
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1986 Proceedings International Conference on Information Systems
(ICIS)

1986

LOGIC BASED INFORMATION SYSTEM
SPECIFICATION VERIFICATION
Waldo C. Kabat
University of Illinois at Chicago

Wojtek Kozaczynski
University of Illinois at Chicago

Vicki Lovegren
University of Illinois at Chicago

Follow this and additional works at: http://aisel.aisnet.org/icis1986

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1986 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kabat, Waldo C.; Kozaczynski, Wojtek; and Lovegren, Vicki, "LOGIC BASED INFORMATION SYSTEM SPECIFICATION
VERIFICATION" (1986). ICIS 1986 Proceedings. 25.
http://aisel.aisnet.org/icis1986/25

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1986%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1986?utm_source=aisel.aisnet.org%2Ficis1986%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1986%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1986%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1986?utm_source=aisel.aisnet.org%2Ficis1986%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1986/25?utm_source=aisel.aisnet.org%2Ficis1986%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

LOGIC BASED INFORMATION SYSTEM
SPECIFICATION VERIFICATION

Waldo C. Kabat
Department of Electrical Engineering and Computer Science

University of Illinois at Chicago

Wojtek Kozaczynski
Department of Information and Decision Sciences

University of Illinois at Chicago

Vicki Lovegren
Department of Information and Decision Sciences

University of Illinois at Chicago

ABSTRACT
The purpose of this paper is to present the logic-based approach to the problem of

automatic verification of the different specifications of an information system. The data
flow analysis method and its basic product, data flow diagrams (DFDs), are used as an
example. A traditional approach to automated DFD verification is illustrated. In this
approach, DFDs are represented by database logical files, and verification rules are imple-
mented as data manipulation procedures. Next described is the logic-based approach.
First, the DFD verification problem is conceptualized. Then it is described in terms of
logic, as implemented in Prolog. A comparison of the two approaches is made by looking
at respective implementations of a particular DFD verification policy. Advantages of the
logic-based approach are discussed, and its usefulness for the automatic verification of
other system descriptions, like data dictionary or conceptual data models is pointed out.

SYSTEMS DEVELOPMENT Another methodology, which has been ex-
periencing increased popularity in recent times,METHODOLOGIES is known as prototyping. It can prove to be
more effective when applied towards the

There are a number of methodologies describing development of loosely-defined or less struc-
the process of information system development. tured information systems (Burns, 1985). Its
Though terminology differs among the different general approach is one of constructing a series
methodologies, and packaging of activities into of systems, each providing more features for an
phases or stages is not uniformly recognized, "active" user to experience. Immediate feedback
most would agree that a systems development and sense of accomplishment provide motiva-
life cycle exists and has been shown to be effec- tion for the user to "play with" the system and
tive when applied towards the development of thereby generate new requirements, which the
relatively stable, transaction type, information analyst/developer will seek to implement in sub-
systems. sequent prototype versions.

1

The more traditional life cycle methodology, on An analyst using this methodology for logical
the other hand, is founded in the completion of design of a new information system would
sequential phases. Each phase is finished before produce a set of the following documents: a set
beginning of the next phase. Output documents of DFDs, the system dictionary, the system logi-
from one phase are thus provided as input docu- cal database structure description, and a set of
ments to the next Most would agree that these system implementation criteria. In so doing, he
phases can be generally classified as analysis, would first produce the DFDs, and then build
design, development, and implementation. Due upon this foundation in constructing the other
to the linear or sequential nature of this process, documents. (Actually, the dictionary compon-
errors introduced in one phase will be ents are more frequently developed in parallel
propagated to later phases with significant mag- with the DFDs, but it is the DFDs which drive
nification. It is well known that correcting the process of system description.) In order for
design errors in response to complaints that the these components of logical design to be ac-
system "does not meet user requirements" is ex- curate, they must necessarily be consistent with
tremely expensive. Thus, accuracy during the one another, let alone be "correct" in their own
early stages of analysis and design is of utmost right.
importance.

Motivated by the goal of improving accuracy
during these early stages of development, a
number of structured techniques have been NEED FOR AUTOMATED TOOLS
proposed (Jackson, 1975; Myers, 1975; Stevens, TO ASSIST THE SYSTEMS
1974; Warnier, 1976). Use of these techniques
enforces structure in the analysis/design phases ANALYST
so that errors are less likely to be evident and
better systems result. An analyst who relies upon the data flow analy-

sis methodology in the process of application
design and development could greatly benefit
from automated tools to help him with the task
of producing the products mentioned above. As
the analysis and/or design progresses fromData Flow Analysis general to specific (or from high-level to low-

Method level), the task of producing the design products
becomes more and more tedious and susceptible

