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Optimizing Strategy in Agent-Based Automated 
Negotiation 

Jörg Meyer, Torsten Eymann 
Albert-Ludwigs-Universität Freiburg 

Abstract: Digital Business Agents (DBAs) can assist human buyers and sellers in 
electronic markets by strategically conducting automated negotiation to minimize 
transaction costs. However, the resulting information systems are complex 
environments, which are hard to assess analytically. The DBAs’ strategies will 
thus need to incorporate heuristics, which adapt to ever changing environment 
conditions using machine learning algorithms. This article compares the 
performance of an evolutionary algorithm, numeric optimization methods and a 
hybrid, economics-based mechanism, using the electronic market setting of the 
multiagent system AVALANCHE as an example. 

Keywords: Agent-Mediated Electronic Commerce, Machine Learning, Adaptive 
Strategies, Automated Negotiation 

1 Why automated negotiation strategies have to 
adapt 

Digital Business Agents (DBAs) [Dieb01; Eyma03] can assist human buyers and 
sellers in digital business processes and environments to save transaction costs. 
They monitor other agents and the environment continuously, e.g. by making price 
comparisons between different suppliers in the on- and offline world [Youl+00], in 
order to fulfil their design goal of utility maximization for their human owner. 
They will be able to enter into negotiation with many potential trade partners at 
once, reaching an acceptable deal and setting up a contract in a matter of 
milliseconds [Prei98].  

If transactions are conducted in the background without the need for human 
intervention, the resulting concept can be called Silent Commerce [Adam+03; 
Sche00]. Example applications for Silent Commerce are the networked laser 
printer which automatically buys toner when needed [Cros00], the mobile fare 
payment when entering the train using PDA or mobile phone, the payment of web 
services by networked clients in the Grid [Arda+02] or built-to-order adaptive 
supply chain control concepts using software agents [Livi01]. The large number of 
devices and software objects, the resulting exponential number of possible 
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interactions and the possible global reach of communications makes controlling 
such systems by means of a centralized coordinator instance unwieldy, if not 
impossible. If devices and software can be personalized by the respective human 
user, the DBAs will finally act self-interested to maximize the utility of their 
human principal [RaJa99] and thus protect utility function and decision process 
from outside access. 

Personalization requires the human principals of the software agents to define 
economic goals, preferences and strategies in computer processable data structures 
[Krau97]. In automated negotiation by software agents, the strategies of the 
internal model calculate offer prices to propose to a trade negotiations opponent, 
in order to achieve a maximum utility gain. The strategy decision is based on 
information from sensors, mostly price offers from other agents or institutions in 
the market. The price offer sent to the opponent is an effector, which has the 
intention to draw the opponent towards a favourable negotiation goal. 

The strategy model itself can be based on rule-based, argumentative, game-
theoretic or heuristic-adaptive approaches [Jenn+01; Krau97]. The choice of 
strategy type depends largely on the characteristics of the problem domain. An 
agent-based silent commerce scenario with direct interaction constitutes a non-
accessible, partly deterministic, discrete, highly dynamic and non-episodic 
environment [RuNo95]:  

• Not accessible: Accessibility denotes the ability of the agent to assess the 
complete state of the environment by using sensory input. In the scenarios 
considered here, the agent frequently receives both unsolicited information and 
concrete responses to offers. However, it is not possible to get insights into the 
internal decision processes of other agents. In total, the agent’s world model is 
made up of historic, sporadic and infrequent information. 

• Partly deterministic: The use of a common negotiation protocol leads to 
deterministic states of the negotiation under predictable conditions. However, 
the behaviour of the negotiation opponents in response to a particular offer is 
not predictable and can comprise a large, potentially infinite number of 
possible actions. 

• Discrete: The possible actions of a negotiating agent are limited to choosing a 
price from the set of the natural numbers or terminating the negotiation by 
either acceptance or rejection.  

• Dynamic: The internal model and thus the strategy of the negotiators may 
change both during and between negotiations using adaptive mechanisms. It is 
not predictable whether the response of an opponent will be equal to earlier 
responses when facing the same negotiation situation. 

