
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

WISP 2019 Proceedings Pre-ICIS Workshop on Information Security and
Privacy (SIGSEC)

12-15-2019

Reusability or disposability? A network analysis of reusable Reusability or disposability? A network analysis of reusable

software vulnerabilities software vulnerabilities

Martin Kang

Anat Hovav

Sungyong Um

Ted Lee

Follow this and additional works at: https://aisel.aisnet.org/wisp2019

This material is brought to you by the Pre-ICIS Workshop on Information Security and Privacy (SIGSEC) at AIS
Electronic Library (AISeL). It has been accepted for inclusion in WISP 2019 Proceedings by an authorized
administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/wisp2019
https://aisel.aisnet.org/sigsec
https://aisel.aisnet.org/sigsec
https://aisel.aisnet.org/wisp2019?utm_source=aisel.aisnet.org%2Fwisp2019%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 1

Reusability or Disposability? A Network Analysis of Reusable Software Vulnerabilities

Martin Kang1
College of Business, Mississippi State University,

Mississippi, MS, USA
Anat Hovav

Claremont Graduate University
Claremont, CA, USA

Sungyong Um
School of Computing, National University of Singapore,

Singapore, Singapore
Ted Lee

Fogelman College of Business, University of Memphis,
Memphis, TN, USA

ABSTRACT

The sharing economics of digital resources such as application programming interface and

software development kits enables software developers to create diverse software faster and more

effectively. However, developers may unintentionally adopt shared digital resources that contain

vulnerable code, which may cause vulnerability in the final software product. In this study, we

examine the interplay between the sharing of digital resources and software vulnerability. This

study may help developers to identify vulnerable digital resources in a digital ecosystem. We

quantify the diffusion of software vulnerability in sharing of digital resources using a machine

learning technique to create necessary variables. We conduct regression analyses to examine their

effect on the severity of software vulnerabilities.

Keywords: Software Vulnerability, Network Analysis, Business Analytics, Node2Vec, Machine
Learning, Econometrics.

INTRODUCTION

Deliberate attempts to cause failure by triggering information security (InfoSec) incidents

is what software management is concerned with and has to protect against. Software

vulnerability is a flaw within a software product that can cause it to work contrary to its intended

1 Corresponding author. dk1029@msstate.edu +760 815 4846

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 2

design and can be exploited to cause the system to violate its documented security policy

(Applewhite 2004). The economic impact of software vulnerability can be devastating. For

example, Wells Fargo and eleven other financial institutions were fined $14.4 million for failing

to adequately protect their electronic records from software vulnerability (Rubin and Pollet

2017). According to Phonemom (2017), US companies spend an average of $3.8 million each

year to fix software vulnerabilities. Across all stakeholders including customers, $8 billion is

spent to prevent potential damage to computer systems from software vulnerabilities in the US

per year.

A vast body of literature attempts to provide business and technical guidance to mitigate

software vulnerability by discovering the causes that generate it. Conventional software

vulnerability studies focus on detecting vulnerability at the design level of software. These

studies advocate that software manufacturers and developers can mitigate vulnerability by

eliminating potential errors in the software development phase. For instance, Rehman and

Mustafa (2009) and Tevis and Hamilton (2004) find a positive association between the number

of software vulnerability occurrences and the transitional phases of the software design process.

Walden et al. (2014) introduce a machine learning method to detect vulnerable codes in the

software development process. Luo et al. (2014) develop metric models that evaluate the severity

of software vulnerability by using the mathematical characteristics of software vulnerabilities.

However, modern software development is a complex jigsaw puzzle of internal and

external digital resources such as application programming interfaces (API) and software

development kits (SDK). The decision to adopt external digital resources in the digital ecosystem

should entail a rigorous process to evaluate the potential vulnerability of these resources. For

instance, the Equifax data breach in 2017, which leaked the information of 45.5 million U.S.