One such method designed to reduce errors, was to error. Tools which could free the analyst
proposed by Yourdon and Constantine (Your- from this attention to detail could allow him to
don, 1978) and later improved by others focus on higher level problems and issues.
(DeMarco, 1978; McMenamin, 1984; Page-
Jones, 1980), and is known as data flow analy- There are several obvious functions of
sis. It has been widely accepted by IS profes- analysis/design which are natural targets of
sionals and recognized by the Data Processing automation. A graphical interface between the
Management Association-Education Founda- analyst and the analysis/design product, could
tion, as part of the CIS model curriculum. allow the analyst to enter appropriate com-

mands or keystrokes, thus directing the system
This method is based on functional system de- to draw the diagrams. Its function would be
composition and stresses the flow and transfor- primarily one of providing an effective graphic
mation of data in the system. Although system environment. Another important function is
specification is partly described by verbal tech- one which performs some level of verification,
niques, the methodology relies heavily upon both syntactic and semantic. An automated tool
diagramming or graphical techniques. The designed to achieve this level of functionality,
graphical tools and techniques which form the would focus on assuring (or providing some level
basis of this methodology are known as data of assurance) that the products of the various
flow diagrams, or DFDs. These techniques, col- analysis/design activities are consistent, com-
lectively, provide an informal means of com- plete and correct.
munication between systems developers and fu-
ture system users, and serve as a formal descrip- Significant progress has been made in providing
tive language for analysis and design. the first capability mentioned, i.e. the graphical

2

interface. There are already a number products requirements may vary somewhat, but most will
which handle this task very effectively, support- agree that the basic ideas are as follows. A DFD
ing such diagramming techniques as data flow is a graphical device which is designed to show
diagrams, structure charts, Warnier diagrams, the flow of data through a system, and the inter-
E-R diagrams, Jackson diagrams, and others. mediate processes which transform the data
These products also support, to some degree, the from one form to another. There are four basic
second function mentioned above, the verifica- graphical symbols used: arrows, bubbles, double
tion capability. A major shortcoming, however, lines, and rectangles. The arrows represent the
lies in the fact that none of them offers an open flow of data within the system. The bubble
architecture. The system user cannot change to represents a process of data transformation.
the system "preprogrammed" verification rules The double line represents a system file (store),
and/or even add his own rules. A great deal of and the rectangle represents an external user or
subjectiveness exists in the system design activ- interface. A set of these symbols is called a
ities, especially in the preliminary stages of the diagram. (We shall henceforth refer to the set
design process. Consequently, different analysts of objects represented by these symbols, together
may want to customize an analysis/design sup- with the diagram itself, as primitives. When the
porting system to their individual work style. context is evident, we may refer to the symbols
Unfortunately, none of the available products themselves as primitives, e.g. we will be refer-
offers such capability. This is mainly due to the ring to the six primitives: bubble, arrow, file,
implementation environment they use. user, external interface and diagram.)

The purpose of this paper is twofold. First, we In the example in Figure 1, note the presence of
want to present logical principles of the the six primitives just mentioned. The small
automated verification methods used in the number of symbols and the complementary
design of a prototype of the Systems Analysts' verbal description make DFDs easy to under-
Apprentice, a system which will support the stand, giving them the "communicability" fea-
analyst in all phases of information system ture so needed in the early development phases.
development (and in the production of each of It is their hierarchical nature, however, which
the analysis/design specifications) as reflected gives them their expressive and structuring
in the DFA methodology. For purposes of ex- power.
position, we have chosen to limit our discussion
to that of data flow diagram verification. Our In this hierarchical structure, the most global
motivation for choosing this verification phase description of the system is represented in therests in the fact that DFDs are the first of the form of the so-called context diagram. This
design products to be constructed and are fun- represents the top level of the DFD hierarchy.damental to the construction of the others. In In the context diagram, the entire system is
addition, DFDs enjoy wide use in other struc- represented by a single process (bubble). All ex-tured analysis and design methodologies. ternal entities (rectangles), are connected to the
Secondly, we want to contrast two possible system by data flows (arrows) into and out of themethods of implementing a verification algo- process (bubble). This context diagram, orrithm. The traditional method relies upon a set rather the sole bubble on the context diagram, is
of programs and a corresponding database. The subdivided, or "exploded" into the so-called 0database stores the system specification upon Diagram, which normally shows a relativelywhich the programs perform consistency small number of main system processes. Theverification. A second, logic-based method, uses example DFD is such a 0 Diagram. It has threelogic to express both the verified system processes, corresponding to the processes carriedspecification and the verification process. out by three departments, Sales, Chips, and Ac-

counting. Each of these processes, in turn, can
be exploded into subprocesses, and so on. This
hierarchical process of top-down refinement

DATA FLOW DIAGRAMS continues until the bubbles at the lowest levels
(leaf bubbles) represent processes which are
simple enough to be implemented as units.

