for purposes ofaudit and control. Input begins to send corretly formatted invoices on magnetic
to Sales Accounting is based on invoices generated from tape to central headquarters. What kinds of design modi-
transactions in a number of offices in the U.S. and fications are required?
abroad.

It is clear that the change is not at a high enough level to
For the sake of readability, the system representation is affect the more abstract parts of the design in figure 4.
restricted to the Structured Analysis level (DeMarco, However, at the next lower level (figure 5), the "con-

1978; Gane and Sarson, 1979). Note, however, that the vert" bubble is not required anymore since the London
problems described here, and our approach to solve invoices should now proceed directly for verification.
them, are not restricted to this level but appear in any
prototyping situation. In order to be able to assimilate this minor change, the

system must know that in the existing design, the convert
Systems designs are described in terms of data flow dia- bubble is dependent on the existence of the dataflows rep-
grams at various levels of abstraction. A data flow resenting London invoices. On recognizing that London

115

DEVELOP THE INITIAL

PROTOTYPE SYSTEM

1'
M\& PREKOFVPE

4

IS THE

 OPERATIONAL< PROTOTYPE < /WORKING
/ENHANCED

// PROTOTYPE SATISFACTORY? IpRarGrypE

A

«S WORKING

PROTOTYPE

REVISE AND ENHANCE
THE PROTOTYPE

Figure 1

Application System Prototype Model
(Adapted from Jenkins, 1983)

invoices are now not unformatted, it should be able to SCENARIO 2: THE ROLE OF
detect the fact that conversion is unnecessary. Further, it ESSENTIALITY
should also know that in general, formatted invoices
proceed directly for on-line verification. Based on this, "London and Tokyo Will Not Sell Fuels Anymore".
it should direct London invoices to the "verify and cor- This represents a more radical type of change than the
rect on line" operation. first. Intuitively, it seems clear that there are likely to be

design changes as well as major related modifictions in
In summary, we have used two types of knowledge in several section of the code. In this case, lack of invoices
understanding the existing design and the effects of from Tokyo obviates the need for a manual add and edit
changes to it: general knowledge about domain-specific operaton at level 1 (a manual input operation was re-
constraints (i.e., unformatted invoices require conver- quired because these werepaper invoices). However, the
sion), and spect<tic knowledge about the purpose of exist- auto load and edit is still required because New York
ing design objects in the form of rationales for existing invoices must still be processed.
design choices (i.e., the existence of the convert bubble
in figure 5 depends 00 the existence of unformatted This example illustrates the idea of essentiality in design;
invoices). the tokyo invoices dataflow was an essential input for

116

C.X

(libel) : EITERNAL COMPUTER SYSTEM

(tabil) : INTERNAL COMPUTER SUBSYSTEM

<leb,1) : DATA STORE / FILE

_1
: EXTERNAL BUSINESS ENTITY<libet)

(libel) · , : DATA FLOW

Figure 2

Data Flow Diagram Conventions

manualaddandedit. Ina more general sense, theputpose those operatons is not deleted since it is shared with the
of a manual add and edit operation was to process paper auto load and edit process.
invoices. The other inputs to it (the discount payable
slips, codes and expenses) were auxilia,y, and in fact
dependent on Tokyo invoices. 1 In effect, bubble 1 stays SCENARIO 3: THE ROLE OF
(although some of its lower level components corre- ANALOGY
sponding to London operations are removed) while
bubble 3 must be deleted. The revised level 1 dataflow "The Venezuela Office Will Sell Fuels". This corre-
design is shown in figure 7. sponds to a high level change that is likely to induce wide-

spread changes into the existing design. First, some addi-
lt should also be noted that although the manual add and tions must be made at level 1. The types of changes,
edit operation is no longer necessary, some of the lower however, depend on the nature of the sales invoices from
level operations associated wth it are still required in Venezuela. If the invoices are computerized, an input
order to process New York invoices. At the program- into bubble 1 is required whereas paper invoices would
ming level, this means that the code corresponding to call for introducing a manual add and edit operation.

