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ABSTRACT 

The sharing economics of digital resources such as application programming interface and 

software development kits enables software developers to create diverse software faster and more 

effectively. However, developers may unintentionally adopt shared digital resources that contain 

vulnerable code, which may cause vulnerability in the final software product. In this study, we 

examine the interplay between the sharing of digital resources and software vulnerability. This 

study may help developers to identify vulnerable digital resources in a digital ecosystem. We 

quantify the diffusion of software vulnerability in sharing of digital resources using a machine 

learning technique to create necessary variables. We conduct regression analyses to examine their 

effect on the severity of software vulnerabilities.  

 
Keywords: Software Vulnerability, Network Analysis, Business Analytics, Node2Vec, Machine 
Learning, Econometrics.   

INTRODUCTION 

Deliberate attempts to cause failure by triggering information security (InfoSec) incidents 

is what software management is concerned with and has to protect against. Software 

vulnerability is a flaw within a software product that can cause it to work contrary to its intended 
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design and can be exploited to cause the system to violate its documented security policy 

(Applewhite 2004). The economic impact of software vulnerability can be devastating. For 

example, Wells Fargo and eleven other financial institutions were fined $14.4 million for failing 

to adequately protect their electronic records from software vulnerability (Rubin and Pollet 

2017). According to Phonemom (2017), US companies spend an average of $3.8 million each 

year to fix software vulnerabilities. Across all stakeholders including customers, $8 billion is 

spent to prevent potential damage to computer systems from software vulnerabilities in the US 

per year.  

A vast body of literature attempts to provide business and technical guidance to mitigate 

software vulnerability by discovering the causes that generate it. Conventional software 

vulnerability studies focus on detecting vulnerability at the design level of software. These 

studies advocate that software manufacturers and developers can mitigate vulnerability by 

eliminating potential errors in the software development phase. For instance, Rehman and 

Mustafa (2009) and Tevis and Hamilton (2004) find a positive association between the number 

of software vulnerability occurrences and the transitional phases of the software design process. 

Walden et al. (2014) introduce a machine learning method to detect vulnerable codes in the 

software development process. Luo et al. (2014) develop metric models that evaluate the severity 

of software vulnerability by using the mathematical characteristics of software vulnerabilities.  

However, modern software development is a complex jigsaw puzzle of internal and 

external digital resources such as application programming interfaces (API) and software 

development kits (SDK). The decision to adopt external digital resources in the digital ecosystem 

should entail a rigorous process to evaluate the potential vulnerability of these resources. For 

instance, the Equifax data breach in 2017, which leaked the information of 45.5 million U.S. 
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consumers, was facilitated by a flaw in Apache Struts (NVD: CVE-2017-5638). Apache Struts is 

an open source platform that provides APIs for web application development. Check Point 

estimated that CVE-2017-5638 affected 42% of web applications due to its vast externality and 

popularity.  

Despite the complex interplay of digital resources in modern software development, there 

is surprisingly scant quantitative research on the association between external digital resources 

and software vulnerability. This paper studies the relationships between the digital resources 

used to develop software and their consequence for software vulnerability. Studying this 

relationship is vital because we still do not understand many aspects of how the digital resources 

in a digital ecosystem affect software vulnerability despite the wealth of research on software 

vulnerability detection. Our empirical research is guided by the following research questions: 

what factors of the digital ecosystem can impact software vulnerability, and how do they impact 

the severity of software vulnerability? 

To answer these research questions, we begin with a review of related literature on 

software vulnerability and digital ecosystems and derive propositions based on the findings in 

the literature. Next, we assume that software vulnerability could be diffused by sharing digital 

resources in a digital ecosystem. We infer the network structure of software vulnerabilities by 

using evidence about the sharing of digital resources in a digital ecosystem taken from the 

software vulnerability data in the National Vulnerability Database (NVD). In our dataset, we 

define a node as a software vulnerability. The edge of the node is its relationship with other 

software vulnerabilities. We assume that edges exist when the software vulnerabilities share the 

same affected product. Based on the dataset, we introduce and conduct various network analyses 

to derive the exploratory and control variables that might affect the severity of the software 
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vulnerability. Finally, we validate our assumptions using a regression analysis based on the 

variables derived in the network analysis.  