One can pick up just about any text on systems (These are then described in the corresponding
analysis and design (Myers, 1975; Page-Jones, system dictionary.) The set of DFDs describing
1980; DeMarco, 1978) and find a description of a typical medium-size system could contain
DFDs. The notation may differ slightly, and the hundreds of processes, dozens of files and exter-

3

Books Publisher

 Book-
 Detail

purc
1 2 Order

Order Valid- Valid
Order Order

Assemble -* Publisher
Customer -3 Validate

Order Purchase
Order

Credit- Pending Orders 1 PO-DetailStatus Orders-
Customer For-Title Publisher Orders

< Address- "
\Detail 3 PO-Detail

- Assign - Publisher-Shipping-Note Shipment Consighment

Figure 1.

nal entities and hundreds of data flows. (And exposition about "how to construct" DFDs.
before existing as a "final" set of diagrams, the Some are stated more emphatically than others,
set will have undergone extensive revisions from in phrases such as "ALL files MUST have at
its initial definition. This is all in keeping with least one outgoing arrow and " while others
the characteristically iterative nature of the ac- are more casually mentioned as "conventions."
tivities in the analysis/design phases.) While there simply is no universally recognized

and formally stated set of DFD verification
rules, there are enough of them which are
widely accepted to include in a general DFD

Verification of DFDs verification tool. (Any such tool must, under-
standably, be flexible enough to adapt to the

It is easy to see how an analyst might get bogged methodology and conventions of the particular
analyst who may be using such a tool.)down in the task of producing the DFDs alone,

much less in the task of maintaining consistency
of all design (analysis) products. Assuring that These recognized rules range from the simply
the DFDs are accurate is obviously a very stated "each bubble has a unique name" rule, to
tedious and time consuming task. It is believed more complicated ones involving "balancing" of
by some that verifying a set of DFDs "correct" is diagrams. This "balancing" rule can be stated as
impossible. They claim, and rightly so, that follows:
there are certain semantic errors which can The set INF of input data flows
elude capture. Nevertheless, there is clearly a and the set Od'FD of the data flows
significant class of "capturable" errors, and it is
these which we hope to pursue. The task of contained in a diagram D are respec-
verifying a set of DFDs can be accomplished by tively equivalent to the sets INFB and
testing them against a set of rules. Satisfying OUTFB of the bubble B, where bub-
each of the rules is necessary for the DFDs to be ble B has the same number as
accurate (although, of course, not sufficient.) diagram D.

DFD verification rules Clearly this rule represents a much more com-
plex logical dependency between primitives than

What are these rules? By scouring the DFD does the former "uniqueness" rule. It is con-
literature, one can find some of them, but they venient to classify the rules according to the
are likely to be hidden in a relatively informal complexity of this dependency between primi-

4

tives. The uniqueness rule we classify as a 2. programs manipulating and analyz-
global verification rule. Rules which are de- ing data to assure that the data form
rived from more complicated dependencies are the correct DFD representation.
typically classified as intra-diagram rules or
inter-diagram rules. Examples of these are, A distinct shortcoming of this approach, asiderespectively, "an arrow cannot arise from and be from the separation into two "related" parts, i.e.directed to the same bubble," and, "if an arrow the data and programs, arises when any changedoes not have a source or destination bubble, it is to be introduced. Consider the introduction of
may still be good, provided that it corresponds to a new rule, perhaps one which one analystsan arrow at a higher level which does have both uses, whereas another analyst does not. Or con-source and destination." (Source and destination sider changing a rule to make it more or less
are the obvious endpoints of the arrow.) Such restrictive. Or even introduce a new primitive
an arrow, "anchored" at only one end on a par- subcategory. Changes such as these could resultticular diagram, is a byproduct of the conven- in program modification of unpredictable scope,tions of the hierarchical DFD decomposition. or, in the extreme case, changes in the databaseWe will be using this type of arrow in our il- structure as well.
lustrations and will henceforth refer to it as an
"open-arrow."

The above discussion mentions one way of clas- Illustration of thesifying verification rules, i.e. that the verifica-
tion rule be one of the following types: global, Database Application Approach
intra-diagram, or inter-diagram. It is also con- to DFD Verification.
venient to classify the rules according to the
primitive(s) to which they refer, i.e. bubble Suppose we want to assure that all open-arrowsrules, arrow rules, etc. We say that any par- are "good" according to the definition providedticular rule applies to a primitive category (or earlier. For this we need to provide both theprimitive subcategory, e.g. the "open-arrow" data model to represent the related primitivescategory.) and the data manipulation procedure to return a

Yes or No answer to the question "is this open-
arrow a good open-arrow?"

A DATABASE APPLICATION The database
A system to support an analyst in DFD verifica- We can conceptualize the primitives in the foI-
tion could be developed in traditional technolog lowing way. Let the Diagram, Arrow andand considered a database application. The SmallElement be entity classes. Let SmallEle-
primitives could be suitably represented, concep- ment be subdivided into subclasses Bubble and
tually, as entities, and simple dependencies be- FixedElement. Let FixedElement be furthertween the primitives could be thought of as subclassified into File, User and External-
relationships between these entities (Hawrysz- Interface. Then we can define the following
kiwycz, 1984). Simple DFD integrity rules relationships between the primitives:
could thus be expressed in terms of static data-
base integrity constraints. For example we 1. Source-Of; tertiary relationship be-
could allow only Bubble, File and External en- tween Arrow, Diagram and Small-tities to be in the relationship Source-Of with Element assigning a SmallIElement,Arrow entity. However, to enforce some of the SE, to an arrow A on the diagram Dmore complicated integrity rules, e.g. those

as the source of the arrow;inter-diagram rules that must be satisfied to as-
sure DFD consistency, an additional integrity
checking program would be required. Thus, the 2. Destination-Of; tertiary relationship
traditional database application approach would between Arrow, Diagram and
require two components: SmallElement; analogous to the

above Source-Of relationship, but
1.the database, as an implementation describing the destination of an ar-

of the DFD conceptual model, and row;

5

3. Contained-In; binary relationship B_NO - any string of single digit numbers, re-
between Diagram and Bubble that presenting bubble numbers (with implicity
assigns bubble A to diagram D. decimal points between the single digitnumbers).

