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Optimizing Strategy in Agent-Based Automated
Negotiation

Jorg Meyer, Torsten Eymann
Albert-Ludwigs-Universitat Freiburg

Abstract: Digital Business Agents (DBAs) can adsishan buyers and sellers in
electronic markets by strategically conducting an#ded negotiation to minimize
transaction costs. However, the resulting informatisystems are complex
environments, which are hard to assess analyticdllye DBAS’ strategies will

thus need to incorporate heuristics, which adapet@r changing environment
conditions using machine learning algorithms. Thasticle compares the

performance of an evolutionary algorithm, numerimization methods and a
hybrid, economics-based mechanism, using the elgictmarket setting of the
multiagent system\AALANCHEas an example.

Keywords: Agent-Mediated Electronic Commerce, Maehiearning, Adaptive
Strategies, Automated Negotiation

1 Why automated negotiation strategies have to
adapt

Digital Business AgentdDBAS) [Dieb01; Eyma03] can assist human buyei$ an
sellers in digital business processes and enviratsm® save transaction costs.
They monitor other agents and the environment oantisly, e.g. by making price
comparisons between different suppliers in theammt offline world [Youf00], in
order to fulfil their design goal of utility maximétion for their human owner.
They will be able to enter into negotiation with mgapotential trade partners at
once, reaching an acceptable deal and setting won&ract in a matter of
milliseconds [Prei98].

If transactions are conducted in the backgrounchomt the need for human
intervention, the resulting concept can be calii@ént Commerce [Adam’03;

Sche00]. Example applications for Silent Commerce the networked laser
printer which automatically buys toner when neef@bs00], the mobile fare
payment when entering the train using PDA or mopiene, the payment of web
services by networked clients in the Grid [Ai@2] or built-to-order adaptive
supply chain control concepts using software agemg1]. The large number of
devices and software objects, the resulting expiademumber of possible
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interactions and the possible global reach of comoations makes controlling
such systems by means of a centralized coordiriatance unwieldy, if not
impossible. If devices and software can be persethlby the respective human
user, the DBAs will finally act self-interested toaximize the utility of their
human principal [RaJa99] and thus protect utilimdtion and decision process
from outside access.

Personalization requires the human principals ef shftware agents to define
economic goals, preferences and strategies in cemprocessable data structures
[Krau97]. In automated negotiation by software dgerthe strategies of the
internal modelcalculate offer prices to propose to a trade riaiohs opponent,
in order to achieve a maximum utility gain. Theastgy decision is based on
information fromsensors mostly price offers from other agents or inst@ns in
the market. The price offer sent to the opponerarieffector which has the
intention to draw the opponent towards a favouraklgotiation goal.

The strategy model itself can be based on ruleehaasgumentative, game-
theoretic or heuristic-adaptive approaches [J&hn Krau97]. The choice of
strategy type depends largely on the charactesisticthe problem domain. An
agent-based silent commerce scenario with dirdetrdntion constitutes a non-
accessible, partly deterministic, discrete, higldynamic and non-episodic
environment [RuNo095]:

* Not accessible’Accessibility denotes the ability of the agent ssess the
complete state of the environment by using sengguyt. In the scenarios
considered here, the agent frequently receives lnmblicited information and
concrete responses to offers. However, it is nesiide to get insights into the
internal decision processes of other agents. hi,ttite agent’s world model is
made up of historic, sporadic and infrequent infation.

e Partly deterministic: The use of a common negotiation protocol leads to
deterministic states of the negotiation under mtadlie conditions. However,
the behaviour of the negotiation opponents in raspdo a particular offer is
not predictable and can comprise a large, poténtiafinite number of
possible actions.

« Discrete:The possible actions of a negotiating agent aréduro choosing a
price from the set of the natural numbers or teatiny the negotiation by
either acceptance or rejection.

