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ABSTRACT  

In this paper, we proposed and evaluated a new network link prediction method that can be used to predict missing links in a 

social network. In the proposed model, to improve the prediction accuracy, the network link prediction problem is 

transformed to a general object-object match prediction problem, in which the nodes of a network are regarded as objects and 

the neighbors of a node are regarded as the node's associated features. Also a machine learning framework is devised for the 

systematic prediction. We compare the prediction accuracy of the proposed method with existing network link prediction 

methods using well-known network datasets such as a scientific co-authorship network, an e-mail communication network, 

and a product co-purchasing network. The results showed that the proposed approach made a significant improvement in all 

three networks. Also it reveals that considering the neighbor's neighbors are critical to improve the prediction accuracy. 
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INTRODUCTION 

With the recent explosion of social networks, whose nodes represent members or entities and whose edges represent 

interaction between entities, many researchers have studied how networks grow and how members are connected in a social 

network (Liben-Nowell and Kleinberg, 2007; Adamic and Adar2003). Among those network studies, network link 

prediction, which is a technique to predict missing nodes or undiscovered edges in a network based on the patterns of existing 

topology, has been known as one of the most extensively used techniques (Liben-Nowell and Kleinberg, 2007; Adamic and 

Adar2003). Typical applications that can utilize the link prediction are friends recommendation, terrorist or criminal network 

analysis, and effective grouping of a task force team in a company (Dombroski and Carley, 2002; Xu and Chen, 2005).  For 

example, using the technique, on-line shopping mall systems can recommend new items to their customers from the 

purchasing pattern analysis, and social network sites can recommend potential friends based on the present connections of 

users. Since the accuracy of link prediction is a critical factor for the quality of such recommendations, researchers and 

practitioners have tried to improve the prediction accuracy.   

Studies of network link prediction have focused on two main streams: neighbor-based methods and path distance-based 

methods (Katz, 1953; Linyuan and Zhou, 2011; Sarukkai, 2000; Zhu, Hong and Hughes, 2002; Newman, 2001 and 2003). 

While the neighbor-based methods suppose that the connection probability of two nodes is determined by the nodes 

commonly connected to the two nodes, the path-based methods assume that the connection probability is determined by how 

short the paths between two nodes are. It has been generally known that the neighbor-based methods could achieve more 

accurate prediction than the path-based methods could. However, their overall prediction accuracy has not been good enough 

for practical use (Jaccard, 1912; Salton and McGill, 1983; Sorensen, 1948). Moreover, these methods would have difficulties 

in providing more detailed information such as which node plays a key role for the neighboring nodes. 

We developed and evaluated a network link prediction algorithm based on the object-object match prediction method. The 

typical examples of object-object match prediction are marriage, protein-protein interaction, and diagnosing a patient with a 

set of symptoms. In our model, we converted the link prediction problem to an object-object match problem and the network 
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nodes are treated as objects, and the neighboring nodes are considered as the object's associated features. We believe the 

proposed model is more comprehensive and complete than other conventional link prediction methods in that it considers the 

effect of the neighbor’s neighbor nodes as well as the neighbor nodes in link prediction. Also our approach can be extended 

for any network link prediction problems.  

We evaluated our model by using a well-known open network called the Enron e-mail network (Klimmt and Yang, 2004). 

The result showed that the proposed model achieved higher accuracy than other conventional methods. 

 

RELATED WORK 

The conventional link prediction methods can be categorized into two major streams by the data they use: 1) neighbor-based 

methods and 2) path distance-based methods (see figure 1). The path distance-based estimations assume that the shorter the 

path distance between two nodes is, the greater the probability of the two nodes to be linked together. For example, Katz’s 

index can be calculated by giving heavier weight to the shorter paths and by summing up every path between two nodes. The 

weights exponentially decrease as the path length increases (Liben-Nowell and Kleinberg, 2007). In the random work or 

hitting time approaches, the link connectivity is computed by the average number of steps from one node to another and also 

in the opposite direction (Liben-Nowell and Kleinberg, 2007; Linyuan and Zhou, 2011). Sometimes, the Hidden Markov 

Model was incorporated into these approaches by modeling a node as a state and an edge as a state transition probability 

(Sarukkai, 2000; Zhu, Hong and Hughes, 2002). 