Source-Of, and Destination-Of connect an ar-
row to its source and destination on a particular D-NO - any string of single digit numbers, re-
diagram. Any SmallElement can be a source or presenting diagram numbers (as above)
destination, except in certain situations. For ex-
ample, on the context diagram all arrows must The following pseudocode represents one way ofbe anchored between the sole Bubble (with num- verifying whether a given open-arrow is indeedber 0) and a User or External-Interface, thus a "good" open-arrow. We assume that the proce-limiting the role of the SmallE]ements. Due to dure GOOD OPEN ARROW receives twospace limitations, we will not go into details of parameters: D (diagram number) and A (arrowthe conceptual model of the DFDs such as name), identifying an "open-arrow" on diagram
entity/relationship membership class or car- D. The procedure sets a third parameter,dinality. Let us, however, for purposes of il- ANSWER, to value "Yes" if arrow A on diagramlustration, choose one type of data model, say D is a good open-arrow and "No" otherwise.
relational, and one corresponding DML, say
SQL, and construct the two components neces-
sary to implement the good open-arrow rule. The procedure shown on the next pages makes

explicit assumptions about routine enforcement
of certain "integrity" rules, and thus frees itself
of the responsibility for assuring them. Such in-A relational implementation tegrity rules include the following:

Using well known rules of conceptual model 1. All NAMEs of FEs are unique, and
translation and subsequent logical model flexing distinct from the unique NAMEs of(Briand, 1985; Howe, 1983), we can arrive at the Bubbles. Bubble Numbers (B_NOs)
following relational database design. are unique and are alternate keys of

the BUB relation. Diagram Num-FE (NAME, TYPE, D_NO) bers (D_NOs) are inherited from a
Bubble in a "parent" Diagram. InBUB (NAME, B_NO, D_NO) any BUB tuple, the B_NO must be a
one-level "extension" of the D._NO.

SOURCE (A-NAME, NAME,
TYPE, D_NO) 2. For each A_NAME/D_NO key

value in the SOURCE relation, there
DEST (A_NAME, NAME, TYPE, is a corresponding

D_NO) A_NAME/D_NO key value in the
DEST relation.

The relations defined above correspond to:
FixedElement, Bubble, Source of an arrow, and 3. For every NAME value in SOURCE
Destination of an arrow, respectively. (and thus DEST), there is a tuple in

FE or BUB with a matching NAME
The ATTRIBUTE domains are as follows: value.

1TYPE - one of {"Bubble", "External", "File", In the database implementation, the representation of
"Open"} diagram and bubble numbers is difficult. The commonly

used convention is for all bubbles on diagram D to have
numbers composed of the diagram number D, extended by a

NAME - any string of characters, representing period and bubble number relative to the diagram (e. g., bub-
Bubbles or FixedElements - these names are ble 2.3.4 is the 4th bubble on the diagram 2.3). This conven-
unique as specified later (p. 15) tion makes it necessary to store the bubble and diagram

numbers as variable length strings. Thus. in order to answer
a simple question about whether or not a bubble is an ances-A_NAME - any string of characters, represent- tor of a certain diagram, a very low level string manipulationing Arrow names procedure would be required.

6

Good Open Arrow Verification Segment

beginsegment GOOD OPEN ARROW (D,A,ANSWER)
select TYPE into T from SOURCE

where A_NAME = A and D_NO = D
if T = "open" then

do ANCHOR_DEST
else

do ANCHOR_SOURCE
endif

endsegment

beginsegment ANCHOR_SOURCE
ANSWER ='T"
dowhile ANSWER = "?"

OLDDIAG = D
select D_NO into D from BUB where B_NO = D
select B_NO into NUM from BUB where NAME in

(select NAME from SOURCE where A_NAME = A and
D_.NO = D)

if not (DBFOUND) or not (NUM = OLDDIAG) then
ANSWER = "No"

else
select Type into T from DEST where A_NAME= A

and D_NO = D
if D = null then

if T = "External" then
ANSWER = 'rYes"

else
ANSWER = "No"

endif
else

if not (T = "Open") then
ANSWER = "Yes"

endif
endif

endif
enddo

endsegment

beginsegment ANCHOR_DEST
ANSWER = "?"
dowhile ANSWER = "?"