« Dynamic: The internal model and thus the strategy of theotigprs may
change both during and between negotiations usiagtave mechanisms. It is
not predictable whether the response of an opponédhbe equal to earlier
responses when facing the same negotiation situatio

» Non-Episodic: Successive negotiations are linked by budget rliestraand
feedback propagation of success or failure of tlneent action decision set,
even if the negotiations can be considered indegr@natherwise. In particular,
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the outcome of a single negotiation depends onlythenchoice of strategy
parameter set at the beginning of the negotiationgss.

In such a complex, unpredictable environment witBgibly thousands of acting
and negotiating agents, rule-based or game-theorstiategies alone are
considered to be not realistically applicable [Kddl However, it is possible to
devise heuristics with some economic backgroundangeputation and cheating
of opponents [Pado01], or common market and negmtidbehaviour [Sack02].
However, these heuristics are geared toward theseptesituation of the
environment. Their ability to maximize utility willecrease as the environment
changes over time. This leads to the necessity nioarce heuristics with
adaptation capabilities:

"In future applications in e-commerce, multi agepstems will need to be much
more open-ended and dynamic [...]. In particulas itmportant for the negotiating
agents to be able to adapt their strategies to déhl changing opponents,
changing topics and concerns, and changing uségst [Gerd 00]

But whetherheuristic-adaptivestrategies produce meaningful results depends on
the specifics of both heuristics and adaptation meism. This article tries to
show how different existing machine learning altjoris perform in a multiagent
system of DBAs, using the same heuristics as & fasadaptation.

The remainder of the article is structured as fefioChapter 2 briefly illustrates
an agent-based electronic marketplace, where ageitts heuristic-adaptive
strategies autonomously negotiate about goodsfdllvaving chapters shows the
application of different adaptation mechanisms. [@&a 3 deals with the
implementation of a genetic algorithm. In chaptesederal numeric optimizing
methods are applied. Chapter 5 presents a hybpdoaph following the VID

model according to Brenner [Bren96]. The paper enidk a summary of the
findings.

2 Automated negotiation in A/ALANCHE

The AVALANCHE multiagent system has been developed at the iiyeof
Freiburg for several years as a software projecre/Digital Business Agents
(DBAS) act on electronic marketplaces [EymaO0JABANCHE, as described here,
is realized in Ava 1.3 with the support of the agent middlewarsrs 2.5 CE
[Livi01]. All agents are independentava threads. The system architecture
consists of three basic classes: marketplacestsagemd one experiment control
object. For the experiments, all agents are ifgal simultaneously from the
same AVA class, using the same initial heuristic parameaéres.
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The agent class defines communication abilities megbtiation protocols. Each
agent communicates with every other object on thekatplace in direct, bilateral
and unmediated fashion, using a unique identitye frtarketplace merely serves
as a passive white board, where the agent canirsignd out with name and the
type of goods it demands or offers. In particuldre marketplace does not
explicitly synchronize or schedule the agents’\aiiis.

In the scenario described here, three differenesypf DBAs are implemented.
Producersand consumersdefine a seller or buyer strategy, respectivelfe T
middlemenin-between buy a material good from the producet sell a product
good to the consumer. Thaiddlemen’sproduction function just simulates the
conversion of one piece of material to one prodiibe goods itself are defined as
commodities, so the one-dimensional negotiatiomabée is the price.

This also allows to represent the utility functidrof the AVALANCHE agents
using price notions only. The economic goal in rniegon (neglecting e.g.
production costs) is to maximize profit by increwsithe price spread between
selling output goodsz, ; and buying input goodg, ; in a given time spa{m —1;t] :

N. =

t

t t

TG, =Y 1 —» MAX 1)
t-1 t-1
The performance of the utility function is thus ypalependent of the outcome of
the negotiations on both sides (or on one side¢Herproducers and consumers).
The better the negotiation strategy succeeds irpaoison with the opponents and
the competitors, the better the agent performsativétowever, if the negotiation
strategies are very similar and unchanging, no tageih be able to achieve
competitive advantage, and the prices and profits@ach a common plateau for
all agents (cf. [Eyma0Ola; Eyma03].