 

Figure 1. Link prediction methods 

The neighbor-based methods assume that the more neighbors shared by any two nodes, the greater probability of the nodes to 

be linked together. A number of researches devised prediction formula based on the number of common neighbors (Newman, 

2001 and 2003), which can be measured by using the ratio of common neighbors to all neighbors (Jaccard, 1912). Some 

researchers incorporated the degree (the number of edges incident to) of nodes as well as the common neighbors into their 

formula (Salton and McGill, 1983; Sorensen, 1948; Leicht, Holme and Newman, 2006). Among the neighbor-based 

approaches, some studies showed that the methods considering the rareness of common neighbors outperformed other 

methods (Adamic and Adar2003; Ou, et al., 2007). After the scale-free network analysis was introduced by Barabasi 

(Barabasi and Albert, 1999), several attempts have been made to incorporate the properties of the hub node into link 

prediction. For instance, Ravasz assumed that nodes with many edges are more likely to have new edges (Linyuan and Zhou, 

2011; Ravasz, et al., 2002). Generally, the neighbor-based link prediction methods achieved about twice more accurate 

prediction than the path distance-based approaches did (Adamic and Adar2003). 

The scoring functions of the neighbor-based methods are summarized in Table I. CN denotes the common neighbor(s), and 

(x) represents a set of neighbors of a node x. The link connectivity between node x and y is decided by score(x, y). As shown 

in Table 1, most neighbor-based link prediction methods assign a relatively high weight to common neighbors, and give a 

penalty to the nodes connected with many neighbors. Adamic-Adar and resource allocation methods are known to have 

achieved the best performance among them. This implies that in the link prediction of two nodes, considering the degree of 

common neighbors is more effective than counting the degree of the two nodes. Despite the long research history of the 

methods, only a little progress has been made because most of the methods focused mainly on the analysis of neighbor nodes 

and relatively little attention was paid to the effect of neighbor's neighbor nodes. 
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Methods Score Function Remarks 
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1 2

| |
( , ) .

| ( ) ( ) |
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N N
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1 2

| |
( , ) .

| ( ) | | ( ) |
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N N
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1 2

2 | |
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| ( ) | | ( ) |
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N N
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1 2
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| ( ) | | ( ) |

CN
score N N

N N


  

 
 

Hub related 1 2

1 2

| |
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(max | min){| ( ) |,| ( ) |}
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Adamic-Adar & 

Resource allocation 

1 2

1
( , ) .

log | ( ) |x CN

score N N
x




  

1 2

1
( , ) .

| ( ) |x CN

score N N
x




  

Best performance, sum of the 

inversed degree of CN 

Table 1. Neighbor-based link prediction methods. Most of the methods used similar factors for link 

prediction: 1) the number of common neighbors and 2) the number of neighbors of the two nodes to 

be predicted. 

 

LINK PREDICTION AND OBJECT-OBJECT MATCH 

What makes our method distinguished from conventional network link prediction methods the most is that our method finds 

tightly coupled groups in neighbor nodes. If the neighbor nodes of two target nodes are tightly coupled, then we assume that 

the target nodes will have a higher probability to be linked together. To find tightly coupled groups in the neighbor nodes, we 

analyze the topology of both the neighbor and their neighboring nodes.  

To solve the link prediction problem more systematically, we develop a machine learning framework to measure the 

similarity between objects associated with features. In the framework, we extract matched feature pairs out of matched 

objects and then use the information to predict a match for objects. We treat the feature set as a basic unit of the feature pair 

so that we can accommodate the group of the neighbor nodes into the framework.  

Figure 2 illustrates a network where the link between node N1 and N2 is to be predicted. The shaded area is the boundary of 

the neighbors, and we find or identify the tightly coupled nodes in the boundary by computing the degree of coupling and 

cohesion of nodes. Unlike the conventional neighbor-based methods, which usually ignore the effect of nodes not shared by 

both N1 and N2, our method includes N3 and N4  as well as CN1 and CN2 in the neighbors for the analysis.  

 

Figure 2. Group detection among the neighbors. We supposed that the link connectivity between two 

nodes, N1 and N2 can be measured by the probability of the neighbors to form a group. While the 

conventional neighbor-based approaches only utilized the common neighbors, CN1 and CN2, in our 

approach, the inter-relationship is measured not only between common neighbors but also between 

non-overlapping neighbors. 
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To transform the link prediction problem into the object-object match prediction problem, we propose a new data structure 

(see figure 3). Each node is represented with a set of its neighbors. And the connected nodes are expressed with a pair of 

nodes such as <A, B>. Since we only consider an undirected edge, the node pair <A, B> and <B, A> are treated as 

equivalent. Once a network is represented by the data structure, the link prediction problem is identical to the object-object 

match prediction problem. The nodes of a network are regarded as objects, and neighbor nodes are regarded as the object's 

associated features. If two arbitrary objects are predicted to have a match or an interaction, then we predict that the 

corresponding nodes should be or will be linked together.  

 

Figure 3. Data structure preparation from a network for the object-object match prediction. Each 

node can be considered as a set of neighboring nodes, and we can extract a pair of nodes connected 

to each other. Note that the pair <A, B> and <B, A> are identical because we assumed the edge is 

undirected. So <v3, v1>, <v3, v2>, <v4, v2>, and <v4, v3> were crossed-off. 