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 3

consumers, was facilitated by a flaw in Apache Struts (NVD: CVE-2017-5638). Apache Struts is

an open source platform that provides APIs for web application development. Check Point

estimated that CVE-2017-5638 affected 42% of web applications due to its vast externality and

popularity.

Despite the complex interplay of digital resources in modern software development, there

is surprisingly scant quantitative research on the association between external digital resources

and software vulnerability. This paper studies the relationships between the digital resources

used to develop software and their consequence for software vulnerability. Studying this

relationship is vital because we still do not understand many aspects of how the digital resources

in a digital ecosystem affect software vulnerability despite the wealth of research on software

vulnerability detection. Our empirical research is guided by the following research questions:

what factors of the digital ecosystem can impact software vulnerability, and how do they impact

the severity of software vulnerability?

To answer these research questions, we begin with a review of related literature on

software vulnerability and digital ecosystems and derive propositions based on the findings in

the literature. Next, we assume that software vulnerability could be diffused by sharing digital

resources in a digital ecosystem. We infer the network structure of software vulnerabilities by

using evidence about the sharing of digital resources in a digital ecosystem taken from the

software vulnerability data in the National Vulnerability Database (NVD). In our dataset, we

define a node as a software vulnerability. The edge of the node is its relationship with other

software vulnerabilities. We assume that edges exist when the software vulnerabilities share the

same affected product. Based on the dataset, we introduce and conduct various network analyses

to derive the exploratory and control variables that might affect the severity of the software

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 4

vulnerability. Finally, we validate our assumptions using a regression analysis based on the

variables derived in the network analysis.

RELATED WORK

Research related to the analysis of software vulnerability can be categorized into two

different strands based on its perspective on software vulnerability. The first strand focuses on

developing methods to find software vulnerability by excavating the pattern of programming

structure. Shahriar and Zulkernine (2012) categorize static, dynamic and hybrid analysis for

software vulnerability analysis. Static analysis refers to analyzing the source code of software

without considering the executing process (Medeiros et al. 2015). Dynamic analysis refers to

continuous analysis using specific input data for software functional testing and general

operations of software (Moore et al. 2016). Hybrid analysis is a mixture of these processes

(Watson et al. 2015). The second strand of research mainly discusses the methods to discover

software vulnerability using various metrics, data mining and examining the programming errors

that can be generated by human error and machine malfunctions.

The second strand mainly examines the relationships between software vulnerability and

software architectural properties. For instance, Sosa et al. (2013) consider the cyclicality of

digital resources (e.g., API and SDK) in digital ecosystems, using the design structure model for

digital resources to first estimate the cyclicality of software dependencies and then assess its

positive association with a software vulnerability. Lagerström et al. (2017) combined detection

metrics (e.g., quantitative metrics in the first strand), properties of code (e.g., findings in the

second strand) and architectural aspects to predict software vulnerabilities. The software

engineering literature emphasizes software design algorithms and procedural concerns to detect

vulnerable software components from external digital resources (Wang et al. 2010).

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 5

RESEARCH PROPOSITIONS

Diffusion of Software Vulnerability

Software can be linked to other software by sharing digital resources such as API and

SDK. However, the shared digital resource could have a latent vulnerability that affects other

software functions, triggers attacks and acts as a source of threat. The literature on digital

platforms and ecosystems provides empirical evidence for this argument. Digital products have a

layered modular architecture in which digital resources and services are combined to create final

products and services (Yoo et al. 2010). The digital resources shared by external parties in the

digital platform allow for sustainable growth by structural diversification of digital ecosystems

(Um and Yoo 2016). Barros and Dumas (2006) examined the diffusion of API in the digital

ecosystem of a web service and explored how developers consume the shared API to create new

and innovative functions for their products.