2.1 The negotiation protocol

All agents follow the same bilateral negotiatiorotpcol as shown in Figure 1.

The buyer agent initiates a negotiation by proppsirseller, whose address was
obtained from reading the white board, sendimyaposemessage containing the

sendeA’s identity, the receiveB’s identity and the particular offer price
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deal (A,B,x)

propose

(A,B.x)

accept (B,A,x)

refuse (B,A,x)

propose
(B,Ax)

propose
(AB.x)

©

refuse (A,B,x)

accept (A,B,x) @

Figure 1: Course of a negotiation between two agardnd B

deal (B,A.x) deal (A,B.x)

The receiver B has now the choice between downegbepting the price, making

a counter-offer, or refusing to further negotiatala Whether the state transaction
from statea to either stated (propose),c (accept), ori (refuse) is executed,

depends on the action decision made in the aget¢’sial model. This decision is

computed using the heuristic-adaptive strategyirmdl below. The software

agents negotiate with each other using a monotmricession protocol [RoZI94],

where propose and counter-propose messages wislequibnt price concessions
are exchanged. The negotiation continues untileeith deal has been landed
(stateg) or one of the agents has unilaterally decidexkttose further negotiation

(statei).

2.3 The heuristics of the negotiation strategy

The action decision-making of anvALANCHE agent’s negotiation strategy is
controlled using 6 trivial parameters with valuesnfi a continuous value range
between 0 and 1. These parameters are collectoadlgd theGenotype GThe
particular mechanics of the decision-making procass not required for the
understanding of this article (see [EymaOla; Eyrbat®yma0O3] for detailed
descriptions).

It is sufficient to generalize by saying that evémuristic strategy, regardless of
the concrete implementation, will choose with aaierprobability (as seen by an
outside viewer) either transitice=b, a->c or a=>i from Figure 1. If a counter-
offer is made, the concession amount is also cladrby the strategy.

Under these circumstances, the goal of the adaptéinction is to maximize the
total output by changing the strategy parameteese(itheGenotypg Formally,
this goal can be described as

f,:[0,1° -~ R )
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The independent vectdﬂ[O,]]Gdescribes thesenotypeof the agent, which is

acting in an environment. The assumption is that a functiér(of unknown
shape) exists, which maps tBenotypeto its outcome in the realm of natural
numbers, given the current statelbfThe goal of learning is thus to maximize the
dependent outcome by optimizing the independ&enotype which means
adapting single vector elements (dimensions) uhgl global optimum ofy is
found.

This adaptation task, however, is bound by sevesttfictions of the environment.

1. No objective, central performance evaluation in§tih can exist, as this
would require the communication of every agentiditytfunction so that a
theoretical optimum can be computed, against whible individual
performance is evaluated. For the same reasonairgglin the first chapter of
this article, particularly, size and reach and dgita of the environment, such
complete evaluation is not realistically possibléhe agents will have to
evaluate the effects of their actions on the emvitent using local information
only.

2. The available data about the performance is histdtie agent merely knows
the average profit from its previous negotiatiomsl &an make statements
about the success of the current parameter coafigarin relation to previous
parameter configurations on the basis of its deuaknt.

3. Because the environment of the agent is highly dyoano statement about
the success of a parameter configuration can besmadthe basis of one
individual negotiation. The agent must have caroed several negotiations
with a parameter configuration before these caeustuated by means of the
profit generated.

4. If the other agents also implement adaptation ma&shes, the overall picture
widens to a very complex co-evolution of agentsicihs scientifically hard
to evaluate. In this article, co-evolution has theen ruled out. Only the
middle agents implement machine learning algorithmisile the producers
and consumers are static. However, all agents immgaié the same heuristics
and start with the same initi@lenotypeset.