RELATED WORK 

Research related to the analysis of software vulnerability can be categorized into two 

different strands based on its perspective on software vulnerability. The first strand focuses on 

developing methods to find software vulnerability by excavating the pattern of programming 

structure. Shahriar and Zulkernine (2012) categorize static, dynamic and hybrid analysis for 

software vulnerability analysis. Static analysis refers to analyzing the source code of software 

without considering the executing process (Medeiros et al. 2015). Dynamic analysis refers to 

continuous analysis using specific input data for software functional testing and general 

operations of software (Moore et al. 2016). Hybrid analysis is a mixture of these processes 

(Watson et al. 2015). The second strand of research mainly discusses the methods to discover 

software vulnerability using various metrics, data mining and examining the programming errors 

that can be generated by human error and machine malfunctions. 

The second strand mainly examines the relationships between software vulnerability and 

software architectural properties. For instance, Sosa et al. (2013) consider the cyclicality of 

digital resources (e.g., API and SDK) in digital ecosystems, using the design structure model for 

digital resources to first estimate the cyclicality of software dependencies and then assess its 

positive association with a software vulnerability. Lagerström et al. (2017) combined detection 

metrics (e.g., quantitative metrics in the first strand), properties of code (e.g., findings in the 

second strand) and architectural aspects to predict software vulnerabilities. The software 

engineering literature emphasizes software design algorithms and procedural concerns to detect 

vulnerable software components from external digital resources (Wang et al. 2010).  
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RESEARCH PROPOSITIONS 

Diffusion of Software Vulnerability 

Software can be linked to other software by sharing digital resources such as API and 

SDK. However, the shared digital resource could have a latent vulnerability that affects other 

software functions, triggers attacks and acts as a source of threat. The literature on digital 

platforms and ecosystems provides empirical evidence for this argument. Digital products have a 

layered modular architecture in which digital resources and services are combined to create final 

products and services (Yoo et al. 2010). The digital resources shared by external parties in the 

digital platform allow for sustainable growth by structural diversification of digital ecosystems 

(Um and Yoo 2016). Barros and Dumas (2006) examined the diffusion of API in the digital 

ecosystem of a web service and explored how developers consume the shared API to create new 

and innovative functions for their products.  

The literature on software vulnerability often utilizes the relationship between the 

software vulnerability and the digital ecosystem. For instance, some studies estimated the 

likelihood of vulnerability based on the complexity of the code and data structure (Gopalakrishna 

et al. 2005). More recent studies use a software dependency network based on the mutual 

function calls among the entities in a related digital ecosystem (Nguyen and Tran 2010). In 

addition, some research focuses on modeling the vulnerability discovery process based on the 

shared economics of digital resources (Alhazmi et al. 2007) and entities of software vulnerability 

ecosystems using an agent-based model (Breukers 2016). 

A vast body of studies shows that the externalities of digital resources have virtuous 

network effects on a digital ecosystem because externality may provide functional recombination 

and diversification of software. However, the structure of the digital ecosystem may affect the 
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diffusion of software vulnerabilities by allowing the sharing of vulnerable digital resources in the 

ecosystem. The more developers use the digital ecosystem to develop innovative functions for 

their software, the more likely they are to create vulnerable software by accidentally using 

external digital resources that may contain vulnerable codes. Furthermore, hackers could take 

advantage of external vulnerable codes to attack the target systems. Thus, the impact of software 

vulnerability could be amplified as the vulnerable digital resources are assembled to create a 

final software product. Hence: 

Proposition 1. The diffusion of software vulnerability in a digital ecosystem is associated 

with the severity of software vulnerability. 