• Non-Episodic: Successive negotiations are linked by budget restraints and 
feedback propagation of success or failure of the current action decision set, 
even if the negotiations can be considered independent otherwise. In particular, 
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the outcome of a single negotiation depends only on the choice of strategy 
parameter set at the beginning of the negotiation process.  

In such a complex, unpredictable environment with possibly thousands of acting 
and negotiating agents, rule-based or game-theoretic strategies alone are 
considered to be not realistically applicable [Krau97]. However, it is possible to 
devise heuristics with some economic background e.g. on reputation and cheating 
of opponents [Pado01], or common market and negotiation behaviour [Sack02]. 
However, these heuristics are geared toward the present situation of the 
environment. Their ability to maximize utility will decrease as the environment 
changes over time. This leads to the necessity to enhance heuristics with 
adaptation capabilities: 

"In future applications in e-commerce, multi agent systems will need to be much 
more open-ended and dynamic [...]. In particular it is important for the negotiating 
agents to be able to adapt their strategies to deal with changing opponents, 
changing topics and concerns, and changing user profiles." [Gerd+00] 

But whether heuristic-adaptive strategies produce meaningful results depends on 
the specifics of both heuristics and adaptation mechanism. This article tries to 
show how different existing machine learning algorithms perform in a multiagent 
system of DBAs, using the same heuristics as a basis for adaptation.  

The remainder of the article is structured as follows. Chapter 2 briefly illustrates 
an agent-based electronic marketplace, where agents with heuristic-adaptive 
strategies autonomously negotiate about goods. The following chapters shows the 
application of different adaptation mechanisms. Chapter 3 deals with the 
implementation of a genetic algorithm. In chapter 4 several numeric optimizing 
methods are applied. Chapter 5 presents a hybrid approach following the VID 
model according to Brenner [Bren96]. The paper ends with a summary of the 
findings. 

2 Automated negotiation in AVALANCHE  

The AVALANCHE  multiagent system has been developed at the University of 
Freiburg for several years as a software project where Digital Business Agents 
(DBAs) act on electronic marketplaces [Eyma00]. AVALANCHE , as described here, 
is realized in JAVA 1.3 with the support of the agent middleware LARS 2.5 CE 
[Livi01]. All agents are independent JAVA  threads. The system architecture 
consists of three basic classes: marketplaces, agents, and one experiment control 
object. For the experiments, all agents are initialized simultaneously from the 
same JAVA  class, using the same initial heuristic parameter values. 
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The agent class defines communication abilities and negotiation protocols. Each 
agent communicates with every other object on the marketplace in direct, bilateral 
and unmediated fashion, using a unique identity. The marketplace merely serves 
as a passive white board, where the agent can sign in and out with name and the 
type of goods it demands or offers. In particular, the marketplace does not 
explicitly synchronize or schedule the agents’ activities. 

In the scenario described here, three different types of DBAs are implemented. 
Producers and consumers define a seller or buyer strategy, respectively. The 
middlemen in-between buy a material good from the producer and sell a product 
good to the consumer. The middlemen’s production function just simulates the 
conversion of one piece of material to one product. The goods itself are defined as 
commodities, so the one-dimensional negotiation variable is the price.  

This also allows to represent the utility functionN of the AVALANCHE  agents 
using price notions only. The economic goal in negotiation (neglecting e.g. 
production costs) is to maximize profit by increasing the price spread between 
selling output goods ,V iπ and buying input goods ,K iπ in a given time span[ ]1;t t− : 

, ,
1 1

t t

t V i K i
t t

N MAXπ π
− −

= − →∑ ∑  (1) 

The performance of the utility function is thus only dependent of the outcome of 
the negotiations on both sides (or on one side for the producers and consumers). 
The better the negotiation strategy succeeds in comparison with the opponents and 
the competitors, the better the agent performs overall. However, if the negotiation 
strategies are very similar and unchanging, no agent will be able to achieve 
competitive advantage, and the prices and profits will reach a common plateau for 
all agents (cf. [Eyma01a; Eyma03]. 

