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ABSTRACT 

The paper presents our progress in defining an aggregate data modeling style using new operators with the standard data 

modeling language Idef1X. By defining a style, using an established notation, the proposed allows reuse of existing data 

modeling expertize. The style is intended to support data modeling for so called aggregate-oriented NoSQL databases. 
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INTRODUCTION 

Any system, seen as a set of entities together with their relationships and properties of those entities and their relationships, 

when observed, can be represented with data values (recorded in a database). For the convenience of database design a 

number of entity relationship models and languages had been used. We selected Idef1X, a standardized (FIPS 1993) data 

modeling language, as a basis for defining a style to address modeling for contemporary NoSQL databases. The Idef1x have 

fewer concepts than UML and is directly translatable into relational model by tools, such as CA Erwin. Before elaborating a 

new modeling style we will first introduce the Idef1X concepts and a working classification of NoSQL databases. 

Of the Idef1X visual elements (see Figure 1) we use Entities (independent as rectangles and dependent as rounded 

rectangles), Relationships (dotted lines for regular 1:1 or 1:M relationships, and a solid lines for identifying 1:M 

relationships), a cardinality of a relationship (the many i.e. M= 0,1,…, side is implied on the dot side of a relationship, and 

one is implied on the opposite), and optionality (diamond on the one side of a relationship).  The advanced concept of 

generalization is illustrated showing two variants (intentionally complete and incomplete subtyping) both with mutually 

exclusive subtypes. Notice that we are not using unspecific i.e. M:M relationships that Idef1X otherwise supports for 

conceptual modeling, as those need to be resolved (replaced by intersection entities before . 

 

Figure 1. Visualization of Idef1x concepts 

The practice of reifying M:M relationships, see Figure 2, is necessary for making specific logical models, i.e. models that can 

be automatically translated into relational schema, and is also a pre-requisite for the proposed aggregate data modeling style. 
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Figure 2. Reification of a M:M relationship into an intersection entity 

Now let us address a classification of NoSQL databases in order to narrow the scope for the aggregate modeling style. The 

term NoSQL, and related DB engine products, evolved from a “no SQL”, via “not only SQL”, to a “new SQL” according to 

(Stonebraker 2009, and Stonebraker 2012), but the term is not to be treated as an acronym (Sadalage and Fowler 2013). 

There is no definitive classification of NoSQL databases but uses by (Cattell 2010; Leavitt 2010; Stonebraker 2012; 

Clarence, Arawinth and  Shreeharsha 2012) shows a substantial convergence. The (Sadalge and Fowler 2013) designated as 

aggregate-based only the following NoSQL database categories: Key-value stores (Dynamo, Redis, Scalaris), Column-wise 

stores (Hbase, MonetDb), and closely related Column-family stores (BigTable, HyperTable, Casandra), and Document 

stores (CouchDB, MongoDB, SimpleDB).  This clearly leaves NoSQL Graph DB and Text DB out of our scope. The 

products listed as examples of NoSQL databases differ in their implementation using specific file systems and collectively 

have no conceptual or even logical model that differs from the physical implementation model (as specific file system). 

Nevertheless they share the property of being able to store aggregated data clusters. The term aggregate here follows the 

notion of aggregate as a rich structure of closely related data that makes sense to be stored as a unit because it is almost 

exclusively accessed as a unit. Modeling such aggregates is not a new phenomenon; we can trace it to the Semantics Object 

Model (Kroenke 1995) and Domain-Driven Design (DDD) (Evans 2004). A review of sources influencing our work must 

include (Voughn 2013) elaborating on design of aggregates in DDD. The need for deliberate data modeling with NoSQL DB 

was recognized in (Schram, and Anderson 2012). An informal overview of data modeling for NoSQL was provided by 

(Katsov 2012); Esposito 2011), and in considerable depth in the (Sadalage and Fowler 2013). Nevertheless, our observation 

is that a better defined approach (to data modeling for NoSQL databases) is needed, specifically tapping into a reservoir of 

traditional data modeling expertize (for relational databases). This observation both motivated and directed our investigation 

leading to formulation of an aggregate data modeling style. 