Digital Ecosystem Structure of Software Vulnerability 

The digital resources in digital ecosystems tend to be very large and to contain elements 

from various other digital resources.  As a result, the management of digital resources has 

become more difficult (Decan et al. 2019). These dependencies between digital resources cause 

various types of challenges in software vulnerability and security due to inconsistencies in 

version management, high consumption of computing power for cascading version updates and 

lack of awareness of developers and digital platform owners regarding the complex structure of 

these dependencies (Brada and Jezek 2015; Kula et al. 2018). Vulnerable code could exist in 

outdated dependencies of digital resources and result in vulnerable software that could be used as 

a digital resource in other software products and thus propagate throughout the ecosystem 

(Nguyen and Tran 2010; Rahimi and Zargham 2013). 

This means that popular digital resources that are widely used in a digital ecosystem may 

create multiple channels through which software vulnerability can be spread. The severity of 

software vulnerability could be shaped differently by software dependency as the vulnerable 
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codes are delivered, used and transformed by other digital resources. For instance, Equifax’s 

incident featured a few stages that led to the breach. First, the attacker attacked the vulnerable 

Apache Struts API, which enables communication between heterogeneous programming objects 

(e.g., serialized programming objects, link files and data components) and used it to browse and 

explore the target digital assets in Equifax’s systems. Then, the attacker used another software 

vulnerability of Apache Struts to disturb the network segmentation of the digital infrastructure by 

merging other APIs (i.e., embedded in Equifax’s systems) related to data injection. Notably, 

those APIs were not designed to be used for browsing or interfering with the communication 

between the programming objects. The hacker creatively devised a way of attack by taking 

advantage of a malicious aspect of the digital ecosystem. As such, attackers can amplify the 

severity of software vulnerability by merging related APIs and tweaking their functions.  

This suggests that software vulnerability could be mediated and propagated. Even if the 

software vulnerabilities are not linked directly to each other, one software vulnerability could 

trigger the operation of another vulnerable code, thus creating a domino effect. In addition, an 

attacker can devise new malicious functions using related digital resources from neighboring 

software vulnerabilities. Understanding these impacts on the severity of software vulnerability 

requires network analysis that examines the role and centrality of software vulnerabilities in a 

digital ecosystem.  

The centrality of software vulnerability in the digital ecosystem could impact the severity 

of software vulnerability in different ways. For instance, a software vulnerability (e.g., degree 

centrality) that is more directly related with other software vulnerabilities may be more severe 

because it impacts the local area of the network. The global network relationships such as the 

density of the links between software vulnerabilities (e.g., eigenvector and clustering coefficient) 
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in a certain part of the network could also impact the severity of software vulnerability. 

However, the network centralities could be measured differently by considering the position of 

software vulnerability in a global software vulnerability network. For instance, software 

vulnerabilities in the central position of a network could gain more attention from developers and 

more externalities in a digital ecosystem. The centrality of software vulnerability could motivate 

communities and stakeholders to control the risk attributed to the software vulnerability. Using 

the metaphor of fire control, the firefighter controls the main fire at the site and then attends to 

distant fires. The resources in the digital ecosystem could be focused on the software 

vulnerability that is central in the digital ecosystem, and this could lead to less software 

vulnerability.  

We attempt to find the effect of this ambiguous concern on network centrality by testing 

a proposition using various network centrality measures. These measures are introduced in the 

section on the empirical approach. In order to examine the impact of the various network 

centralities of software vulnerability in the digital ecosystem, we offer a general proposition (P2) 

as follows: 

Proposition 2: The network centralities of the software vulnerability in the digital 

ecosystem are associated with the severity of software vulnerability. 

METHOD 

To test the propositions, we first collected software vulnerability data through the 

National Vulnerability Database (NVD). The NVD includes databases of security checklist 

references, security-related software flaws, misconfigurations, product names and impact 

metrics. The various characteristics of software vulnerability reported to the NVD are the date of 

report, solutions from the open source community and digital artifacts affected by the software 
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vulnerability. Based on the data, we infer the software vulnerability network as G. Let G = (V, E) 

be a software vulnerability network. V is a node (i.e., software vulnerability) and E is an edge 

which represents the relationships between software vulnerabilities. We consider an E to exist 

between Vs when two different Vs affect the same software. 