3 The genetic algorithm of Smith and Taylor

The first adaptation mechanism applied is mainlgrded at the evolutionary
algorithm of Smith and Taylor [SmTa98] (STDEA) deked in [EymaOla;
Eyma00]. A fundamental quality of the mechanism tiee decentralized
communication and fitness evaluation, using onbalty available data.
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Every agent sends omdumageobject after a successful transaction, advertising
its average income (fitness) and its genes (geeptyp all agents of the
population after an evaluation phase, i.e. aftérag carried out a certain number
of negotiations with this genotype. If an agenterees a plumage object from
another agent, it decides usinglandnessprobability whether the plumage object
is evaluated, avoiding premature unification of thenotypes. Sender and
recipient remain anonymous. If a certaiaturity thresholdf received plumages
is exceeded, the agent replaces his old genotyihetind evolved version after the
completion of evaluation, selection, recombinatemd mutation phases as in
normal genetic algorithms. Also influencing the aithm is themutation rate
which determines the frequency and the extent plogative behaviour of the
population.

The technical functionality of STDEA has been eatdd using th®e Jong Five-
Function Test BefiGold93]. The performance of agent populations timgy of
either 1 or 25 agents searching for the minimuntheftest functions shows that
the algorithm is successful in all functions coesatl; even one agent alone takes
the right direction. This evaluation has been cated for all algorithms
described in this article, in order to indicate @rect implementation of the
learning function alone (without heuristics and remmic decision-making).

In the AVALANCHE market scenario, STDEA proves to be a reliablenopthg
procedure provided that information is able to flbetween the agents. The
parameter to be optimized is the profit (in Fig@ren the y-axis ) over time (x-
time). Figure 2 shows the development of the agedfits on a marketplace with
15 producer agentsl5consumeragents (both types with non-adapting strategies)
and 15 middlemantraders who use the genetic algorithm to optimibzeir
negotiation result.

In the left half of Figure 2, all producers and semers have the same unchanging
genotype set; their profits do not change over tame are nearly zero (light grey
dots). However, the middlemen’s profit (black dagsiickly and easily increases
as the (initially same) genotype is optimized. e tright picture, on the other
hand, all agents start with a random genotype. @wer the middlemen gradually
outsmart their non-adapting opponents again and icarease profit at their
expense. However, it should be noted that the eagghaof information also
changes the heuristics, as it leads to changeidlimégotiation prices and thus
influences the negotiations directly. The outcorhsuzcessive evaluations is thus
not as independent as in the Jong testbed
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Figure 2: Performance of the genetic algorithm imibaNCHE scenarios

In STDEA, the middlemen rely on information fronhet agents of the same type
in the form of the plumage object. Translated &l seenarios, market participants
gather performance information on others e.g. freewspapers, quarterly or
annual reports, market rumours, or intelligencethdlit such a “meta information
flow” on the marketplace, economic agents would Imetin a position to adapt
their strategy accordingly and therefore incapaifleaction with regard to the

choice of a strategy. In the next chapter, we thmplement and evaluate
strategies which do not need outside information daapt using local feedback.

4  Numerical optimization procedures

“Unfortunately, there is no perfect optimizatiogaiithm. This is a case where we
strongly urge you to try more than one method imgarative fashion.” (Press et.
al. [Pre$02))

The numeric optimizing algorithms applied here taeen in their original form
from Press et al. [Pr&82] and have been slightly altered. The biggeserihces
are (1) that the function to be optimized can rmdbectly evaluated and (2) that

the algorithms are defined to seek the minimum@f in the search spa{@,]]e,
to search for the parameter configuration which @sake maximum profit.

The first two algorithms described here belonghte group of the “direction-set
methods”, i.e. they always proceed in two stepse Tirst step determines the
direction to climb. In the second step, a one-disi@mmal optimizing sub-algorithm
like Brent’s algorithm or the naive Golden Sect®@arch [Pré92] searches for
the extremum.
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4.1 Golden Section Search

The one-dimensiondbolden Section Seardb performed successively along a set
of given directions that are passed through instirae sequence. When searching
for the minimum of theDe Jongtestbed this algorithm comes off worse in
relation to the algorithms described in the remeiraf this article, which has been
expected. In the YALANCHE scenario however, this simple algorithm equipped
with the unity vectors does not cut a bad figuee(Eigure 3 in comparison with
Figure 2). As all agents process nearly the sant&gahanformation, the variance
of the development is less even without exchangifaymation.