117

'11 11 11
pRODUCT TOKYO SALES
SUPPLY OPERATIO,5

il 11
ACCOUNTS CORPORATE

CONTROLLER

SALO
ACCOUNTIE

/Tr\ :Tmn C 4
LONDON GENERAL

INVOICIE LEDGER

C.2 C 3

MABIETING MIV TOBI

SYSTEM INVOICING
SYSTEM

Figure 3

Sales Accounting Systems Context Diagram

118

DIScouIrr
PAYABLE SLIP

SALES fj

OPERATIONS
TOKYO

CODES

MTV YORK ASSIGNED CODES REFERENCE

SALES INVOICES FILES TOKYO DIRECT
SALES INVOICES/ET-.1 flip RATE

/ NEV YORK NEW YORK DIRECT STANDARD 3

1 1}NOICIMG J SALES INVOICES * * EXP. FILE
MANUAL

\ SYSTEM / ADD AND AUDIT TRAIL LOGEXPENSE EDIT - WDON STATISTICAL AUTO RATE
SALES INVOICES LOAD _LIAND SALES

/-1 1 \ LONDON DI]IECT EDIT INVOICES CORPORATE
\SALES INVOICES ¥ CONTROLLER

/ LONDON 1 SALES INVOICE DATABASE
INVOICING LONDON ASSIGNED A

SYSTIM SALES INVOICES REFERENCE
SALES FILES

ERROR EXCEPTION INVOICES

REPORT REPORT
11 CODES

AUDIT TRAIL
COMORATE 4 LOG 4
CONTROLLER

. 07IRATIONAL
REPORTING

CORRECT
AND SALES INVOICES

CHANGE
2-1 NOTICE

CHANGE CORRECTIONS/CHANGES I ACCOUNTING
EXCEPTION REPORT REPORTS

SALES
OPERATIONS ODES -LI OPMATIONS -LI

REFERINCE 4 REPORTSSALE CORPORATE
FILES

OPERATIONS CONTROLLER

Figure 4

Fuels Sales (Initial)

119

*g-E--i \ LONDON STATISTICAL
1 SALES]NVOICES

LONDON
INVOICING

SYSTEM /1-11
LONDON DIRECT 7
SALES INVOICES CONVERT j

LONDON ASSIGNED 1-)SALES INV02CES SALES INVOICE
DATABASE

a
ISTANDARD EXPENSE

FORMATTED [Fllt
LONDON · INVOICE
SALES EXPENSE RECORDRATE

REFERINCE
C.3 FILES

NEW T ORX NEWTORK CODESINvOICING DIRECT 1.2
SYSTEM SALES VERIFY

INVOICES AND VERIFIED SALES CREATE
CORRECT INVOICE

NEW YORK ASSIGNED ON-LINE RECORD
VERIFICATION

LOG
NON- INSIRT]ON NON-STANDARD
VERIFIED LOG COSTSSALES

AUDIT TRAIL

1.4 FILE //'T3
PRODUCE i PRODUCE \

EXCEPTIONERROR REPORTREPORT

ERROR EXCEPTION
REPORT REPORT

,

Figure 5

Auto Load and Edit

120

SALES INVOICE
DATABASE

i| DISCOUNT PAYABLE
SLIPS STANDARD EXPENSESALES

FILEOPIERATIONS
INVOICE

 . EXPENSE RECORDIATE
REFERINCE
FILES

- |CODES
r/3.11 1 ,>--«TOKYO DIRECT ; VERIFY WTOKYO AND VERIFIED SALES -/ CREATE \SALES INVOICES

CORRECT 7 Divotcr J
ON-LINE ji RECORD)

VIPIFICATION
LOG

/INSERTION NON-STANDARD

4 w COSTS
AUDIT TRAIL .33-\FILE

i PRODUCI 3
EXCEPTION
REPORT

EXCEPTION
REPORT

Figure 6

Manual Add and Edit

121

NEW YORK ASSIGNED CODES REFIRENCE
SALES INVOICES FILES

,/C.3 3

/NEVIOU 1
1]NVOIC:NG

1 NIV YORK DIRECT STANDARD
/ SALES INVOICES Err. FILE\ SYSTEM /

EXPDEI
AUTO RATE

LOAD
AND
EDIT

SALES INVOICE DATABASE
8 REFERENCE

SALES FILES

ERROR EXCEPTION INVOICE

REPORT REPORT
11 cODES

AUDIT TRAIL
CORPORATE 4 LOG
CONTROLLER

4

OPERATIONAL

//21 REPORTING

/ COR»rcr

CHANGE l · AND SALES INVOICES

il NOTICE f CHANGE CORRECTIONS/CHANGES I
0

ACCOUNTING
REPORTS

SALIS
OYIRATIONS ODES .L OPERATI¢»15 -g

REFERENCE 4 REPORTS
FILE. SALES CORPORATE

OPERATIONS CONTROLLER

Figure 7

Fuels Sales (Modified)

122

Similarly, at the next lower level, the operations, Remap: An Architecture for Process
required would depend on other, more detailed features
of the invoices (i.e. are they formatted, unformatted, Knowledge
etc.).