Second, we measure the diffusion of software vulnerability using the link prediction 

between software vulnerabilities. To do this, we implement the Node2Vec algorithm. Node2Vec 

is a machine learning algorithm that computes the vector coordinates of a node in a network. In 

brief, Node2Vec implements an objective function which maximizes the log-probability of two 

different nodes are linked together. In computational form, Node2Vec computes 

, where  is the random sampling strategy  of neighborhood 

network . Based on the Node2Vec, we calculate the feature matrix of . For instance, 

two nodes  and  with the corresponding feature vectors  and  that generate  

such that . The  is the size of the feature representation (i.e., dimension) for the 

pair of . The link  can be represented using the Hadamard product (i.e., 

, for each  node in  (Grover and Leskovec 2016; Li et al. 2017). 

Therefore, if the machine learning model succeeds in learning the pattern of , the 

machine learning model can predict the link between  and  by calculating prediction score. 

For the machine learning model, we used logit, which performed better than supportive vector 

machine (SVM) and feed forward neural net (FFNN)2. Based on the machine learning, we count 

diffusive nodes by codifying the nodes as 0 for non-linked nodes and 1 for linked nodes in . 

Finally, we calculate Diffusion using the proportion of the number of diffusive software 

vulnerabilities divided by the total number of software vulnerabilities in network .  
                                                 
2 We used receiver operating characteristics to compare the performance using the baseline of Adamic Adar (2003). 
We report ROC: logit(0.95), SVM(0.80), FFNN (0.66), and Adamic Adar (0.55). 
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Third, we calculate network centrality measures based on the mathematical forms. A 

software vulnerability may have a larger influence over the neighborhood software vulnerability 

because it has more external digital resources that are shared by other entities in the digital 

ecosystem. Using mathematical notation, we define degree centrality as an explanatory variable 

which is the return value of the function  in the network of . The degree 

centrality refers to the counted number of edges incident upon a node. The function counts the 

edges incident to the node . We divide the degree centrality by statistics freedom (i.e., total 

number of nodes – 1) to normalize the number of nodes. We 

calculate: , where  is the number of   in . 

However, degree centrality is limited in its ability to capture the severity of a software 

vulnerability caused by global network relationships of software vulnerabilities. For instance, a 

group of software vulnerabilities could be linked to other groups through mediating nodes. A 

mediating node could have more pervasive influence compared with other nodes. This may 

because the mediating node could trigger one software vulnerability to other popular software 

vulnerabilities (e.g., those that have more edges). By doing so, the software vulnerability could 

be discovered and triggered by the mediating nodes. In this case, degree centrality cannot 

properly estimate the impact of the global linking. The method called eigenvector centrality 

provides ways to calculate this type of centrality. We calculate the eigenvector centrality as: 

. is the adjacent matrix, where  

is 0 when the edge  does not exist (i.e., negative edge) and 1 when the edge does exist.  is 

the eigenspace coefficient that is the value of linear transform  of eigenvector . In network 

notation, we define the   as . 
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The degree and eigenvector centralities regard local and global edge relationships. 

However, those measures do not consider the density of the edge structure that can be an 

alternative measure for network centrality. In social network research, the clustering coefficient 

is used as a measure of the tendency of each node to cluster together. The clustering coefficient 

indicates how individuals are embedded in their neighborhood. Software vulnerabilities could be 

associated and interact with each other by sharing overlapping APIs which contain vulnerable 

codes. Some shared vulnerable codes do not create a malfunction for one software program, but 

the shared code could initiate or cause another software program to malfunction. This means that 

if the software vulnerability lies in a highly dense edge structure, it could have more chances to 

be exposed to other vulnerabilities, leading to more severe software vulnerability. To measure 

this tendency, we follow the guidance of Opsahl and Panzarasa (2009) and reflect the weighted 

edges for the clustering coefficient. They suggest a computational equation to consider the 

effects of dense edges in a global network as: 

 

EMPIRICAL APPROACH AND DISCUSSION 

We used a linear model estimation approach to estimate the effects of the independent 

variables on the dependent variable. The unit of analysis is software vulnerability. We specify 

the following equation for the ordinary least square (OLS) regression model 3 : 