2.1 The negotiation protocol 

All agents follow the same bilateral negotiation protocol as shown in Figure 1.  
The buyer agent initiates a negotiation by proposing a seller, whose address was 
obtained from reading the white board, sending a propose message containing the 
sender A’s identity, the receiver B’s identity and the particular offer price x. 
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Figure 1: Course of a negotiation between two agents A and B 

The receiver B has now the choice between downright accepting the price, making 
a counter-offer, or refusing to further negotiate at all. Whether the state transaction 
from state a to either states b (propose), c (accept), or i (refuse) is executed, 
depends on the action decision made in the agent’s internal model. This decision is 
computed using the heuristic-adaptive strategy outlined below. The software 
agents negotiate with each other using a monotonic concession protocol [RoZl94], 
where propose and counter-propose messages with subsequent price concessions 
are exchanged. The negotiation continues until either a deal has been landed 
(state g) or one of the agents has unilaterally decided to refuse further negotiation 
(state i). 

2.3 The heuristics of the negotiation strategy 

The action decision-making of an AVALANCHE  agent’s negotiation strategy is 
controlled using 6 trivial parameters with values from a continuous value range 
between 0 and 1. These parameters are collectively called the Genotype G. The 
particular mechanics of the decision-making process are not required for the 
understanding of this article (see [Eyma01a; Eyma01b; Eyma03] for detailed 
descriptions).  

It is sufficient to generalize by saying that every heuristic strategy, regardless of 
the concrete implementation, will choose with a certain probability (as seen by an 
outside viewer) either transition a�b, a�c or a�i from Figure 1. If a counter-
offer is made, the concession amount is also controlled by the strategy. 

Under these circumstances, the goal of the adaptation function is to maximize the 
total output by changing the strategy parameters (here: the Genotype). Formally, 
this goal can be described as  

[ ]6
: 0,1Uf R→  (2) 



268 J. Meyer, T. Eymann 

The independent vector [ ]6
0,1∈ describes the Genotype of the agent, which is 

acting in an environment U. The assumption is that a function f (of unknown 
shape) exists, which maps the Genotype to its outcome in the realm of natural 
numbers, given the current state of U. The goal of learning is thus to maximize the 
dependent outcome by optimizing the independent Genotype, which means 
adapting single vector elements (dimensions) until the global optimum of fU is 
found. 

This adaptation task, however, is bound by several restrictions of the environment.  

1. No objective, central performance evaluation institution can exist, as this 
would require the communication of every agent’s utility function so that a 
theoretical optimum can be computed, against which the individual 
performance is evaluated. For the same reasons explained in the first chapter of 
this article, particularly, size and reach and dynamics of the environment, such 
complete evaluation is not realistically possible. The agents will have to 
evaluate the effects of their actions on the environment using local information 
only. 

2. The available data about the performance is historic. The agent merely knows 
the average profit from its previous negotiations and can make statements 
about the success of the current parameter configuration in relation to previous 
parameter configurations on the basis of its development.  

3. Because the environment of the agent is highly dynamic, no statement about 
the success of a parameter configuration can be made on the basis of one 
individual negotiation. The agent must have carried out several negotiations 
with a parameter configuration before these can be evaluated by means of the 
profit generated.  

4. If the other agents also implement adaptation mechanisms, the overall picture 
widens to a very complex co-evolution of agents, which is scientifically hard 
to evaluate. In this article, co-evolution has thus been ruled out. Only the 
middle agents implement machine learning algorithms, while the producers 
and consumers are static. However, all agents implement the same heuristics 
and start with the same initial Genotype set. 