The literature on software vulnerability often utilizes the relationship between the

software vulnerability and the digital ecosystem. For instance, some studies estimated the

likelihood of vulnerability based on the complexity of the code and data structure (Gopalakrishna

et al. 2005). More recent studies use a software dependency network based on the mutual

function calls among the entities in a related digital ecosystem (Nguyen and Tran 2010). In

addition, some research focuses on modeling the vulnerability discovery process based on the

shared economics of digital resources (Alhazmi et al. 2007) and entities of software vulnerability

ecosystems using an agent-based model (Breukers 2016).

A vast body of studies shows that the externalities of digital resources have virtuous

network effects on a digital ecosystem because externality may provide functional recombination

and diversification of software. However, the structure of the digital ecosystem may affect the

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 6

diffusion of software vulnerabilities by allowing the sharing of vulnerable digital resources in the

ecosystem. The more developers use the digital ecosystem to develop innovative functions for

their software, the more likely they are to create vulnerable software by accidentally using

external digital resources that may contain vulnerable codes. Furthermore, hackers could take

advantage of external vulnerable codes to attack the target systems. Thus, the impact of software

vulnerability could be amplified as the vulnerable digital resources are assembled to create a

final software product. Hence:

Proposition 1. The diffusion of software vulnerability in a digital ecosystem is associated

with the severity of software vulnerability.

Digital Ecosystem Structure of Software Vulnerability

The digital resources in digital ecosystems tend to be very large and to contain elements

from various other digital resources. As a result, the management of digital resources has

become more difficult (Decan et al. 2019). These dependencies between digital resources cause

various types of challenges in software vulnerability and security due to inconsistencies in

version management, high consumption of computing power for cascading version updates and

lack of awareness of developers and digital platform owners regarding the complex structure of

these dependencies (Brada and Jezek 2015; Kula et al. 2018). Vulnerable code could exist in

outdated dependencies of digital resources and result in vulnerable software that could be used as

a digital resource in other software products and thus propagate throughout the ecosystem

(Nguyen and Tran 2010; Rahimi and Zargham 2013).

This means that popular digital resources that are widely used in a digital ecosystem may

create multiple channels through which software vulnerability can be spread. The severity of

software vulnerability could be shaped differently by software dependency as the vulnerable

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 7

codes are delivered, used and transformed by other digital resources. For instance, Equifax’s

incident featured a few stages that led to the breach. First, the attacker attacked the vulnerable

Apache Struts API, which enables communication between heterogeneous programming objects

(e.g., serialized programming objects, link files and data components) and used it to browse and

explore the target digital assets in Equifax’s systems. Then, the attacker used another software

vulnerability of Apache Struts to disturb the network segmentation of the digital infrastructure by

merging other APIs (i.e., embedded in Equifax’s systems) related to data injection. Notably,

those APIs were not designed to be used for browsing or interfering with the communication

between the programming objects. The hacker creatively devised a way of attack by taking

advantage of a malicious aspect of the digital ecosystem. As such, attackers can amplify the

severity of software vulnerability by merging related APIs and tweaking their functions.

This suggests that software vulnerability could be mediated and propagated. Even if the

software vulnerabilities are not linked directly to each other, one software vulnerability could

trigger the operation of another vulnerable code, thus creating a domino effect. In addition, an

attacker can devise new malicious functions using related digital resources from neighboring

software vulnerabilities. Understanding these impacts on the severity of software vulnerability

requires network analysis that examines the role and centrality of software vulnerabilities in a

digital ecosystem.

The centrality of software vulnerability in the digital ecosystem could impact the severity

of software vulnerability in different ways. For instance, a software vulnerability (e.g., degree

centrality) that is more directly related with other software vulnerabilities may be more severe

because it impacts the local area of the network. The global network relationships such as the

density of the links between software vulnerabilities (e.g., eigenvector and clustering coefficient)

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 8

in a certain part of the network could also impact the severity of software vulnerability.