It is apparent from the examples that application-specific

This example illustrates the use of analogy in reasoning knowledge plays a key role in reasoning about a design.

about a new situation. Design additions at the various This raises an important question, namely, how is this

levels depend on how "similar" the Venezuela invoices knowledge to be acquired by the system?
are to existing ones, and the design ramifications of these
similarities and differences. This type of reasoning re- In most projects involving th construction of a knowledge

quires a system to carry out an elaborate match between based system, the system builder constructs the model of

design parts the system currently knows about, and a new expertise by first specifying a representation, and then

design in order to draw out their analogous features. accreting the knowledge base in accordance with the pre-

Specifically, it requires some notion of what the inipor- cepts underlying the chosen representaion. Unfortu-

tant dimensions are in the analogy being sought. In this nately, large scale application developments take place in

example, relevant attributes in drawing the analogy are a wide variety of domains that may have little in com-

the medium of the invoices, that is, whether they are com- mon. This uniqueness of each application situation dis-

puterized or manual, and whether they are formatted. courages construction of a knowledge base that might be

Once the important features are realized, the design rami- valid for a reasonable range of applications.
fications become clear.

If a knowledge based system is to be able to support the
process of systems analysis and design, it must have an

SUMMARY: THE NEED FOR initial representational framework, and mechanisms to

TELEOLOGICAL KNOWLEDGE augment this framework with domain specific knowledge
that captures the purpose of design decisions and rela-

1n walking through the examples, we have attached fairly tionships among them. As more is learned, it should be

rich interpretations to the various design components that possible to use this process knowledge to reason about

are implicit in the design. These interpretations derive design changes, and draw analogies in extending a design

from the putpose of the application which cannot be to deal with new situations,
determined form looking at the resulting design alone.
Since the design is an artifact (Simon, 1981), its teleo- A knowledge-based tool needed to support such a process

logical structure is imposed by the designers' conception requires four major components:

of the problem. This conception may change repeatedly
during the evolutionary design process. In other words, 1. a classification of application specific "concepts"

there is no a priori "theory" relating problems to de-. into a taxonomy of design objects, and mechanisms

signs; rather, the rationale for a particular design follows for elaborating this structure as more knowledge is

from a subjective world-view of the designer. acquired by the system;

If a program is to be able to reason about the types of 2. a representation for design dependencies and

changes illustrated in the examples, it must have a formal mechanisms for tracing repercussions of changes

representation for the knowledge that reflects the teleol- in design;

ogy of the design. Because such highly contextual knowl-
edge about a potential application area is impossible to 3. a learning mechanism for extracting general bases
design into a system a priori, the knowledge must be for dependencies among design decisions made by

acquired by the system during system design. To do this, the analyst;

the program must be equipped with mechanisms that
enable it to learn aobut design decisions in an application 4. an analogy based mechanism for detecting simi-

area that it knows nothing about at the start of the design. larities among parts of similar subsystems. This

It must then apply this growing body of acquired knowl- mechanism should make use of the classifications

edge to reason about subsequent modifications to an in the generalization hierarchy to draw analogies

existing design, or to construct new designs based on new between systems parts.

but similar requirements. In the following section, we
describe some broad aspects of an architecture called In the following subsections, we develop a knowledge
REMAP that is geared toward the extraction and manage- representation for this process knowledge, and present a

ment of the process knowledge involved in systems anal- model of how it might be extracted and used by the
ysis and design. REMAP system architecture.

123

REPRESENTING DESIGNS USING OBJECT TYPE
STRUCTURED OBJECTS type_name: dataflow

child__of : generic_object
The REMAP model centers around design objects. The parent_of .: unknown
designer defines instances of such objects, whereas the components: (parLof : dataflow;
REMAP system maintains a generalization hiemrchy of medium : < string >;
object types. The structure of an object type definition in from, to : process)
the hierarchy is as follows: operators : (redirect, nostart, noend)

OBJECT TYPE OBJECT TYPE
type_name: < string > type_name : transform
child_of : < set of object types> child_of : generic object
parenLof : < set of object types> parenLof (process, external, datastore)
components: < set of slots > components: (inputs, outputs: < set of dataflows >)
operators : < set of procedures/methods > operators :()

The "child-of ' and "parent-of ' components position an OBJECT TYPE
object type in the generalization hierarchy. "Compo- type_name : process
nents" slots describe typical aspects of an object instance child_of transform
ofthe given type. As an example, consider the initial top- parenLof unknown
level definition of a generic object type: components: (part_of : process)

operators : (expand, noinput, nooutput)
OBJECT TYPE

type_name: generic_object OBJECT TYPE
child_of .() type-ame: datastore
parent_of . unknown child__of : transform
components : (identifier : < string > parent_of : unknown

type : < string > components: (data_structure: < set of data
because_of: < set of objects >) elements>)

operators . (define, remove) operators : (define_structure, noinput, nooutput)