 

AGGREGATE DATA MODELING STYLE 

A modeling style can be defined by patterns and constraints that produce models of recognizable form. The aggregated data 

model is, formally, a forest of independent aggregates (i.e. trees). Of the three aspects of modeling data i.e. structure (syntax), 

semantics (substance i.e. meaning), and pragmatics (convenience), we will mainly address the structural aspect of achieving 

the aggregate form.  Our recommendation regarding semantics, is to use traditional data modeling to develop conceptual data 

models first (with detail analysis of entities, attributes, and the relationships required for satisfying functional requirements) 

and then apply new operators to recast models into the aggregate form for NoSQL implementations. Specific domain analysis 

is necessary also to recognize aggregates (according to responsibilities for updates i.e. transactions) as well as references (to 

nomenclatures maintained in separate systems and/or applications). Pragmatic considerations, are mainly related to non-

functional requirements (performance, scalability, etc.), and can be relegated to physical design under a specific NoSQL 

database engine to guide trade off evaluation of logical design alternatives (as alternative aggregates). We will completely 

and formally define an aggregate data modeling style with a procedure based on the use of specific operators specified by 

structural applicability patterns.  The pre-requisite, needed to prime data models is a single dependency pattern designating 

entity with responsibility for updates for each of dependent entities. The data modelers need to use the single dependency 

pattern deliberately (Figure 3) while making a conceptual models (after internalizing this pattern, as it may require some time 

to get used to it) or as a first step in transforming a traditional conceptual data model into an aggregate form.  

 

Figure 3. Single Dependency Pattern variants 
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The reduction of data models with only single dependency patterns to aggregated form of a set of trees (possibly collapsed) 

can be achieved by eliminating relationships either by ‘disconnecting’ entities (after copying referenced identifiers in a 

manner of foreign keys), or by ‘nesting’ entities similarly to de-normalization pre-join patterns  (Ligstone, Torey, and Nadeau 

2007). An entity must be designated as a root for each aggregate (future data cluster with a unique identity) to serve as its 

focal point during analysis and for eventual NoSQL physical implementation. In order to designate root entities and to create 

their reference entities (containing only root entity identifier necessary to support relationships with other aggregates), we 

propose a ROOT operator. To minimize clutter we may show reference entities only as necessary (as in Figure 5), as they can 

be implied whenever a ROOT is used. Our specification of an aggregate data modeling style proposes only two additional 

operators, REFI and EMBED, to indicate relationships to be ‘eliminated’ during the data model reduction into an aggregate 

form. The patterns a, b, and c for EMBED are shown on Figure 4, and patterns d, e, f, g, and h, for REFI on Figure 6. The 

REFI is absolutely required to formally reduce, cut a network (graph) to trees, and EMBED is necessary to reduce model size 

to fewer entities by explicit collapsing (nesting) of entities, as well as to conform to specific NoSQL DB file system for 

physical implementation.  

 

Figure 4. Patterns for EMBED  

 

Figure 5. Relating aggregates only via (explicit) reference identity 

 

Figure 6. REFI Patterns 

The use and positioning of EMBED operator is illustrated on Figure 4. The EMBED is to be placed on the side of the entity 

to be embedded (typically a dependent one). The EMBED is also applicable in designating subtypes to be physically included 
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into a variant super type, use of this particular pattern, a special case of pattern (c) i.e. a 1:1 relationship of a supertype with 

its subtypes, is  illustrated in Figure 9. The REFI operator is positioned with the entity where only a reference value will be 

copied into (effectively realizing a relationship by severing the connection to it but without eliminating referenced entity) see 

Figure 6. The examples of use of the ROOT operator are shown by Figures 9 and 10.  

 

AN ILLUSTRATIVE EXAMPLE 

To provide a demonstration, one traditional data model (Figure 8), treated as a conceptual model, is presented in the 

aggregate style (Figure 9) for a Medical Record system decoupled from semantically related system of applications, via 

reference entities shown in green. The context systems comprising of drug approval and registration, procedure and device 

registration, generic drug substitutions, application for advisory information on multiple drug interactions etc. are not shown 

here to simplify presentation and focus only on creating an aggregate data model. The Figure 9 shows a logical model with 

one aggregate and Figure 10 an alternative data model, typical in SOA, with five aggregates. The subtype of 

REGISTERED_PROFESSIONAL, on Figure 8, is shown in yellow only to clearly indicate a requirement that can be 

postponed or added.  We use symbol X to indicate relationships to externally managed reference data, as points of connection 

with external systems. 