However, the network centralities could be measured differently by considering the position of

software vulnerability in a global software vulnerability network. For instance, software

vulnerabilities in the central position of a network could gain more attention from developers and

more externalities in a digital ecosystem. The centrality of software vulnerability could motivate

communities and stakeholders to control the risk attributed to the software vulnerability. Using

the metaphor of fire control, the firefighter controls the main fire at the site and then attends to

distant fires. The resources in the digital ecosystem could be focused on the software

vulnerability that is central in the digital ecosystem, and this could lead to less software

vulnerability.

We attempt to find the effect of this ambiguous concern on network centrality by testing

a proposition using various network centrality measures. These measures are introduced in the

section on the empirical approach. In order to examine the impact of the various network

centralities of software vulnerability in the digital ecosystem, we offer a general proposition (P2)

as follows:

Proposition 2: The network centralities of the software vulnerability in the digital

ecosystem are associated with the severity of software vulnerability.

METHOD

To test the propositions, we first collected software vulnerability data through the

National Vulnerability Database (NVD). The NVD includes databases of security checklist

references, security-related software flaws, misconfigurations, product names and impact

metrics. The various characteristics of software vulnerability reported to the NVD are the date of

report, solutions from the open source community and digital artifacts affected by the software

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 9

vulnerability. Based on the data, we infer the software vulnerability network as G. Let G = (V, E)

be a software vulnerability network. V is a node (i.e., software vulnerability) and E is an edge

which represents the relationships between software vulnerabilities. We consider an E to exist

between Vs when two different Vs affect the same software.

Second, we measure the diffusion of software vulnerability using the link prediction

between software vulnerabilities. To do this, we implement the Node2Vec algorithm. Node2Vec

is a machine learning algorithm that computes the vector coordinates of a node in a network. In

brief, Node2Vec implements an objective function which maximizes the log-probability of two

different nodes are linked together. In computational form, Node2Vec computes

, where is the random sampling strategy of neighborhood

network . Based on the Node2Vec, we calculate the feature matrix of . For instance,

two nodes and with the corresponding feature vectors and that generate

such that . The is the size of the feature representation (i.e., dimension) for the

pair of . The link can be represented using the Hadamard product (i.e.,

, for each node in (Grover and Leskovec 2016; Li et al. 2017).

Therefore, if the machine learning model succeeds in learning the pattern of , the

machine learning model can predict the link between and by calculating prediction score.

For the machine learning model, we used logit, which performed better than supportive vector

machine (SVM) and feed forward neural net (FFNN)2. Based on the machine learning, we count

diffusive nodes by codifying the nodes as 0 for non-linked nodes and 1 for linked nodes in .

Finally, we calculate Diffusion using the proportion of the number of diffusive software

vulnerabilities divided by the total number of software vulnerabilities in network .

2 We used receiver operating characteristics to compare the performance using the baseline of Adamic Adar (2003).
We report ROC: logit(0.95), SVM(0.80), FFNN (0.66), and Adamic Adar (0.55).

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 10

Third, we calculate network centrality measures based on the mathematical forms. A

software vulnerability may have a larger influence over the neighborhood software vulnerability

because it has more external digital resources that are shared by other entities in the digital

ecosystem. Using mathematical notation, we define degree centrality as an explanatory variable

which is the return value of the function in the network of . The degree

centrality refers to the counted number of edges incident upon a node. The function counts the

edges incident to the node . We divide the degree centrality by statistics freedom (i.e., total

number of nodes – 1) to normalize the number of nodes. We

calculate: , where is the number of in .

However, degree centrality is limited in its ability to capture the severity of a software

vulnerability caused by global network relationships of software vulnerabilities. For instance, a

group of software vulnerabilities could be linked to other groups through mediating nodes. A

mediating node could have more pervasive influence compared with other nodes. This may

because the mediating node could trigger one software vulnerability to other popular software

vulnerabilities (e.g., those that have more edges). By doing so, the software vulnerability could

be discovered and triggered by the mediating nodes. In this case, degree centrality cannot

properly estimate the impact of the global linking. The method called eigenvector centrality

provides ways to calculate this type of centrality. We calculate the eigenvector centrality as:

. is the adjacent matrix, where

is 0 when the edge does not exist (i.e., negative edge) and 1 when the edge does exist. is

the eigenspace coefficient that is the value of linear transform of eigenvector . In network

notation, we define the as .