This object type has no parent since it is at the top of the OBJECT TYPE
hierarcy, and its children are yet to be specified. The type.name: externaLentity
"because-of' slot defines the raison d'etre of an object child_of transform
instance and will be further discussed in the next subsec- parent_of : unknown
tion. components:()

operators :()
A "generic" object provides very little structural infor-
mation about its semantics. It is therefore useful to spec- External entities could be further broken down into data
1* subopes where additional slots are defined in order to source, data sink, and interactor. The slot value "un-
capture the meaning ofobject instances of such a subtype. known" refers 10 the fact that the slot values should be,
This can be represented using a generalization hierarchy but have not yet been, defined.
of object types as shown in figure 8. Some instances of
dataflows and transforms used in the three scenarios of As an example of instance dejinitions, consider the fol-
section 2 are shown in figure 9. lowing description of the "London" external entity and

one of the sales invoice dataflows generated by it (cf,
In principle, the system could begin with the generic figure 9).
object type and then learn all subtypes from scratch.
Since such a procedure would be rather cumbersome for [identifier :London
the designer, the system should be provided with a small type : externaLentity
initial knowledge base. In the Structured Analysis because_of:()
example used throughout this paper, this consists of the inputs .()
definition of object types corresponding to data flow dia- outputs (London-direct-sales-invoices,
gram conventions. The five major components are de- London-assigned-sales-invoices,
fined below (cf. figure 8): London-statistical-sales-invoices)

124

GENERIC
OBJECT

DATArLOV TRANSFORM

DATASTORE EXTERNAL ENTITY PROCESS

DATA.SOURCE INTERACTOR DATA-SINK

Figure 8

Initial Object Type Hierarchies

125

DATAFLOW

1357 IDET

INST.

LONDON [*10]REaT NDONSTATISTICAL™\ MIW T ORK ASSIG}JED
SALES INVOICES SALES INVOICES SALES INVOICES

,,

LONDON DIRECT NEW YORK DIRECT
SALES INVOICES SALES INVOICES

TRANSFORM

IS-A 15-A 15·A

EXTER]JAL PROCESSDATASTORE ENTITY

Ilib. INST.

NEWTORI f LONDON / AUTO LOAD
/ < AND EDIT j

--- ---

Figure 9

Initial Generalization Hierarchy

126

[identifier London-direct-sales-invoices In order to demonstrate the usefulness of this dependency

type . datafow network, let us reconsider the first scenario where the

because_of : (London) London invoices become formatted. In this case, the con-
part_of :() vert operation in no longer required since its essential

medium : magnetic tape support elements have been eliminated. Similarly, in the

from : London second scenario where the London office does not sell
to : auto-load-and-edit} fuels anymore, no more invoices are generated from

London. Again, no conversion operation is required.

Similarly, instances corresponding to other object types However, the auto load and edit operation is still required

can be defined. Note, that the instance definitions have all because New York invoices are still to be processed.
the slots defined in their immediate type, as well as inher-
iting those of their supertypes. In general, an existing dependency network such as the

one in figure 10 can be used to assess certain ramifica-
This representation allows us to define data flow dia- tions of a change, a process commonly referred to as
grams completely. It is also possible to perform "syntac- beliefmaintenance (Doyle, 1978). In the above example,

tic" consistency checks using information in the hier- conversion is not required for London invoices. How-

archy. As a simple example, if a bubble has no inputs, it ever, the dependency network does not indicate how
must be removed or new inputs must be defined. How- these invoices shouM be treated because this knowledge

ever, application-specific information is not maintained is not expressed in the network. In order to assess the
in this representation. For instance, if London invoices complete repercussions of the change, additional knowl-

become " formatted", ramifications of this change can- edge of a more general nature is required. For example,
not be assessed using the knowledge in the hierarchy to realize that formatted London invoices should be

alone (i.e., without using the "because-of' slot). To treated like New York invoices (and should proceed
reason about such situations, additional knowledge struc- directly for verification), it is necessary to know that in
tures are required, which we describe below. general formatted invoices are verified directly. This

knowledge can then be used to reason about all object
instances corresponding to formatted invoices.

REPRESENTING RATIONALES

Design decisions at the Structured Analysis level define
bubble and dataflow objects. The rationale or justijica- RULE FORMATION
tion of a decision consists, in turn, of other decisions. To
illustrate, consider figure 10 which shows a network of Dependency information as indicated in figure 10 is rep-
dependencies among a few of the dataflows and bubbles resented in terms of obiect insmnces. For example, the

considered so far. Specifically, the auto-load-and-edit is auto-load-and-edit (bubble 1) is justified by the two kinds
justified by the existence of New York and London of dataflow objects originating from London. An object

invoices, which form its "set of support" (Doyle, 1978) type corresponding to this invoice dataflow might have
or the cumulative reason for its existence. The convert slots such as data, amount, or office originating the
operation is justified because London sales invoices are invoice. However, not all slots are relevant to the justifi-
not formatted correctly. Similar dependencies can be cation. For example, the auto-load-and-edit is performed
identified for other decisions. because the invoices are computerized, regardless of

their other features. If the system is to be able to learn
The complete dependency network corresponding to a anything from existing designs, it must also have access

design may be viewed as incorporating the overall pur- to the general rules on which the dependencies have been
pose of a set of design decisions. The general form of a based. 1n effect, the rules differentiate the important fea-
dependencyis: tures of the relationship from the incidental.