 

Figure 8. Conceptual data model for decoupled application set- Patient Medical Records  

The making of an aggregate data model is not an automatic process, a modeler must substantively decide scope of 

transactions and delineate aggregates based on a real work design (i.e. assignment of responsibilities to users, typically 

captured via workflow tasks and/or use cases), mark separate aggregates by their ROOT entities, and decide which 

relationships need to be ‘eliminated’ by REFI and which ‘collapsed’ by EMBED. Nevertheless, we can explain a mechanism 

assuring the aggregate form of a model formally. The reduction of a data model to selected aggregates (clusters around 

ROOT entities) requires: a) severing references (where each REFI is applied individually), and b) recursive application of 

EMBED culminating into a ROOT. An application of EMBED is kind of pre-join de-normalization applied from the bottom 

up. In the example on Figure 9 we have first the nesting of the REGISTERED_PROFESSIONAL data into a PERSON. 

Second, we have a case of pushing a parent into the child, effectively a redundant copying of a PERSON data into the 

PATIENT_RECORD. On the separate branch MEASUREMENTS are first embedded into the LAB_RESULT and then all 

four subtypes embedded (nested, pre-joined) into RECORD_ITEM. Finally RECORD_ITEM is nested into 

PATIENT_RECORD forming a single cluster super entity i.e. the aggregate PATIENT_RECORD. The Figure 10 shows an 

alternative logical data model, using different choice of ROOT entities, typical with smaller service oriented applications 

(where each ROOT is shown in yellow for emphasize). 
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One implication of aggregates for NoSQL implementations is really important to point out, namely that each transaction 

instance will need only a single entity cluster instance allowing freedom in mapping all the database data to various locations 

in a distributed environment without substantial performance penalties. The only (logically necessary) data to be replicated 

are value references to external systems, and the references to separate aggregates (if any) in the same application/system. 

Those are the only two cases for the ‘eventual consistency’ mechanism, while ‘immediate consistency’ in transactions is not 

causing a problem in a distributed environment (Voughn 2013) whenever all the aggregates are fully separated. 

 

Figure 9. Logical data model reduced to a single aggregate 

 

Figure 10. Logical data model with five aggregates in a SOA environment 
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CONCLUSION 

We are aware that the NoSQL databases opened a new non-trivial problem area for data modelers. For most analysts as data 

modelers concerned with application data requirements that are relegating bulk of implementation to NoSQL programmers, 

an aggregate data model represents a missing link between traditional data models and aggregate-oriented NoSQL DB 

physical file systems. One of the key points of this paper is that work on conceptual and logical modeling for aggregate 

NoSQL DB can prepare foundation for automation of future physical design as well as make aggregate data models ready for 

custom coding. All three aggregate operators can be treated as instructions for formal transformations to at least some default 

physical implementation (with selected aggregate NoSQL database), in a manner similar to how contemporary case tools 

generate SQL DDL code in transforming traditional data models into relational model. Research under our supervision as 

well as CA’s Erwin and Oracle’s SQL Developer Data Modeler (among other case tools) are actively pursuing formal 

transformations to a select NoSQL engines. Physical data modeling obviously represent an involved problem due to varieties 

of non-standardized and rapidly evolving NoSQL engines. In principle for each NoSQL selection, supported data types and 

other available options are to be planned for and all formal transformations defined before full automation become feasible.  

Our work on logical data modeling with aggregate style already provides medium for trade off analysis (as different 

aggregates can be selected i.e. modeled and resulting model variants as preliminary physical models compared). In the 

service oriented architecture (SOA), where applications are organized as tiny services reducing data model to really small and 

independent pieces is a pivoting goal. The aggregate modeling style is well suited to SOA as it can reduce traditional data 

models into very small aggregated data models systematically, see the illustration of the service based transaction driven 

aggregate model form (Figure 9) and its SOA based alternative shown in Figure 10.  

Directions for future work include:  a) in depth exploration of opportunities for standardizing physical data modeling in the 

aggregate data modeling style for diverse NoSQL database engines, and b) defining model refactoring and transformations 

for code generation in a style of (Ambler and Sadalage 2007) again for different NoSQL DB engines. In addition, there is a 

relatively minor issue that can have significant pragmatic benefits, namely, refining a role of color to support aggregate data 

modeling style. Also of interest is providing important/involved examples of models and complete implementations for the 

explicit purpose in using them in the education of future modelers and DB designers. A recommendation for the use of colors 

is an issue where progress can be made fast, as it is limited only by experience of developers and availability of resources for 

experimentation, and some results in the context of traditional data models (equivalent to 3
rd
 or ideally 5

th
 normal forms) had 

been presented before. 
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