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 11

The degree and eigenvector centralities regard local and global edge relationships.

However, those measures do not consider the density of the edge structure that can be an

alternative measure for network centrality. In social network research, the clustering coefficient

is used as a measure of the tendency of each node to cluster together. The clustering coefficient

indicates how individuals are embedded in their neighborhood. Software vulnerabilities could be

associated and interact with each other by sharing overlapping APIs which contain vulnerable

codes. Some shared vulnerable codes do not create a malfunction for one software program, but

the shared code could initiate or cause another software program to malfunction. This means that

if the software vulnerability lies in a highly dense edge structure, it could have more chances to

be exposed to other vulnerabilities, leading to more severe software vulnerability. To measure

this tendency, we follow the guidance of Opsahl and Panzarasa (2009) and reflect the weighted

edges for the clustering coefficient. They suggest a computational equation to consider the

effects of dense edges in a global network as:

EMPIRICAL APPROACH AND DISCUSSION

We used a linear model estimation approach to estimate the effects of the independent

variables on the dependent variable. The unit of analysis is software vulnerability. We specify

the following equation for the ordinary least square (OLS) regression model 3 :

 is our dependent variable (i.e., severity of software vulnerability), and is the error terms of

OLS. The controls include a time dummy. We use the log transform for degree due to over-

3 We used a capital Greek letter to avoid confusion with other equations.

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 12

dispersion and to allow for a more intuitive interpretation of the regression coefficient. The unit

of the number of solutions and the number of affected products is 10. The unit for the reported

time duration is 10 days. We checked the correlation and variance inflation factors and found no

major issues (corr. < 0.2 and VIF < 10.0). We included a summary of the descriptive statistics in

the appendix4. We report the OLS results in Table 1.

Table 1. Empirical Results

DV. Software Vulnerability Score (1) (2)

Model Control Main

Diffusion 3.363***
(0.187)

Ln(Degree Centrality) 0.179***
(0.00658)

Eigenvector Centrality -0.783***
(0.0356)

Clustering Coefficient -0.639***
(0.0430)

#Solution 0.00489*
(0.00261)

0.00401
(0.00245)

Reported time duration 0.0195***
(0.000423)

0.0111***
(0.000629)

#Affected Product 0.0532***
(0.0156)

0.0338**
(0.0132)

Constant 6.536***
(0.0466)

3.312***
(0.170)

Time Dummy Yes Yes
Observations 85,520 85,520

R-squared 0.202 0.315

***p < 0.01; **p < 0.05; *p < 0.10; robust standard errors are reported in parenthesis.

In control (model 1), we present a baseline knowledge contribution model in which we

only include the control variables. We found that all the control variables were significant except

#affected product. Since the control variables include a time consideration (i.e., reported time

duration), the positive inclination effects may be interpreted as cumulative effects on the severity

of software vulnerability.

4 VIF and Correlation tables are also available upon request

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 13

We found support for P1 because the diffusion is consistently positive and highly

significant in our main model (model 2). In the main model, the coefficient estimate suggests

that the output coefficient of diffusion is 3.363 (p < 0.01), which means that an increase of one

unit of diffusion possibility leads to an increase of 3.363 in software vulnerability severity. The

results indicate that a software vulnerability that has more chances to be diffused) would be more

likely to be more severe. We also found that P2 was supported by examining the significances of

degree centrality (0.179, p < 0.01), eigenvector centrality (-0.783, p < 0.01) and clustering

coefficient (-0.639, p < 0.01).