(< decision > < justification >) REMAP allows the designer or user to generalize spe-
cific dependencies to design rules during the process of

where < decision > and <justification > are both object system analysis and design. This requires articulation of
instances. In REMAP, each design object maintains a the justifications for choices, as well as of the general
cumulative set of justifications in its because-of slot that basis for the justifications. A more crucial issue however,
constitutes its set of support. is what jbnn these rules might take.

127

NEW YORK

NEWT ONX DIFICT AUTO LOAD
SALES INVOICESCLIUS> AMD EDIT

LONDON ASSIGNED LONDON DIRECT
SALES INVOICES SALES INVOICES
(UNFORMATTED) (UNFORMATTED)

CONVERT

VERIn AND
CORRECT ON·LINE LONDON

LEGEND: A I : ll 15 JUSTIFIED 31 A

Figure 10

A Dependency Network

On the other hand, the rule can be expressed in terms of types. In looking at the different invoices-which are
objects and their slot values, for example: instances of type dataflow-it is apparent that d((Terent

attributes are relevant in describing the various instances.
Idataflow For example, paper invoices might be distinguished by

medium: computerized} = = > verify on line their color, an attribute that is irrelevant for describing
computerized invoices. Thus, most slots in the extended

[dataflow . dataflow type definition would remain unfilled for many
medium: paper} = = > perform conversion objects.

If the medium slot has not been defined before, the type This situation can be expected to occur in the early stages
definition of dataflow can first be extended to include it. of the system analysis process, when the system is still
Nevertheless, there is a major problem with this scheme. unfamiliar with the application area. New design deci-
Recall that so far, the generalization hierarchy for data- sions could be added and instantiated as instances of an
flows is extremely shallow including only one type, existing type although they differ qualitatively from other
namely the dataflow (cf. figure 9). Adding additional instances, and might therefore be better off described in
slots for each rule will soon yield very complex object terms of a different bundle of attributes.

128

When instances vary sufficiently, it is an indication that mode. Here, the designer may want to change or add to

the generalization hierarchy must be extended to include certain parts ofthe design. Again, feasibility and possible

more specific subtypes. For example, extending the gen- learning opportunities induced by the change can be
eralization hierarchy in figure 9 would involve creating studied in the belief maintenance and learning modes.
two new types, namely paper-invoices and compu- The interaction of these components of the REMAP
terized-invoices and re-classifying the existing instances architecture is described below in "Structured English."

in light ofthis new classification. Further, computerized-
invoices can then be broken down into magnetic-tape- Add-mode:
invoices and on-line-invoices if appropriate.2 The recon- l. DOWHILE user is entering object instances.
figured generalization hierarchy would then appear as in 2. Accept object instances.
figure 11, and in contrast to the rule representation 3. IF enabling conditions of a rule are satisfied by
above, the rule could then be stated in terms of the newly instances
defined object types. THEN 3a. Create dependencies generated by

rule.
To illustrate, such rules might appear as: 3b. Invoke belief maintenance.

ELSE 3c. Accept dependency.
[computerized-invoices} = = > perform auto-load- 3d. Invoke Learn-mode

and-edit
Learn-mode:

[paper-invoices} = = > perform manual-add-and-edit 1. Extract essential features (slot values) of objects.
2. IF slot value is an object instance

It should be possible to use these rule structures in two THEN 2a. Note its type
ways. First, if an operation such as auto-load-and-edit is ELSE 2b. IF needed slot does not exist
part of a design and has one or more computerized inputs THEN Create-new-type-mode.

coming into it, these should be added automatically to the 3. Propose generalization (rule) in terms of the iden-
operation's set of support. Second, if no such inputs are tified or defined types.
in the design, the rule can be used to compare "ex-
pected" reasons for the operation to the justifications Create-new-type-mode:
provided by the user, or to suggest changes in designs 1. Record context (slot values) of object instance.
that appear "inconsistent" with the knowledge in the 2. Define new data type corresponding to relevant slot
rules.3 of this instance. Establish an IS-A link to parent-of

of the object instance.
3. Create a new instance of the new data type.

OVERALL CONTROL STRUCTURE 4. Assign slot values to the new instance correspond-
ing to the old instance.