OLDDIAG = D
select D_NO into D from BUB where B_NO = D
select B_NO into NUM from BUB where NAME in

(select NAME from DEST where A_NAME = A and
D_NO = D)

if not (DBFOUND) or not (NUM = OLDDIAG) then
ANSWER = "No"

else
select Type into T from SOURCE where A_NAME =

7

A and D_NO=D
if D = null then

if T = "External" then
ANSWER = "yes"

else
ANSWER = "No"

endif
else

if not (T = "Open") then
ANSWER = "Yes"

endif
endif

endif
enddo

endsegment

One can see that the procedure presented above for this good open-arrow policy would involve
is not easy to follow. It requires some training the checking of corresponding data dictionaries,
in program development and database concepts. and thus is beyond the scope of this paper.) Be-
It is also critically dependent upon the structure cause of this apparent resistance to change, or at
of the underlying database. The most important least resistance to easy change, this traditional
point, however, is that it is very difficult to read database approach does not seem well suited for
the procedure without knowing a priori its in- such a product as a DFD verification tool. As
tended purpose. For this reason, we provide the pointed out earlier, such a tool must necessarily
following summary of purpose of the GOOD be flexible enough to support the methodology
OPEN ARROW procedure. with which an analyst is most comfortable. The

analyst, equipped with such a tool should be
The procedure, upon learning that a certain ar- able to easily adapt the tool to his purposes, i.e.
row is "open," first determines which of the ends add/delete/change verification rules to his
is open and which is anchored. It then liking.
proceeds, in an iterative fashion, to determine
on which upper level (diagram) the arrow
finally is anchored on both ends. While so do-
ing, it checks to see that there are, indeed, cor- A LOGIC-BASED
responding arrows on the respective levels, and
that the bubbles corresponding to the anchored APPROACH
end are consistent with the original anchored
bubble. If there is no level at which the arrow Another approach towards automating the DFDbecomes fully anchored, then the procedure will verification process uses logic as a means of des-reject the original arrow. If, in addition, the cribing the problem (Kowalski, 1979). With this
anchored level is the context level, the proce- approach, the same language can be used to re-dure will guarantee that the entity correspond- present the data (simple facts) as well as theing to the open end is none other than an exter- data dependencies (in the form of rules or
nal entity. predicates). As a result, the problem of verify-

ing DFDs becomes, in essence, a problem of
It is also important to point out that any change proving or disproving logical statements (rules)
in the good open-arrow policy may necessitate related to the correctness of such diagrams.
significant changes in the corresponding rule Given a set of DFDs, if all of the rules hold forverification procedure. Verification measures that set, then the diagrams are correct (relative

to the underlying correctness rules.)
2A typical change might involve the weakening of this

restriction somewhat to allow for the separation of arrows Observing that there is nothing in this approach
into several arrows in the process of moving down in the which specifically ties it to DFD verification in
DFI) hierarchy (or equivalently, the merging of arrows in the particular, a strong case can be made for using
process of moving up this approach with a general class of verifica-

8

tion problems. Of particular interest to us, how- the form of routine, facts about objects and more
ever, is its use in any type of system specifica- general rules describing relationships between
tion verification. This rule-based (logic-based) objects.
approach to DFD verification has other ad-
vantages as well: Horn Clauses take the form:

1.The verification algorithm follows " conclusion:-
expert rules (mimics an expert), condition 1,
therefore the verification process is condition2,
represented (described) in the most ...

natural and understandable way; conditionN. "

2. The verification algorithm can be Here,
easily changed by incorporating, ":-" means "if"
dropping, or changing rules, unlike "," means "and"
the traditional database application
approach; Thus, the whole clause means "conclusion is

true if condition t and condition2 and ... con-
3. The representation of the facts can ditionN are all true." (The conclusion is known

as the head of the clause.)be changed without changing the
verification rules (as opposed to the
traditional database application ap-
proach, where changes in the data-
base structure would likely neces- DFD verification in Prolog
sitate subsequent changes in the
programs). The Prolog knowledge base for our DFD

verification application could be roughly divided
into two parts: 1) the part specifying the rulesOur choice of languages in which to implement related to DFD verification (accuracy), and 2)our logic-based DFD verification module is the part describing the set of DFDs themselves,Prolog. (We are currently using Arity Prolog on i.e. the specification of DFD primitives.microcomputers and Waterloo Prolog on the

IBM3081. Both are consistent with the Edin-
burgh style syntax (Clocksin, 1984).) The latter part of the knowledge base would

consist, primarily, of simple statements (for ex-
ample "Bubble 2.4, known as 'order-entry' is a
bubble on Diagram 2). Expressed in Horn
Clause syntax, this statement could be expressed

Prolog as follows: bubble(2,order-entry,2.4). (This is,
in fact, the syntax we've adopted for defining

Prolog is a logic programming language allow- the bubble primitive.) Note that this particular
ing programs to be written which describe a par- clause takes the form of a conclusion without
ticular application domain. The Prolog inter- any conditions. This type of clause is commonly
preter, which executes the program, makes most known as a fact. The DFD specification (of
of the control decisions. The Prolog primitives) would thus be comprised almost ex-
programmer's responsibility is one of providing clusively of facts.
the axioms (rules and facts) which describe ob-
jects and the relationships between the objects. The part of the knowledge base which specifies
These axioms are expressed in a logic language the conditions for accuracy would be comprisedknown as Horn Clauses (Kowalski, 1979). of more complex Horn Clauses, those with con-(Axioms expressed in this form can be subjected ditions commonly known as rules. For example,to certain inference mechanisms, known as one rule giving some conditions for an open ar-
resolution (Robinson, 1965) and unification,
thus enabling the provability of posed queries

row to be "ok" is (in natural language):

about the application domain.) The set of
axioms comprise the knowledge base (possibly arrow A is an ok_open arrow on the diagram D
referred to later as the Prolog database) and take if

9

A is on diagram D and all the arrows good arrows?" or "Is arrow 'line-
T is the type ok the Source of the arrow item' a good arrow?"