3 The genetic algorithm of Smith and Taylor  

The first adaptation mechanism applied is mainly oriented at the evolutionary 
algorithm of Smith and Taylor [SmTa98] (STDEA) described in [Eyma01a; 
Eyma00]. A fundamental quality of the mechanism is the decentralized 
communication and fitness evaluation, using only locally available data. 
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Every agent sends one plumage object after a successful transaction, advertising 
its average income (fitness) and its genes (genotype) to all agents of the 
population after an evaluation phase, i.e. after it has carried out a certain number 
of negotiations with this genotype. If an agent receives a plumage object from 
another agent, it decides using a blindness probability whether the plumage object 
is evaluated, avoiding premature unification of the genotypes. Sender and 
recipient remain anonymous. If a certain maturity threshold of received plumages 
is exceeded, the agent replaces his old genotype with the evolved version after the 
completion of evaluation, selection, recombination and mutation phases as in 
normal genetic algorithms. Also influencing the algorithm is the mutation rate, 
which determines the frequency and the extent of explorative behaviour of the 
population.  

The technical functionality of STDEA has been evaluated using the De Jong Five-
Function Test Bed [Gold93]. The performance of agent populations consisting of 
either 1 or 25 agents searching for the minimum of the test functions shows that 
the algorithm is successful in all functions considered; even one agent alone takes 
the right direction. This evaluation has been conducted for all algorithms 
described in this article, in order to indicate a correct implementation of the 
learning function alone (without heuristics and economic decision-making). 

In the AVALANCHE market scenario, STDEA proves to be a reliable optimizing 
procedure provided that information is able to flow between the agents. The 
parameter to be optimized is the profit (in Figure 2 on the y-axis ) over time (x-
time). Figure 2 shows the development of the agent profits on a marketplace with 
15 producer agents, 15 consumer agents (both types with non-adapting strategies) 
and 15 middleman traders who use the genetic algorithm to optimize their 
negotiation result.  

In the left half of Figure 2, all producers and consumers have the same unchanging 
genotype set; their profits do not change over time and are nearly zero (light grey 
dots). However, the middlemen’s profit (black dots) quickly and easily increases 
as the (initially same) genotype is optimized. In the right picture, on the other 
hand, all agents start with a random genotype. Over time the middlemen gradually 
outsmart their non-adapting opponents again and can increase profit at their 
expense. However, it should be noted that the exchange of information also 
changes the heuristics, as it leads to changed initial negotiation prices and thus 
influences the negotiations directly. The outcome of successive evaluations is thus 
not as independent as in the De Jong testbed.  
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Figure 2: Performance of the genetic algorithm in AVALANCHE scenarios 

In STDEA, the middlemen rely on information from other agents of the same type 
in the form of the plumage object. Translated to real scenarios, market participants 
gather performance information on others e.g. from newspapers, quarterly or 
annual reports, market rumours, or intelligence. Without such a “meta information 
flow” on the marketplace, economic agents would not be in a position to adapt 
their strategy accordingly and therefore incapable of action with regard to the 
choice of a strategy. In the next chapter, we thus implement and evaluate 
strategies which do not need outside information, but adapt using local feedback. 

4 Numerical optimization procedures 

“Unfortunately, there is no perfect optimization algorithm. This is a case where we 
strongly urge you to try more than one method in comparative fashion.” (Press et. 
al. [Pres+02]) 

The numeric optimizing algorithms applied here are taken in their original form 
from Press et al. [Pres+02] and have been slightly altered. The biggest differences 
are (1) that the function to be optimized can not be directly evaluated and (2) that 

the algorithms are defined to seek the minimum of Uf−  in the search space [ ]6
0,1 , 

to search for the parameter configuration which makes the maximum profit. 

The first two algorithms described here belong to the group of the “direction-set 
methods”, i.e. they always proceed in two steps. The first step determines the 
direction to climb. In the second step, a one-dimensional optimizing sub-algorithm 
like Brent’s algorithm or the naïve Golden Section Search [Pres+02] searches for 
the extremum. 
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4.1 Golden Section Search 

The one-dimensional Golden Section Search is performed successively along a set 
of given directions that are passed through in the same sequence. When searching 
for the minimum of the De Jong testbed, this algorithm comes off worse in 
relation to the algorithms described in the remainder of this article, which has been 
expected. In the AVALANCHE  scenario however, this simple algorithm equipped 
with the unity vectors does not cut a bad figure (see Figure 3 in comparison with 
Figure 2). As all agents process nearly the same market information, the variance 
of the development is less even without exchanging information. 