In order to incorporate new knowledge and to reason 5. Destroy the old object instance.

about user critiques, the model requires an overall con-
trot structure that enables it to switch among design sup- Critique-mode:
port and knowledge acquisition modes. Figure 12 pro- 1. Accept user critique in the form of negation to
vides a high-level transition network representation of existing decision, or addition to design.
the main modes. 2. IF negation

THEN invoke belief maintenance
The add mode is the usual starting point for a new sys- ELSE invoke Add-mode.
tem. The designer can add a set of proposed new design
objects and their associated dependencies. The belief
maintenance mode is responsible for checking the con-
sistency of proposed changes with respect to existing Relationship to Previous Work
object types and rules. The letming mode interacts with
the user in order to establish a generalization of depen- The REMAP concept attempts to integrate the abstrac-
dencies that are not derivable from existing rules, pos- tion concepts of life-cycle methods with the support for
sibly adding new rules and specifying new object types. user critiques provided by prototypes. It is therefore
The system then moves into the belief maintenance mode appropriate to briefly point out the capabilities and lim-
in order to check the compatibility and consequences of itations of each of these parent areas, as compared with

the newly acquired knowledge. the REMAP approach.

If there is an existing design to be improved, or reused Probably the most advanced ofthe life-cycle methods are
for another system, the system will start in the critique the Structured Methodologies. They offer semi-formal

129

DATAFLOW

15-Ai S-A

/' COMPUTERIZED ') PAPER

< INVOICES / INVOICES

IS-AIS-A

Kiiks.TAI& DISK FLOW ,

 -,-„fLow

r INST. INST.

 41:ST. j
NEW YORK ASSIGNED)

 O ES , VIO CE < SALES INVOICES /

INST. INST.

CLONDON ASSIGN / NEW VORK DIRE h
<SALES INVOICES \.2 LES INVOICES

I----

Figure 11

Reconfigured Generalization Hierarchy

NEW ADD / BELIEF LEARNING
DESIGN ANALOGY * MAINTENANCE

DESIGN » CRITIQUE
REVISION

Figure 12

State Transition Network

130

representational tools (data flow diagrams, data diction- tion-specific knowledge in terms of an "axiomatic"
aries, HIPO's, etc.) for top-down strategies in each of the model that can propagate certain types of changes to the
life-cycle stages (Zachman, 1982; DeMarco, 1978; Gane object level where design decisions are represented. This
qnd Sarson, 1979; Yourdon and Constantine, 1978, Orr, approach is similar in spirit to Davis' (1979) ideaof using
1981). These methodologies were developed in the late "meta models" to maintain and reason about object level

1970's as a generalization of the earlier work on struc- knowledge contained in the MYCIN system (Shortliffe,
tured programming. 1976). Several other knowledge base management com-

ponents of AI systems have been structured along similar
tf sufficient time is available for a careful design, life- lines.
cycle methodologies result in well-documented original
designs from which the programs are constructed. How- While this approach has proven successful in situations
ever, subsequent modifications are typically documented where the scopeof applications known to the meta-model
only at the program level whereas the design documents can be defined in advance, it has fundamental limitations

remain unchanged. After a few such changes, the pro- if the application domain is not known a priori. Under

gram bears little resemblance to the original design. As such circumstances, the high level model, even in defin-

a response to this problem, some researchers have pro- able, may become general to the point of missing the sub-
posed preserving a computer-based representation of the tleties involved in an application area. What is needed
design. For example, PLEXSYS (Konsynski et. al., instead, is a mechanism by which the high level model
1984; Kotteman and Konsynski, 1984) uses a hierarchy itself can be synthesized on the basis of experience in the
of so-called "dynamic metasystems" to describe designs application area. Consequently, REMAP follows an
and detect inconsistencies between the existing design "open systems" approach (Hewitt, 1985) that begins by
and proposed changes. representing knowledge about relationships among in-

stances in a domain in terms of dependencies, and gener-
Another practical response to the design maintenance alizes some of these into a growing corpus of rules. In this

problem has been the introduction of design and pro- way, the process knowledge involved in building an
gramming standards in most large organizations. Such application can be used for incremental modification of

standards include naming conventions, design methodol- designs, and where possible, to acquire knowledge in
ogies, structured programming rules, and documentation terms of application specific rules.
guidelines. They could, in principle, serve as a knowl-
edge structure for supporting designers and programmers Methodologically, our approach has much in common
(Jarke and Shalev, 1984) but are currently applied man- with the Programmer's Apprentice (PA) project (Shrobe,
ually, as guidelines for programmers and designers or as 1979; Waters, 1982; Rich, 1984). The PA is an intelli-
evaluation tools for supervisors. It may be difficult to gent system that is designed to assist expert programmers
define the set of required knowledge (and thus standards) with the maintenance of large programs. Like REMAP,
in advance since requirements and design strategies fre- the PA uses a dependency network of choices in order to
quently evolve over time. represent and reason about evolving programs. How-