A and
T is a bubble and
A can be proven to have a good_open_

source on one of the ancestors of the Conceptualization of the
diagram D. DFD Verification Problem

in a Logic-Based FormatExpressed in Horn Clause form, this becomes
the following rule (see Rule 3 in the illustration
of the logic-based approach appearing later): Conceptualization Of primitives

ok_open(A,D):- We conceptualize the DFDs as having six primi-
arrow(D,_,A,Source,_), tives, as before. They are, again, the following:
elttype(Source,T), bubble (process), arrow (data flow), file, user,
T = bubble, external interface and diagram. Though the
good_open_source(A,D). literature often does not differentiate between

users and external interface, calling them both
external entities, many experts make this dis-Other rules may be more complex, having many tinction and have rules which apply to one andconditions, each of which is the head of another not to the other. The diagram primitive isrule. There are, in fact, many generic or utility necessary to establish the domain of therules which are the building blocks of the more problem.

complex rules which describe the essence of
DFD verification.

We found it convenient to define superclasses or
generalizations of primitives as follows:The process of verifying a posed query against

' the knowledge base is taken care of by the External = user or external inter face
Prolog interpreter, fulfilling its responsibility of Fixedelt = file or External
providing the control (decision, inference) Smallelt = Fixedelt or bubblemechanism. The method by which it does this,
depending upon the particular implementation, Element = Smallelt or diagram
relies on variations of techniques known as Symbol = arrow or Elementresolution and unification. (It is not important
to know precisely what these techniques are - These are useful for simplifying system rules
see Kowalski (1979) and Robinson (1965) - but it which apply to groups of primitives.
is important to realize that the control decisions
are taken care of by the Prolog interpreter serv- It was also convenient for us to define terms re-
ing as a general inference engine.) presenting subcategories of the basic primitives.

For example, we defined the following sub-
The knowledge base, consisting of the two parts categories of the primitive category "arrow":
mentioned above, are defined by the appropriate
Horn Clauses. Certain clauses are provided as Singlearrow - an arrow going in one direction
part of the DFD verifier "core," whereas others, only
in particular those describing the DFD being
analyzed (DFD primitives), are to be defined by Doublearrow - an arrow going in two directions
the analyst. The concise and simple form of the Bubblearrow - an arrow whose source and des- _
DFD knowledge base permits relatively easy ad- tination are bubbles
dition or modification of rules and/or facts as
might be required by a particular analysis team. Openarrow - an arrow with either source or des-
After the Prolog knowledge base is defined, a tination not defined, or "open"
simple command (query) is all that is needed to Filearrow - an arrow going from bubble to file orinitiate the verification procedure. The analyst vice versacan request global verification, i.e. "Do all
primitives satisfy the set of verification rules Extarrow - an arrow going from bubble to Exter-
currently in the knowledge base?" or he may re- nal or vice versa
quest verification of a particular rule, i.e. "Are Fixedeltarrow - Filearrow or Extarrow

10

These kinds of subcategories are also useful for diagramname(P) :- diagram(X),bubble(_,P,X).
simplifying verification rules and for providing
simple edits (e.g. an arrow which cannot be clas- external(P) :- user(P).
sified according to these subcategories is illegal). external(P} :- interface(P).
Note that they are not necessarily mutually ex-
elusive. fixedelt(P) :- file(_,P).

fixedelt(P) :- external(P).
smallelt(P) :- fixedelt(P).
smallelt(P) :- bubble(_.P,_).

Illustration of the element(P) :- smallelt(:
Logic-Based Approach to element(P) :- diagramname(P).

DFD Verification symbol(P) :- element(P).
symbol(P) :-arrow(_,_,P,_,0.

The following subset of the Prolog database is
sufficient to verify the "good open-arrow" rule elttype(X,arrow) :- arrow(_,_,X,_,_).
that has been used as an illustration. elttype(X,bubble) :- bubble)_,X,_).

elttype(X,user) :- user(X).

Utility pedicates elttype(X,interface) :- interface(X).
elttype(X,file) :- file (_,X).
elttype(X,interface) :- interface(X).

length([],0).
length([_!x},M) :- Exemplary diagram rules

length(X,N) ,M is N+ 1.

expansion(U,[]).
expansion([XIV},{XIV} :- parent(F,_) :-

diagram(F),expansion(U,V).
f = [context],

append([],L,L). !,fail.

append([KLI],L2,[KIL3]) :- parent(F,G) :-

append(Ll,L2,L3). diagram(F),
diagram(G),

upperlevel(Y,X) :- t upperlevel(F,G).
append(Y,V,X),length(V, 1). ancestor(B,D) :-

lowerlevel(Y,X) :- diagram(D),

append(X,V,Y),length(V,1). bubble(_,B,N),
(expansion(N,D);N = [0]).