Degree centrality is positively associated with software vulnerability. This means that

locally and densely related software vulnerabilities would be more severe. However, when

network centrality is considered in light of global network effect, the results were opposite to

those for direct centrality. First, eigenvector centrality measures the extent of connectivity to

popular software vulnerabilities (e.g., a node has many degrees) in the digital ecosystem. The

negative association could be interpreted to mean that software vulnerabilities that are linked to a

popular software vulnerability were already fixed by the solutions to the popular software

vulnerability. This could result in less severity of software vulnerabilities. Second, the clustering

coefficient measures the tendency of each software vulnerability to cluster together. The result

showed a negative impact on the severity of software vulnerability. This result may indicate that

the developers related software vulnerability in the digital ecosystem collectively act to reduce

the possible errors and vulnerable codes in the shared APIs. As a result, the connected software

vulnerabilities in a group could have less severity.

CONCLUSION

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 14

The object of this study is to understand the impact of the diffusion of software

vulnerability and network centrality in a digital ecosystem on the severity of software

vulnerability. The diffusion of software vulnerability is positively associated with the severity of

software vulnerability. In addition, we confirmed that different measures of network centralities

influence the severity of software vulnerability in different ways. Our research found empirical

evidence of the complex relationships between network centrality and efforts of the community

to reach solutions. The results lead to diverse interpretations that the position of software

vulnerability in a digital ecosystem could have different effects on other co-located and global

neighbor software vulnerabilities. These characteristics should be studied in more detail in future

research.

REFERENCES

Alhazmi, O. H., Malaiya, Y. K., and Ray, I. 2007. “Measuring, Analyzing and Predicting Security
Vulnerabilities in Software Systems,” Computers & Security (26:3), pp. 219-228.

Applewhite, A. 2004. “Whose Bug Is It Anyway? The Battle over Handling Software Flaws,” IEEE
Software (21:2), pp. 94-97.

Barros, A. P., and Dumas, M. 2006. “The Rise of Web Service Ecosystems,” IT Professional (8:5),
pp. 31-37.

Brada, P., and Jezek, K. 2015. “Repository and Meta-Data Design for Efficient Component
Consistency Verification,” Science of Computer Programming (97), pp. 349-365.

Breukers, Y. P. 2016. “The Vulnerability Ecosystem: Exploring Vulnerability Discovery and the
Resulting Cyberattacks through Agent-Based Modelling,”).

Decan, A., Mens, T., and Grosjean, P. 2019. “An Empirical Comparison of Dependency Network
Evolution in Seven Software Packaging Ecosystems,” Empirical Software Engineering
(24:1), pp. 381-416.

Gopalakrishna, R., Spafford, E., and Vitek, J. 2005. “Vulnerability Likelihood: A Probabilistic
Approach to Software Assurance,” CERIAS, Purdue Univeristy Technical Reports (6), p.
2005.

Grover, A., and Leskovec, J. 2016. “Node2vec: Scalable Feature Learning for Networks,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining: ACM, pp. 855-864.

Kula, R. G., German, D. M., Ouni, A., Ishio, T., and Inoue, K. 2018. “Do Developers Update Their
Library Dependencies?,” Empirical Software Engineering (23:1), pp. 384-417.

Lagerström, R., Baldwin, C., MacCormack, A., Sturtevant, D., and Doolan, L. 2017. “Exploring the
Relationship between Architecture Coupling and Software Vulnerabilities,” International
Symposium on Engineering Secure Software and Systems: Springer, pp. 53-69.

Kang, Hovav, Um & Lee A Network Analysis on Software Vulnerabilities

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, Germany, December 15, 2019. 15

Li, L., Wang, W., Yu, S., Wan, L., Xu, Z., and Kong, X. 2017. “A Modified Node2vec Method for
Disappearing Link Prediction,” 2017 IEEE 15th International Conference on Dependable,
Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence
and Computing, 3rd International Conference on Big Data Intelligence and Computing and
Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech): IEEE, pp.
1232-1235.