EVALUATION 

To evaluate our model, we compared the prediction accuracy of the proposed method with the existing link prediction 

methods by using three network datasets: a scientific co-authorship network (CORA) (McCallum, 2000), a communication 

network (Enron) (Klimmt and Yang, 2004), and a product co-purchasing network (Amazon) (Leskovec, Adamic and 

Adamic, 2007). Its details are described in Table 2. The source of the dataset, the total number of nodes and edges, average 

degree of nodes, and the ratio of the reserved test data size to the learning data size are summarized in the table. CORA is a 

network of authors who wrote papers together. In the network, nodes represent authors, and edges represent collaboration 

relationships among the authors. CORA has no direction, and among the three datasets, CORA had the highest average 

degree of nodes. As a communication network, we used the e-mail exchange logs from Enron. The dataset contained 

communications among the workers only when both the sender and receiver had Enron e-mail addresses. The product co-

purchasing network dataset was built on the product sales information in Amazon.com. If one product is frequently co-

purchased with another product, the directed edge is connected from one product to a co-purchased product. In order to 

prepare an undirected network, we selected node pairs with only bi-directional connections. 

Source Type (original) Nodes Edges Avg. Degree Learning/Test set 

CORA  Undirected 15,496 23,006 2.97 19,640 / 3,366 

ENRON Intra-mail  Undirected 16,566 18,623 2.25 15,486 / 3,137 

Amazon  Undirected 31,056 30,000 1.93 27,620 / 2,380 

Table 2. Summary of co-authorship network (CORA) 

 0 1 2 3 Total 

CORA 5,387 (13.3%) 20,604 (51.0%) 10,102 (25.0%) 4,309 (10.7%) 40,402 (100.0%) 

ENRON Intra-mail 4,024 (16.2%) 15,509 (62.2%) 3,920 (15.7%) 1,468 (5.9%) 24,921 (100.0%) 

Amazon  3,464 (11.7%) 18,624 (62.7%) 3,411 (11.5%) 4,183 (14.1%) 29,682 (100.0%) 

Table 3. The number of neighbor pairs according to the shortest path distance 

To make computation more practical, vertices having eleven or more neighbors were removed because using the vertices 

with more than eleven neighbors doesn’t add much value considering the computational cost; that is, we considered the 

vertices only when the number of total neighbors was less than or equal to 10 for predicting the link of two nodes. Since we 
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filtered all edges incoming from or outgoing to high-degree nodes, there might have been some loss of paths. We selected test 

pairs only when at least one link of the pairs was observed in the learning set. A negative test set was generated from the 

neighbors of connected nodes, and we removed node pairs observed in the positive test set from the negative test set. 

Also to show clearly the difference between the proposed method and conventional methods, we devise a simplified formula 

to simulate the proposed method using conventional methods. The formula is developed using the existing link predictors; the 

Jaccard coefficient (Jaccard, 1912) and the Katz predictor (Katz, 1953). The Jaccard coefficient is a formula developed with a 

similar concept to the cohesion, and the Katz predictor is a formula developed with a similar concept to the coupling. The 

Jaccard coefficient is the ratio of the common neighbors to all the neighbors of the two nodes.  

We compared the proposed method with naïve common neighbor, Jaccard coefficient, Adamic-Adar, preferential attachment, 

and the simplified version of the proposed method. The accuracy of the methods was depicted using receiver-operator 

characteristic (ROC) curves (figure 4). In the figure, the accuracy is measured by the area either under or above the ROC 

curve. The closer the ROC curve of a method is to the base line (i.e. its area size is 0.5), the worse the method is. The result 

showed that the proposed method outperformed other methods.  

 

 

Figure 4. The ROC curve of scientific co-authorship network (CORA) and the ROC curve of the 

proposed method. 

The results strongly support that considering the effect of the neighbor’s neighbors improves the overall accuracy in link 

prediction. The improvement was more apparent when the target nodes were connected by paths with relatively longer path 

distance.  

CONCLUSION 

In this paper, we proposed and evaluated a network link prediction model based on an object-object match prediction method 

and a machine learning framework to predict missing links in a network. The results showed that the proposed method is 

better than other conventional methods and considering the neighbor's neighbors is critical to improve the link prediction 

accuracy.   

The proposed method produces good prediction results in the networks where the paths between nodes are long regardless of 

the average degree of the nodes. In addition, using the neighbor’s neighbor effect is highly believed to improve prediction 

accuracy. To better understand the effect of the path distance and of the degree of a node, it is needed to perform additional 

experiments with the conventional methods. If similar prediction accuracy improvements are observed with the conventional 

methods with the addition of the neighbor’s neighbor effect, then it could be concluded that the addition is an essential step 

for link prediction. 
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