DFDs are represented by the following facts: Exemplary arrow rules

1. arrow(Diagram,Shape,Name,Source, openarrow(X,D) :- arrow(D,_,X,open).Destination)
2. bubble(Diagram,Name,Number) openarrow(X,D) :- arrow(D,_,X,_,open).
3. file(Diagram,File)
4. user(User)
5. interface(Interface) the following predicate "good_open_arrow"6. diagram(Diagram) succeeds only if a source/destination of an

open arrow A on diagram D can be traced
Definitions up to a correct source/destination of the same

11

arrow connected to the ancestor bubble /* 9 */ good_open_destn(A,D 1) :-
of the diagram D. parent(D2,Dl),

* arrow(D2,-,A,_,Y),
elttype(Y,Z),
(Z = bubble; Z = file)./* 1 */ good_open_arrow(A,D) :-

openarrow(A,D). /* 10 */ good_open_destn(A,D 1) :-D = [context], parent(D2,D 1),!,fail. arrow(D2,_,A,X,open),
ancestor(X,D 1)./* 2 */ good_open_arrow(A,D) :- good_open_destn(A,D2).openarrow(A,D).

ok_open(A,D).
It' is worth noting that the rules presented above

/* 3 */ ok_open(A,D) :- contain the simple integrity-type rules which
arrow(D,_,A,Source,_), were assumed in the traditional database ex-

ample. Had they been incorporated into theelttype(Source,T), verification procedure, as they are here, theT = bubble, pseudocode would have been significantlygood_open_source(A,D). larger.
/* 4 */ ok_open(A,D) :-

Several differences between the two presentedarrow(D,_,A,_,Destn), approaches are very apparent. First of all, theelttype(Destn,T), Prolog text is self-documented, i.e. one doesn'tT = bubble, need to be a Prolog programmer to read it.good_open_destn(A,D). Secondly, because both data and operations on
data (rules) are expressed in the same language,

/* 5 */ good_open_source(A,D 1) :- the intent of the program is evident in the
parent(D2,D 1), program structure itself. A simple translation
arrow(D2,_,A,X,_), of the analyst-supplied verification rules into
D2 = [context], Horn Clauses (Kowalski, 1979), and then sub-
, sequent translation into Prolog predicates is all

that is required.external(X).

Look back at the example as we attempt to il-/* 6 */ good_open_source(A,D 1) :- lustrate the process of rule verification. Utilityparent(D2,D l), predicates, definitions and exemplary diagram
arrow(D2,_,A,X,_), rules have been shown to make the example
elttype(X,Z), complete, and thus stand independently. The
(Z = bubble; Z = file). "good-open-arrow" rule that we use in the ex-

ample, is found in the paragraph: · exemplary
/* 7 */ good_open_source(A,Dl) :- arrow rules. For easy reference, we numbered

parent(DZ,D 1), this rule and its subordinate rules.
arrow(D2,_,A,open,Y),
ancestor(Y,D 1). Rule 1 is a translation of the statement "if there
good_open_source(A,D2). is an open-arrow on the Context diagram, it can-

not be a good open-arrow." Rule 2 "catches" all
/* 8 */ good_open_destn(A,Dl) :- open-arrows on lower diagrams and uses rules 3

parent(D2,D 1), and 4 to determine whether the destination of
the arrow or the source of the arrow is open.arrow(02,-,A,-,Y), These rules also state that, for any open-arrowD2 = [context], on a diagram, bubbles and only bubbles can
anchor the arrow. (This was assumed to be true

external(Y). in the traditional database example.) Rules 5,6
and 7 are triplets which deal with the case when
an open-arrow has an open source, while 8,9,

12

and 10 deal with the case when an open-arrow solution/implementation of it. Furthermore, it
has an open destination. In the former case, the supports an implementation which is more
destination must be a bubble (this is verified in flexible and expandable than an implementa-
the primitive subcategory rules.) Rule 5 states tion of the other. Although there are certain ad-
that "if an open source is traced all the way up vantages of the traditional approach, i.e. higher
to the Context diagram, (before being finally performance and lower sensitivity to problem
anchored), the anchor must be an External size, we feel that the simplicity/flexibility fac-
entity." Rule 6, on the other hand, says that "if tors of the logic-based approach are significant
the source has been anchored on the diagram enough to outweigh these advantages. (The
strictly below the Context diagram, that anchor- number of rules required is not excessive
ing entity must be a file or bubble. Rule 7 recur- enough to make the product ineffectual; SAA
sively calls "good-open-source" in the case when currently performs well on the IBM 3081
an open-arrow is still open on the "father" mainframe. We get satisfactory results, as well,
diagram. This rule also determines whether an- when using the Arity Prolog Compiler on a
cestors (bubbles) of the original destination microcomputer.) We also feel that efficiency is
(bubble) are consistent with the original destina- not the major factor that it is in transaction-type
tion. Rules 8,9, and 10 perform equivalent tests environments. Analysts would probably prefer
for the case when the open side of the arrow is a more flexible tool than a rigid one that runs in
the destination and the bubble side is the source. less time.