2200,
1760]
1320 ;

88 P4

44

i] 200 400 BO0 800 1000 6] 3500 70001.0Be+004Ae+0087E52+004

Figure 3: Performance of the naive procedure withivealent genotypes of producers and
consumers

This naive procedure is suitable to examine thenifsignce of individual
parameters for the success of the agent, wherertitye vectors are regarded as
direction vectors from the outset. Depending ondbetour of the function, this
procedure can, however, be very inefficient whearagng for the extremum (see
[Pres02]). Observations of the development of the prafitl the changes of the
parameters attach special importance to the paeamditich controls the value of
the initial price offer in this particular \MALANCHE-based example. The
applicability of this simple procedure to realistieuristics thus requires cautious
implementation and further research.

4.2 Multi-dimensional optimization according to Povell

The direction set method of Powell in [Pi@2] not only searches for the
extremum but also for optimal directions for theatimensional sub-algorithm in
order to accelerate the search procedure. Powmlisedure thereby derives a
number of conjugated vectors from the extrema faarttie respective directions.
The algorithm implemented here tries to handle pheblem of the linear

dependence of these vectors through a heuristivepso After each optimization
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cycle, the optimal direction is replaced with theeowhich has generated the
greatest progress.

As a proven and very efficient optimization proceuPowell’'s procedure
delivers a quick outcome in th2e Jong testbedn the A7ALANCHE setting, this
procedure also achieves better results than thetigesgorithm. Since Powell’s
procedure also searches for dimensional directiontake on the way to the
extremum, this method offers the possibility of miaing connections between
the individual parameters and their significance tfee choice of a strategy in
small populations.
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Figure 4: Performance of Powell's procedure withireglent genotypes of producers and
consumers

However, if one conveys this result of one indidbdagent to a population of
agents, in which each agent has to carry out its arch process, the number of
the required evaluations multiplies with the numbkthe agents until each agent
has reached an acceptable result. The larger thalgimn, the lower thus the
performance, which is considered to make this masha impractical for real-
world scenarios.

4.3 The Simplex method according to Nelder and Meat

Nelder and Meat's method [Pf€&] does not require an one-dimensional sub-
algorithm. At the outset, linear independent poitth their functional values,
spanning am-dimensional subspace, are located innati-dimensional search
space. This geometric figure is described as aleinfhe starting point of an
optimizing step is the point of the simplex witkettvorst functional value. This
point is transferred through heuristic reflectidsaghe hyperplane, defined by the
remainingn points, into a point with better functional valwehereby the property
of then+1 points to form a simplex remains.

In the De Jong testbedhe performance decreases with the growing nurober
agents, as in the other numeric optimizing procesluin A/ALANCHE, the results
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in the scenarios with unified genotypes of prodsi@rd consumers are, compared
to the first two procedures, exceptionally good.
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Figure 5: Performance of the Simplex method with on15 agents on the marketplace at a
time

Summarizing for the numerical procedures, Poweallgorithm as well as the
Simplex method provides better results than the @g6rithm regarding the test
functions as well as ¥aLANCHE. The differences to the (parallel processing)
STDEA become obvious if one varies the size ofgbpulation. In the case of a
single agent, the numeric algorithms take advantdgieir directed search, in
contrast to the random exploration of the STDEAjchtperforms better with an
increasing number of agents.

5 A hybrid genetic algorithm on the basis of the VD
model according to Brenner

In the preceding chapters, algorithms were basetlvordifferent principles. The
genetic algorithm STDEA is based on random expilonatcombined with
imitation, while the numeric algorithms are baseddirected exploration. The
following hybrid algorithm OVID combines both apphes. It tries to mirror
human acquisition of information that is driven imjtation, random exploration,
and exploration directed by cognitive processeschiigally, a parallelized
version of the Simplex method is extended by thBEA with respect to random
exploration.