Luo, J., Lo, K., and Qu, H. 2014. “A Software Vulnerability Rating Approach Based on the
Vulnerability Database,” Journal of Applied Mathematics (2014), 932397.

Medeiros, I., Neves, N., and Correia, M. 2015. “Detecting and Removing Web Application
Vulnerabilities with Static Analysis and Data Mining,” IEEE Transactions on Reliability
(65:1), pp. 54-69.

Moore, S., Armstrong, P., McDonald, T., and Yampolskiy, M. 2016. “Vulnerability Analysis of
Desktop 3D Printer Software,” 2016 Resilience Week (RWS): IEEE, pp. 46-51.

Nguyen, V. H., and Tran, L. M. S. 2010. “Predicting Vulnerable Software Components with
Dependency Graphs,” Proceedings of the 6th International Workshop on Security
Measurements and Metrics: ACM, p. 3.

Opsahl, T., and Panzarasa, P. 2009. “Clustering in Weighted Networks,” Social Networks (31:2), pp.
155-163.

Phonemom. 2017. “Cost of Cyber Crime Study,” Accenture), p. 1:56.
Rahimi, S., and Zargham, M. 2013. “Vulnerability Scrying Method for Software Vulnerability

Discovery Prediction without a Vulnerability Database,” IEEE Transactions on Reliability
(62:2), pp. 395-407.

Rehman, S., and Mustafa, K. 2009. “Research on Software Design Level Security Vulnerabilities,”
ACM SIGSOFT Software Engineering Notes (34:6), pp. 1-5.

Rubin, B., and Pollet, A. 2017. “2016 FINRA Analysis: A Record-Breaking Year for Fines,” Journal
of Investment Compliance (18:2), pp. 1-8.

Shahriar, H., and Zulkernine, M. 2012. “Mitigating Program Security Vulnerabilities: Approaches
and Challenges,” ACM Computing Surveys (CSUR) (44:3), 11.

Sosa, M. E., Mihm, J., and Browning, T. R. 2013. “Linking Cyclicality and Product Quality,”
Manufacturing & Service Operations Management (15:3), pp. 473-491.

Tevis, J.-E. J., and Hamilton, J. A. 2004. “Methods for the Prevention, Detection and Removal of
Software Security Vulnerabilities,” Proceedings of the 42nd Annual Southeast Regional
Conference: ACM, pp. 197-202.

Um, S., and Yoo, Y. 2016. “The Co-Evolution of Digital Ecosystems,”).
Walden, J., Stuckman, J., and Scandariato, R. 2014. “Predicting Vulnerable Components: Software

Metrics Vs Text Mining,” 2014 IEEE 25th International Symposium on Software Reliability
Engineering: IEEE, pp. 23-33.

Wang, T., Wei, T., Gu, G., and Zou, W. 2010. “Taintscope: A Checksum-Aware Directed Fuzzing
Tool for Automatic Software Vulnerability Detection,” 2010 IEEE Symposium on Security
and Privacy: IEEE, pp. 497-512.

Watson, R. N., Woodruff, J., Neumann, P. G., Moore, S. W., Anderson, J., Chisnall, D., Dave, N.,
Davis, B., Gudka, K., and Laurie, B. 2015. “Cheri: A Hybrid Capability-System Architecture
for Scalable Software Compartmentalization,” 2015 IEEE Symposium on Security and
Privacy: IEEE, pp. 20-37.

Yoo, Y., Lyytinen, K. J., Boland, R. J., and Berente, N. 2010. “The Next Wave of Digital Innovation:
Opportunities and Challenges: A Report on the Research Workshop ‘Digital Challenges in
Innovation Research’,” Available at SSRN 1622170.

	Reusability or disposability? A network analysis of reusable software vulnerabilities
	WISP2019_paper_20.doc