Our current version of the DFD verifier, a part
of the prototype Systems Analysts' Apprentice

SUMMARY (eventually to become a complete system
specification tool), has a knowledge base con-
taining over 30 major rules (on the order of

Automated tools to aid in the tedious process of complexity of the "open-arrow" rule illustrated).
information specification are sorely needed. The numbers, as classified by primitive category
Analysts need not spend excessive amounts of are: Arrow rules (17), Bubble rules (7), File rules '
their valuable time checking and verifying low- (2), External rules (2), Diagram rules (2), and
level analysis/design documents. Construction Global rules/uniqueness rules (3). The natural
of data flow diagrams is one of the tasks which extension of this DFD verification capability is
is prime for this sort of tool. A number of the data dictionary verification capability, on
automated tools exist for supporting the graphi- which we are currently working. The DD
cal aspects of this activity. Some support, in ad- module is based upon the same logic-based
dition, the verification function. However, none methods and is designed to be complimentary to
provide the open architecture so important to the DFD module. As such, it provides the capa-
the analyst for tailoring the tool to his design bility of detecting many more semantic-type er-
style. We illustrate an open architecture and rors. The next stage towards completion of a
logic-based approach towards DFD verification full analysis/design verification product will in-
which can be used for system specification in volve the building of the verification module for
general. Under current development is a the conceptual data model (Briand, 1985). It,
prototype multi-purpose analysis/design pro- too, will be based upon the logic-based ap-
duct, called the Systems Analysts' Apprentice, proach.
which is based upon this logic-based approach.

A market version product like the SAA should
In this paper we compare this logic-based ap- be suitable for use in traditional life cycle infor-
proach to a more traditional database approach

mation system development environments, but

using a typical example of DFD policy. This ex- should also be used in prototyping environments

ample shows what is required, in both cases, to as it is presented, for example, in Bjornerstedt
verify that a DFD primitive subcategory is valid. (1983), with respect to relational databases. We

, It is easy to see that the logic-based approach is
feel that its contribution could be even more sig-

the more natural approach. It relies upon a nificant in the latter environment, where ap-
single representation of the data and the logical plication generation techniques are finding wide
dependencies between the data, whereas the usage.
traditional database approach requires two
separate components. The logic-based approach
emphasizes the problem, not the,

13

REFERENCES Page-Jones, M. The Practical Guide To Struc-
tured Systems Design. Yourdon Press, New

Bjornerstedt, A. and Hulten, C. "RED 1-A Data- York, New York, 1980.
base Design Tool for Relational Model," Robinson, J. "A Machine Oriented Logic Based
SYSLAB Report No. 18, University of Stock- on the Resolution Principle,"
holm, Sweden, 1983. Communications of the ACM. Volume 12,

Briand, H., Habrias, H., Hue, J. and Simon, 1965.
Y. "Expert System for Translating an E-R Stevens, W., Myers, G. and Constantine,
Diagram Into Database," in Proceedings Of L. "Structured Design," IBM System
Fourth International Conference on Entity- Journal,Volume 13, Number 2, 1974.
Relational Approach. Chicago, Illinois, Oc- Warnier, J. Logical Construction of Programs,
tober 1985. Van Nostrand Reinhold, New York, New

Burns, R. and Dennis, A. "Selecting The Ap- York, 1976.
propriate Application Development Yourdon, E. and Constantine L. Structured
Methodology," DATA BASE, Volume 17, Design, Yourdon Press, New York, New.
Number 1. Fall 1985. York, 1978.

Clocksin, W. and Melish, C. Programming in
Prolog, 2nd Ed., Springer-Verlag, Berlin,
Germany, 1984.

DeMarco, T. Structured Analysis And System
Specification, Yourdon Press, New York,
New York, 1978.

Deyi, L. A PROLOG Data Dase, Research Stu-
dies Press Ltd; John Wiley & Sons Inc., New
York, New York, 1984.

Hawryszkewycz, I. Database Analysis and
Design, Science Research Associates, Inc.,
Chicago, 1984.

Howe, D. Data Analysis :for Data Base Design,
Edward Arnold Publishers Ltd, London,
England, 1983.

Jackson. M. Principles of Program Design,
Academic Press, London, England, 1975.

Kowalski, R. Logic for Problem Solving. The
Computer Science Library, North-Holland,
New York, New York, 1979.

McMenamin, S. and Palmer, J. Essential Sys-
tems Analysis, Yourdon Press, New York,
New York, 1984.

Myers, G. Reliable Software Through Com-
posite Design. Petrocelli/Charter, New
York, New York, 1975.

14

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1986

	LOGIC BASED INFORMATION SYSTEM SPECIFICATION VERIFICATION
	Waldo C. Kabat
	Wojtek Kozaczynski
	Vicki Lovegren
	Recommended Citation

	tmp.1422249042.pdf.tXy0I