 

 

Figure 3: Performance of the naive procedure with equivalent genotypes of producers and 
consumers 

This naive procedure is suitable to examine the significance of individual 
parameters for the success of the agent, where the unity vectors are regarded as 
direction vectors from the outset. Depending on the contour of the function, this 
procedure can, however, be very inefficient when searching for the extremum (see 
[Pres+02]). Observations of the development of the profit and the changes of the 
parameters attach special importance to the parameter which controls the value of 
the initial price offer in this particular AVALANCHE-based example. The 
applicability of this simple procedure to realistic heuristics thus requires cautious 
implementation and further research. 

4.2 Multi-dimensional optimization according to Powell 

The direction set method of Powell in [Pres+02] not only searches for the 
extremum but also for optimal directions for the one-dimensional sub-algorithm in 
order to accelerate the search procedure. Powell’s procedure thereby derives a 
number of conjugated vectors from the extrema found in the respective directions. 
The algorithm implemented here tries to handle the problem of the linear 
dependence of these vectors through a heuristic process. After each optimization 
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cycle, the optimal direction is replaced with the one which has generated the 
greatest progress. 

As a proven and very efficient optimization procedure, Powell’s procedure 
delivers a quick outcome in the De Jong testbed. In the AVALANCHE  setting, this 
procedure also achieves better results than the genetic algorithm. Since Powell’s 
procedure also searches for dimensional directions to take on the way to the 
extremum, this method offers the possibility of examining connections between 
the individual parameters and their significance for the choice of a strategy in 
small populations. 

 

Figure 4: Performance of Powell’s procedure with equivalent genotypes of producers and 
consumers 

However, if one conveys this result of one individual agent to a population of 
agents, in which each agent has to carry out its own search process, the number of 
the required evaluations multiplies with the number of the agents until each agent 
has reached an acceptable result. The larger the population, the lower thus the 
performance, which is considered to make this mechanism impractical for real-
world scenarios. 

4.3 The Simplex method according to Nelder and Meat 

Nelder and Meat’s method [Pres+02] does not require an one-dimensional sub-
algorithm. At the outset, linear independent points with their functional values, 
spanning an n-dimensional subspace, are located in an n+1-dimensional search 
space. This geometric figure is described as a simplex. The starting point of an 
optimizing step is the point of the simplex with the worst functional value. This 
point is transferred through heuristic reflections to the hyperplane, defined by the 
remaining n points, into a point with better functional value, whereby the property 
of the n+1 points to form a simplex remains. 

In the De Jong testbed the performance decreases with the growing number of 
agents, as in the other numeric optimizing procedures. In AVALANCHE , the results 
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in the scenarios with unified genotypes of producers and consumers are, compared 
to the first two procedures, exceptionally good. 

 

Figure 5: Performance of the Simplex method with one or 15 agents on the marketplace at a 
time 

Summarizing for the numerical procedures, Powell’s algorithm as well as the 
Simplex method provides better results than the GSS algorithm regarding the test 
functions as well as AVALANCHE . The differences to the (parallel processing) 
STDEA become obvious if one varies the size of the population. In the case of a 
single agent, the numeric algorithms take advantage of their directed search, in 
contrast to the random exploration of the STDEA, which performs better with an 
increasing number of agents. 

5 A hybrid genetic algorithm on the basis of the VID 
model according to Brenner 

In the preceding chapters, algorithms were based on two different principles. The 
genetic algorithm STDEA is based on random exploration combined with 
imitation, while the numeric algorithms are based on directed exploration. The 
following hybrid algorithm OVID combines both approaches. It tries to mirror 
human acquisition of information that is driven by imitation, random exploration, 
and exploration directed by cognitive processes. Technically, a parallelized 
version of the Simplex method is extended by the STDEA with respect to random 
exploration. 