 

 is our dependent variable (i.e., severity of software vulnerability), and  is the error terms of 

OLS. The controls include a time dummy. We use the log transform for degree due to over-

                                                 
3 We used a capital Greek letter to avoid confusion with other equations. 
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dispersion and to allow for a more intuitive interpretation of the regression coefficient. The unit 

of the number of solutions and the number of affected products is 10. The unit for the reported 

time duration is 10 days. We checked the correlation and variance inflation factors and found no 

major issues (corr. < 0.2 and VIF < 10.0). We included a summary of the descriptive statistics in 

the appendix4. We report the OLS results in Table 1. 

Table 1. Empirical Results 

DV. Software Vulnerability Score (1) (2) 

Model Control Main 

Diffusion  3.363*** 
(0.187) 

Ln(Degree Centrality)  0.179*** 
(0.00658) 

Eigenvector Centrality  -0.783*** 
(0.0356) 

Clustering Coefficient  -0.639*** 
(0.0430) 

#Solution 0.00489* 
(0.00261) 

0.00401 
(0.00245) 

Reported time duration 0.0195*** 
(0.000423) 

0.0111*** 
(0.000629) 

#Affected Product 0.0532*** 
(0.0156) 

0.0338** 
(0.0132) 

Constant 6.536*** 
(0.0466) 

3.312*** 
(0.170) 

Time Dummy Yes Yes 
Observations 85,520 85,520 

R-squared 0.202 0.315 

***p < 0.01; **p < 0.05; *p < 0.10; robust standard errors are reported in parenthesis. 

In control (model 1), we present a baseline knowledge contribution model in which we 

only include the control variables. We found that all the control variables were significant except 

#affected product. Since the control variables include a time consideration (i.e., reported time 

duration), the positive inclination effects may be interpreted as cumulative effects on the severity 

of software vulnerability.  

                                                 
4 VIF and Correlation tables are also available upon request 
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We found support for P1 because the diffusion is consistently positive and highly 

significant in our main model (model 2). In the main model, the coefficient estimate suggests 

that the output coefficient of diffusion is 3.363 (p < 0.01), which means that an increase of one 

unit of diffusion possibility leads to an increase of 3.363 in software vulnerability severity. The 

results indicate that a software vulnerability that has more chances to be diffused) would be more 

likely to be more severe. We also found that P2 was supported by examining the significances of 

degree centrality (0.179, p < 0.01), eigenvector centrality (-0.783, p < 0.01) and clustering 

coefficient (-0.639, p < 0.01).  

Degree centrality is positively associated with software vulnerability. This means that 

locally and densely related software vulnerabilities would be more severe. However, when 

network centrality is considered in light of global network effect, the results were opposite to 

those for direct centrality. First, eigenvector centrality measures the extent of connectivity to 

popular software vulnerabilities (e.g., a node has many degrees) in the digital ecosystem. The 

negative association could be interpreted to mean that software vulnerabilities that are linked to a 

popular software vulnerability were already fixed by the solutions to the popular software 

vulnerability. This could result in less severity of software vulnerabilities. Second, the clustering 

coefficient measures the tendency of each software vulnerability to cluster together. The result 

showed a negative impact on the severity of software vulnerability. This result may indicate that 

the developers related software vulnerability in the digital ecosystem collectively act to reduce 

the possible errors and vulnerable codes in the shared APIs. As a result, the connected software 

vulnerabilities in a group could have less severity.  

CONCLUSION 
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The object of this study is to understand the impact of the diffusion of software 

vulnerability and network centrality in a digital ecosystem on the severity of software 

vulnerability. The diffusion of software vulnerability is positively associated with the severity of 

software vulnerability. In addition, we confirmed that different measures of network centralities 

influence the severity of software vulnerability in different ways. Our research found empirical 

evidence of the complex relationships between network centrality and efforts of the community 

to reach solutions. The results lead to diverse interpretations that the position of software 

vulnerability in a digital ecosystem could have different effects on other co-located and global 

neighbor software vulnerabilities. These characteristics should be studied in more detail in future 

research.  
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