The VID (Variation-Imitation-Decision) model accamnd to Brenner [Bren96;
Bren02] is based on hypotheses from cognitive pslpdy and satisficing theory
[Simo87] and combines them to a learning process répetitive decision
processes. “It assumes that decision-makers leanm their experience, are
motivated to behavioural changes by unsatisfactotipns and are able to imitate
successful strategies of others” [Bren02]. VID etates (positive feedback)
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experience, contentment and the basic willingnessxploitative and explorative
behaviour by individually (1) calculating the prdiiidy to change from one
behaviour to another without any influence of othadividuals, and (2)
calculating the probability to imitate the stratexfyanother individual.

In this article, the assumptions of the VID modaVé been slightly altered. The
limited information processing capacity of the#AAANCHE agents does not allow
them to hold models of all agents’ strategies. Bdaptation of theGenotype
draws from a continuous interval of possible actjowhile the original VID
model assumes a discrete number of actions. Teu®llbwing questions remain:
which information can be used to quantify the agesdtisfaction and experience?
How can the motivation for adapting the strategylbeved from the satisfaction?
How can imitations or variations be realized iroatmuous action space?

Quantification of the experienc&he experiencevalue compares the performance
of a particular agent to that of all other agefiisis comparison (using publicly

available data about all agent’s strategies) pewithe basis for imitation in the

original VID model. The strategy with the highexperience value witnessed will

be imitated by the comparing agent in order toéase his own performance.

Since the agents in VAALANCHE only possess information about their current
parameter configuration, the procedure already knfram the genetic algorithm
is an alternative for direct information transfére agents send@umageobject

to all agents of the population or of the marked arocesplumageobjects from
other agents only with a certain degree of proligbilAs the experience
performance with a certain Genotype is correlatéth \an agent’s profit, the
experiencevalue for an agent can be directly calculated bitipy a received
plumage’s fitnessprofit,, in relation to the perceived average fitness \aloke

other agentsprofit

av,all *

profit,, - profit

experiencg, = 22l ()

av, all

| profit

Quantification of the satisfactionThe satisfaction value is correlated with
adaptation of the current own strategy. Here, thent compares its past and
current performance without looking to outside tetgées.

Due to limited computational abilities, the agerancmerely correlate the
functional value or profit of the current parametenfiguration to a previously
generated average profit. This value is identifeeslaspiration level as the
satisfaction of the agent sensibly stands in pribgoto the profit development. If
the profits rise, the value of the satisfactiorpasitive, if the profits fall, it is
negative. Analogous to the quantification of theemence, the satisfaction is
related here to the percentage change of the pkiditvever, the significance of
the success of an individual negotiation can notidermined; the value is thus
derived by comparison to several negotiations edrout in succession.
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profit,, — profit

satisfaction, = 2 0ld (4)

| profit

av, old

In the notation following [Bren96]:

Uy, (1 (1), t) —uy (1 (t-7) t=7)

I AN (YK ©
where as

u,, (1, (t).t) = profit,, (1, (t) t)

:ioz;' x(1-¢,)x profit(1,(t) t) (6)

= ¢oxu, (1, (£=2) 4= +(1-¢.)xu(1,(1) 1)
Motivation for behavioural changdf the satisfaction falls below zero, the current
strategy shows inferior performance and the mdtwato change the strategy
rises. This can be described using a Sigmoid c%\_f&m with infimum 0 and
€

supremum 1, Wherem(O,t) is the basic motivation if satisfaction = 0. The

motivation for the behaviour change should at I&asthe basic motivation in the
case of negative profit.