ever, there are two important differences. Our focus ison
None of these improvements adequately address funda- the more abstract parts of the design as opposed to the
mental criticisms voiced against life-cycle methods by level of coding. More importantly, because of the diver-
the advocates of prototyping. Since they involve a long sity of applications, we are unable to assume a fixed
development time frame, working systems are available library of "cliches" or programming constructs, but
for user critique only at a late stage when large parts of must build up this knowledge on the basis of application-
the design have been completed and user feedback be- specific designs. However, once our system has con-

comes ineffective (McCracken, 1980; Martin, 1982). structed and organized a library of cliches, they could be
used to reason about "analogous" situations in a similar

Here lies a major advantage of the prototyping approach manner as the PA.
(Jenkins, 1983). However, without an appropriate envi-
ronment, prototyping can result in very brittle programs,
especially in complex systems in which the consequences
of a change cannot be completely understood by a single Conclusions
user or designer. As a consequence, recent development
efforts have attempted to provide a workbench environ- Some key aspects of the REMAP architecture have been

ment (Reiner et al., 1984) which is equipped with high incorporated in a small system intended to test their feasi-
level knowledge that can be used to reason about the ob- bility. The system contains an implementaion of the ob-
ject domain. ject type hierarchy and an initial knowledge base about

data flow diagrams. Knowledge is represented using
In the general systems arena, Kotteman and Konsynski FLAVORS (Moon and Weinreb, 1981), a LISP-based

(1984) have taken the approach of representing applica- utility that supports object-oriented programming. The

131

current implementation has the capability to accept data ization hierarchy should be extended versus those where
flow diagram object instances, to generalize dependen- little is to be gained by extension? Although we have yet
cies to rules, and to expand the generalization hierarchy. to address this question adequately, it appears that a rea-

sonable heuristic for deciding when to extend the gener-
The approach proposed in this paper suggests a novel alization might be based on the need for additional slots
way of thinking about systems evolution which empha- to differentiate newly defined object instances.
sizes the designer's assumptions andjustifications, rather
than generally valid "meta-theories" of design. This 3This assumes that the rule is "correct". An existing rule
reorientation is of particular importance in the presence that turns out to be inaccurate, leads to a "contradiction"
of multiple designers since many apparent "logical con- in which case the rule can be discarded by the belief
tradictions" may arise as a result of different perspec- maintenance machinery, or refined interactively.
n'ves, each based on a different set of assumptions.

From a practical viewpoint, the emphasis on design REFERENCES
changes is of particular importance since it is estimated
that at least 50% and probably as much as 70% of soft- Balzer, R., Dyer, D., Fehling., and Saunders., 1982.
ware costs go into maintenance. Yet, problems of design Specification-based computing environment, Pro-
evolution have not been adequately addressed by pre- ceedings 8th Very ttrge Data Base Conference.
vious methodologies, whereas they constitute the focus Mexico City, pp. 273-279.
of our approach. The work reported here is considered a CGI Systems Inc., 1984. Presenting PACBASE. Sys-
first step towards a process-oriented design environment tems Development Software from CGI, Pearl River,
which is expected to have important applications in at New York.
least three areas. Davis, Randall., 1979. Interactive Transfer of Exper-

tise-Acquisition of new inference rules, Artijicial
First, the prototyping method of systems development is Intelligence, No. 4.
enhanced by a learning component that prevents the repe- De Marco, T., 1978. Strucmred Analysis and System
titionof design errors and supports abetter formal under- Spec0cation, Yourdon Press, New York.
standing of the system's domain. Second, the undesirable Dhar, V., and Quayle, C., 1985. An Approach to Depen-
practice of just updating program documentaion in the dency Directed Backtracking Using Domain Spe-
maintenance phase of the software life cycle is replaced cific Knowledge, in Proceedings Of the 9th Joint
by a methodology for maintaining consistent designs; International Conference on Artificial Intelligence
furthermore, the method also provides guidance in the (UCAD, Los Angeles, California.
propagation of proposed changes. Doyle, Jon., 1978. A Truth Maintenance System, AI

Laboratory Memo 521, MIT.
Finally, the analogy-based reasoning component of the Gane, C., and Sarson, T., 1979. Strucmred Systems
method supports the reuse of code and designs in systems Analysis: Tools and Techniques, Prentice-Hall.
that are similar to existing ones. It also provides the de- Greenspan, S. , 1984. Requirements Modeling: A
signer of such systems with access to the rationales for Knowledge Representation Approach to Software
the original design, thus permitting the encapsulation of Requirements Definition, Ph.D. Thesis, Technical
required design differences and the identification of suit- Report CRSG-155, University of Toronto.
able alternatives, This controlled "cloning" capability is Hewitt, Carl., 1985. The Challenge of Open Systems,
particularly valuable in organizations that have to con- BYTE Magazine, April.
struct a large number of functionally similar systems for Jarke, M., and Shalev, J., 1984. A Database Architec-
different divisions. If process knowledge is not main- ture for Supporting Business Transactions, Journal
tained automatically, such organizations have to rely on of Management Information Systems 1, 1, pp.
the experience and loyalty of a few key individuals. 63-80.