The VID (Variation-Imitation-Decision) model according to Brenner [Bren96; 
Bren02] is based on hypotheses from cognitive psychology and satisficing theory 
[Simo87] and combines them to a learning process for repetitive decision 
processes. “It assumes that decision-makers learn from their experience, are 
motivated to behavioural changes by unsatisfactory actions and are able to imitate 
successful strategies of others” [Bren02]. VID correlates (positive feedback) 
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experience, contentment and the basic willingness to exploitative and explorative 
behaviour by individually (1) calculating the probability to change from one 
behaviour to another without any influence of other individuals, and (2) 
calculating the probability to imitate the strategy of another individual. 

In this article, the assumptions of the VID model have been slightly altered. The 
limited information processing capacity of the AVALANCHE  agents does not allow 
them to hold models of all agents’ strategies. The adaptation of the Genotype 
draws from a continuous interval of possible actions, while the original VID 
model assumes a discrete number of actions. Thus the following questions remain: 
which information can be used to quantify the agent’s satisfaction and experience? 
How can the motivation for adapting the strategy be derived from the satisfaction? 
How can imitations or variations be realized in a continuous action space?  

Quantification of the experience. The experience value compares the performance 
of  a particular agent to that of all other agents. This comparison (using publicly 
available data about all agent’s strategies) provides the basis for imitation in the 
original VID model. The strategy with the highest experience value witnessed will 
be imitated by the comparing agent in order to increase his own performance. 

Since the agents in AVALANCHE  only possess information about their current 
parameter configuration, the procedure already known from the genetic algorithm 
is an alternative for direct information transfer: the agents send a plumage object 
to all agents of the population or of the market and process plumage objects from 
other agents only with a certain degree of probability. As the experience 
performance with a certain Genotype is correlated with an agent’s profit, the 
experience value for an agent can be directly calculated by putting a received 
plumage’s fitness avprofit  in relation to the perceived average fitness values of 

other agents ,av allprofit . 

,

,

-
experience av av all

av

av all

profit profit

profit
=  (3) 

Quantification of the satisfaction. The satisfaction value is correlated with 
adaptation of the current own strategy. Here, the agent compares its past and 
current performance without looking to outside strategies. 

Due to limited computational abilities, the agent can merely correlate the 
functional value or profit of the current parameter configuration to a previously 
generated average profit. This value is identified as aspiration level, as the 
satisfaction of the agent sensibly stands in proportion to the profit development. If 
the profits rise, the value of the satisfaction is positive, if the profits fall, it is 
negative. Analogous to the quantification of the experience, the satisfaction is 
related here to the percentage change of the profit. However, the significance of 
the success of an individual negotiation can not be determined; the value is thus 
derived by comparison to several negotiations carried out in succession.  
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,

,

av av old
av

av old

profit profit
satisfaction

profit

−
=  (4) 

 

In the notation following [Bren96]:  

( ) ( )( ) ( )( )
( )( )

, ,

,
av i av i

i

av i

u I t t u I t t
s t

u I t t

τ τ− − −
=  (5) 

where as 

( )( ) ( )( )
( ) ( )( )

( )( ) ( ) ( )( )
0

, ,

1 ,

1 , 1 1 ,

av i av i

n
j

s s i
j

s av i s i

u I t t profit I t t

profit I t t

u I t t u I t t

ζ ζ

ζ ζ
=

=

= × − ×

= × − − + − ×

∑  (6) 

Motivation for behavioural change. If the satisfaction falls below zero, the current 
strategy shows inferior performance and the motivation to change the strategy 

rises. This can be described using a Sigmoid curve 
1

1 ax be ++
with infimum 0 and 

supremum 1, where ( )0,m t is the basic motivation if satisfaction = 0. The 

motivation for the behaviour change should at least be the basic motivation in the 
case of negative profit.  