1
Te 007 u,, (15(t).t) 20

m(s(1), 9= @)

1
maX(W ,m( O,I)j uav( Ii (t) ,t) <C

where as

Let a be calculable through the value to the point

= {‘0-5 u,, (1;(t) t)= 0

-1 u,(1(t).t)<0 @)

given through the paramet@r< u, ,u_ <1 as
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g mexmm(o )+ (o (1(d.)= ¢
(Xt)_{u x(l—m(o,t))+ m(0,) lAv( |(1),ﬁ< 0 (10)
From this follows
n[ L 1)-p
alt)= [m(xt) ) -

X

The value calculated in formula (11) at poirihdicates with what probability the
agent adapts his behaviour when his profit is &alfiigh or doubly loss-making as
the previously generated profit. The paramaterand p_ determine this value in

relation to the basic motivation.

Partial imitation. In the process of imitation in [Bren96], a strateggarded as
successful will be copied without changes. In geragorithms, this relates to a
crossover of the current genotype with the mostesgful genotype, where only
the alien genotype prevails. Subsequent mutatioptisnal.

Directed variation. In [Bren96] the behaviour variation is an undiestt

exploration, which selects a strategy at randonoritter to give the explorative
behaviour a direction in a meaningful way, analegda human cognitive

perception, a parallelized Simplex method will teedi to process information
from other agents. Each choice of a strategy, ddfiby a certain genotype
parameter configuration, is mapped to a point @ntdimensional search space of
the Simplex process.

The results of this optimizing VID (OVID) mechanishow a better performance
overall than both genetic algorithms and numenmeathanisms alone.

In comparison to the numerical procedures descrifredchapter 4, the
performance in th®e Jong Testbedith a population of 25 agents is better; but it
does not reach the performance of the geneticighigoiSTDEA. In one particular
test functionf,, however, the OVID method does not lose the dbecto the

minimum in contrast to the genetic algorithm, whogierates at random.
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Figure 6: Performance of OVID each with one or Huadly initialized agents on the
marketplace

Figure 6 shows the price developments in thelLANCHE setting with uniform
genotypes of producers and consumers each withaode1l5 agents. In the
experiment in Figure 7, the information flow wasrdpted and thus the learning
process is slower.
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Figure 7: Performance of OVID without informatidow between the agents (on the left)
and with random initialization (on the right)

The OVID model presents a possibility of combinthg advantages of the genetic
algorithm STDEA, the numeric optimization procedufethe Simplex method
and the imitating and directed exploring behaviouohuman cognitive processes.
This algorithm does also not depend on a constdatration flow between the
agents, but can meaningfully evaluate such atiamg. it is thus more robust than
STDEA and yields better results than pure numenpéimization approaches.
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6 Conclusions and further work

This paper has shown a comparison of differentnaipttion algorithms for profit
maximization of negotiating software agents in eanterce scenarios. These were
implemented and tested in a particular multiaggstesn, using different numbers
of agents and different parameterization of theotiation partner. While the
genetic algorithm STDEA and the numeric optimizatinethods already produce
good results, it was possible to combine theirngjiies to develop the OVID
procedure. This learning mechanism is consideré&diexit within large and also
mixed populations. It can meaningfully use inforimat from other agents;
however, it does not depend on it.

The algorithms are still to be tested with regaeod their behaviour (1) on
marketplaces with varying population size and (Rere the negotiation partners
are also equipped with a learning algorithm andretfoee the optimizing
procedures co-evolve. In such a scenario it is eegethat the information about
the success of parameter configurations lose #gmiée. In the static scenarios
described here, merely the development of the madceepts and varying starting
points of the negotiations as well as stochastiegirlarities caused differing
results with one and the same parameter configurati

What is also missing, of course, is the evaluatibthe learning mechanisms in a
real-world scenario. If the findings of this aréotan be transferred has yet to be
shown. As an example, the business performancenmafiion published in real
markets has shown to be sometimes inexact, indooreeven completely made
up. Even if this behaviour could be taken into agtoif reputation tracking
mechanisms as in [Eyri@2] are applied, which modify the raw data prior to
including it in the learning process, the questaises how this again would
influence the performance of different learning hestsms.
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