Jenkins, Milton A., 1983. Prototyping: A Methodology
for the Design and Development of Application Sys-
tems, Working Paper Number 227, Graduate School

NOTES of Business, Indiana University, April 1983.
Konsynski, B., Kotteman, J., Nunamaker, J., and Stott,

1This illustrates the "non-uniform" nature of dataflow J., 1984. PLEXSYS-84: An Integrated Develop-
diagram entities, that is, relationships among "uncon- ment Environment for Information Systems, Journal
nected" entities, and the design consequences that can of Management Information Systems, volume 1,
emerge due to changes to them. number 3, Winter 1984-85.

Kotteman, J.E.., and Konsynski, B.R., 1984. Dynamic
iThis raises the following question: how might the pro- Metasystems for Information Systems Develop-
gram differentiate among situations where the general- ment, Proceedings of the 5th International Confer-

132

ence on informarion Systems, Tucson, Arizona, pp. Rich, Charles., 1984. A Formal Representation for Plans

187-204. in the Programmers Apprentice, in Brodie, M.L.,

Martin, J., 1982. Application Development Without Pro- Mylopolous, J., and Schmidt, J.W. (eds.), On Con-

grammers, Prentice-Hall. cepmal Modeh'ng, Springer, pp. 239-269.

McAllester, D., 1982. Reasoning Utility Package, AI Shrobe, Howard., 1979. Dependency directed reasoning

Laboratory Memo 667. for complex program understanding, Ph.D. Dis-

McCracken, D.D., 1980. A Maverick Approach to Sys- sertation, MIT.
tems Analysis and Design, Conference on Systems Shortliffe, E.H., 1976. Computer-Based Medical Con-

Analysis and Design: Foundation for the 19803. sultations: MYCIN. New York: American Elsevier.

Michie., 1982. The State of the Art in Machine Learning, Simon, H.A., 1981. 7lze Sciences of the ArtUicial, 2nd
Introductory Readings in Expert Systems, D. Mickie ed., MIT Press, Cambridge, Massachusetts.

(ed.,) Gordon and Breach, United Kingdom. Stallman, Richard, and Sussman, Gerald., 1977. For-

Moon, David, and Weinreb, Daniel., 1981. Lisp ward Reasoning and Dependency-Directed Back-

Machine Manual, MIT AI Lab. tracking in a System for Computer-Aided Circuit

Newell, Allen., and Rychener, Mike., 1978. An Instruc- Analysis, Art0cial Intelligence, volume 9, Number

tible Production System, in F. Hayes-Roth and D. 2, pp. 135-196.

Waterman (,eds.), Pattern Directed Inference Sys- Waters, Richard., 1982. The programmer's apprentice:

tems, Academic Press. knowledge based program editing, IEEE Trans-

Orr, K., 1981. Structured Requirements Spec/ication, actions on sojiware engineering, number 1.

Orr and Associates. Winston, P.H., 1982. Learning Structural Descriptions

Protsko, L.B., Sorenson, P.G.., and Tremblay, J.P., from Examples, in 71:e Psychology of Computer

1984. Automatic Generation of Data Flow Diagrams Vision, P.H. Winston (ed.,) McGraw Hill, New

from a Requirements Specification Language, Pro- York.
ceedings 5th International Conference on Informa- Winston, P.H., 1979. darning and Reasoning by Anal-

tion Systems, Tucson, Arizona, pp. 157-171. ogy, CACM, volume 23, Number 12, pp. 689-703.

Reiner, D., Brodie, M., Brown, G., Fridel, M., Kram- Yourdan, E., and Constantine, L.L., 1978. Structured

lich, D., Lehman, J., and Rosenthal, A., 1984. The Design, Yourdon Press, New York.
Database Design and Evaluation Workbench
(DDEW) Project at CCA, Dambase Engineen'ng,
volume 7, number 4, December 1984.

133

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1985

	Occidental Versus Oriental I.S. Professionals' Perceptions on Key Factors for Motivation
	J. Daniel Couger
	Juzar Motiwalla
	Recommended Citation

	tmp.1422243634.pdf.hi0RH