( )( )
( )( )

( ) ( )( )

( ) ( )

( ) ( )

1
, 0

1
,

1
max , 0, , 0

1

av ia t s t

av ia t s t

u I t t
e

m s t t
m t u I t t

e

β

β

× +

× +

 ≥ += 
  <  + 

 (7) 

where as  

( )
1

log 1
0,m t

β
 

= −  
 

 (8) 

Let α be calculable through the value to the point  

( )( )
( )( )

0.5 , 0

1 , 0

av i

av i

u I t t
x

u I t t

− ≥= 
− <

 (9) 

given through the parameter 0 , 1µµ+ −< <  as  
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( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

1 0, 0, , 0
,

1 0, 0, , 0

av i

av i

µ m t m t u I t t
m x t

µ m t m t u I t t

+

−

 × − + ≥= 
× − + <

 (10) 

From this follows  

( ) ( )
1

ln 1
,m x t

t
x

β
α

 
− −  

 =  (11) 

The value calculated in formula (11) at point x indicates with what probability the 
agent adapts his behaviour when his profit is half as high or doubly loss-making as 
the previously generated profit. The parameter µ+  and µ−  determine this value in 

relation to the basic motivation. 

Partial imitation. In the process of imitation in [Bren96], a strategy regarded as 
successful will be copied without changes. In genetic algorithms, this relates to a 
crossover of the current genotype with the most successful genotype, where only 
the alien genotype prevails. Subsequent mutation is optional. 

Directed variation. In [Bren96] the behaviour variation is an undirected 
exploration, which selects a strategy at random. In order to give the explorative 
behaviour a direction in a meaningful way, analogous to  human cognitive 
perception, a parallelized Simplex method will be used to process information 
from other agents. Each choice of a strategy, defined by a certain genotype 
parameter configuration, is mapped to a point in the n-dimensional search space of 
the Simplex process. 

The results of this optimizing VID (OVID) mechanism show a better performance 
overall than both genetic algorithms and numerical mechanisms alone. 

In comparison to the numerical procedures described in chapter 4, the 
performance in the De Jong Testbed with a population of 25 agents is better; but it 
does not reach the performance of the genetic algorithm STDEA. In one particular 
test function 5f , however, the OVID method does not lose the direction to the 

minimum in contrast to the genetic algorithm, which operates at random. 
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Figure 6: Performance of OVID each with one or 15 equally initialized agents on the 
marketplace 

Figure 6 shows the price developments in the AVALANCHE  setting with uniform 
genotypes of producers and consumers each with one and 15 agents. In the 
experiment in Figure 7, the information flow was disrupted and thus the learning 
process is slower. 

 

Figure 7: Performance of OVID without information flow between the agents (on the left) 
and with random initialization (on the right) 

The OVID model presents a possibility of combining the advantages of the genetic 
algorithm STDEA, the numeric optimization procedure of the Simplex method 
and the imitating and directed exploring behaviour of human cognitive processes. 
This algorithm does also not depend on a constant information flow between the 
agents, but can meaningfully evaluate such at any time. It is thus more robust than 
STDEA and yields better results than pure numerical optimization approaches. 
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6 Conclusions and further work 

This paper has shown a comparison of different optimization algorithms for profit 
maximization of negotiating software agents in e-commerce scenarios. These were 
implemented and tested in a particular multiagent system, using different numbers 
of agents and different parameterization of the negotiation partner. While the 
genetic algorithm STDEA and the numeric optimization methods already produce 
good results, it was possible to combine their strengths to develop the OVID 
procedure. This learning mechanism is considered efficient within large and also 
mixed populations. It can meaningfully use information from other agents; 
however, it does not depend on it. 

The algorithms are still to be tested with regard to their behaviour (1) on 
marketplaces with varying population size and (2) where the negotiation partners 
are also equipped with a learning algorithm and therefore the optimizing 
procedures co-evolve. In such a scenario it is expected that the information about 
the success of parameter configurations lose significance. In the static scenarios 
described here, merely the development of the price concepts and varying starting 
points of the negotiations as well as stochastic irregularities caused differing 
results with one and the same parameter configuration.  

What is also missing, of course, is the evaluation of the learning mechanisms in a 
real-world scenario. If the findings of this article can be transferred has yet to be 
shown. As an example, the business performance information published in real 
markets has shown to be sometimes inexact, incorrect or even completely made 
up. Even if this behaviour could be taken into account if reputation tracking 
mechanisms as in [Eyma+02] are applied, which modify the raw data prior to 
including it in the learning process, the question arises how this again would 
influence the performance of different learning mechanisms. 
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