
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1988 Proceedings International Conference on Information Systems
(ICIS)

1988

DEDUCTIVE EXTENSION OF A
RELATIONAL DATABASE SYSTEM
Nicolai PreiB
Institut fi* Angewandte Informatik und Formale Beschreibungsverfahren Universitiit Karlsruhe

Follow this and additional works at: http://aisel.aisnet.org/icis1988

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1988 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
PreiB, Nicolai, "DEDUCTIVE EXTENSION OF A RELATIONAL DATABASE SYSTEM" (1988). ICIS 1988 Proceedings. 31.
http://aisel.aisnet.org/icis1988/31

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1988%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1988?utm_source=aisel.aisnet.org%2Ficis1988%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1988%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1988%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1988?utm_source=aisel.aisnet.org%2Ficis1988%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1988/31?utm_source=aisel.aisnet.org%2Ficis1988%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

DEDUCTIVE EXTENSION OF A RELATIONAL
DATABASE SYSTEM

Nicolai PreiB
Institut fi* Angewandte Informatik

und Formale Beschreibungsverfahren
Universitiit Karlsruhe

ABSTRACT

Logic based knowledge processing systems such as PROLOG based expert systems have shown obvious
drawbacks in performing conventional database tasks. Knowledge processing by deduction on a largeset of given facts can be better performed by a deductive database system based on Horn logic and
relational database theory.

A concept is presented to extend an existing relational database system to make feasible the deduction
of intensional data from a given extensional database. The deductive extension provides an extended
view mechanism and the integration of integn'ly constraints and leads to an enhanced quety mechanism.Thus, the conventional database becomes more expressive, shows a higher degree of consistency, and
is evaluated more efficiently.

1. INTRODUCTION Contrary to other approaches in the field of deductive
databases, no separate component with logic programmingKnowledge based systems such as expert systems (XPSs) techniques is applied to provide deduction but the DBS

or rule based systems use logical statements, generally first iddf. Moreover, unlike Postgres (Stonebraker and Rowe
order formulas, to derive conclusions or at least to support 1986), for example, we preserve the conventional relationalthe derivation process. Avery popular approach to building database environment, especially the ease of use.such systems is tile logic programming language PROLOG.
But PROLOG based XPSs showed obvious drawbacks in
performing database tasks and so egen dambare ostems To provide deduction we will extend the standard databaseemerged as a combination of a PROLOG based XPS and language SQL, specifically the data dictionary (DD), in a
a relational database system (DBS). The coupling of simple and "natural" way. The resulting extended viewPROLOG with a conventional DBS represents a first, management including recursion and semantic ICs makessimple approach whereas a more advanced solution is conventional databases more pressive and less space
feasible coupling PROLOG with a deductive DBS (PreiB consuming (derivation of virtual relations). It enhances the
1988). degree ofconsistency (specification of semantic restrictions)

and diciency (semantic query optitnization). Additionally,A deductive DBS consists of a set of relations and an in- the independent deductive DBS may be used to provide anference mechanism to derive new relations. This is moti- efficient database interface for knowledge processing sys-vated by the most interesting fact that some inferences of tems based on logical rules. As far as we know, no otherXPSs may be substituted by queries of DBSs which gene- system provides such a comprehensive dedtictive DBS while
rally provide the results much faster. Therefore, it is re- preserving a uniform relational database environment.
commended to move as much as possible from the XPS
down to the DBS (Smith 1986) requiring a deductive
database component for an efficient solution. The paper is organized as follows: section 2 shows the

formal background of deduction in DBSs. Our conceptThis paper focuses on the development of such a deduc- of a deductive relationa/database system is presented intive DBS realized as an extension of a conventional DBS. the section 3. We are concerned with derivation rules,The extensions are based on the fact that logic provides a i.e., extended view definitions, and especially with integrity
basis for relational databases, especially for expressing constraints. Finally, a general overview and an illustrativequeries and for the definition of views and integrity con- example of the deductive query evaluation are given in
straints (Brodie and Jarke 1986). Therefore, our exten- section 4. The paper ends with some concluding remarkssions are aiming at an extended view mechanism and the about our ideas, objectives, and further research.
integration of integrily constraints (ICs) resulting in an en-
hanced query mechanism.

151

 2. DEDUCTION IN RELATIONAL DATABASE 3. DEDUCTIVE RELATIONAL DATABASE SYSTEM
SYSTEMS

In dealing with Personal Computer applications, the rela-
In a deductive database system new facts may be derived tional database system Datenbank-Pascal, now called
from the existing ones (Gallaire, Minker and Nicolas INOVIS-X86, was developed at our institute (Karszt
1984). We exclude general function symbols as argu- 1984). A three level architecture (external, conceptual,
ments in order to have finite and explicit answers to and internal level), a data dictionary, a transaction mana-
queries. Also, as often done in the context of databases, gement (recovery and concurrency in LANs), simple in-
to formally represent facts, deductive laws, and integrity tegrity preservation, a programming interface (PASCAL,
constraints, we use formulas in the form of Hom clauses C, FORTRAN, COBOL), and an SQL interface repre-
which preclude the derivation of positive literals from sent the most important features resulting in a powerful
negative ones: DBS for conventional dambase applications (up to 110

MB of database size and more).
{1}

Further developments led to a deductive atension of the
While it is well understood what a fact is (conclusion cristing DBS (PreiB 1987). This comprises an extended
without conditional part), there is no final answer to the view mechanism (derivation rules including recursive
database design question, whether to consider a general views and relations derived by database procedures) and
definite Horn clause as a deductive law (den'vation mle) an advanced management of integrity constraints. The
or as an integrity constmint. However, in most cases the deductive DBS provides a simple dambase Language
heuristic holds that if the clause is not intended to derive (SQL), high functionality (conventional applications, sim-
new facts but to restrict existing base or virtual relations ple inferences, database support for expert systems), high
then it represents an integrity constraint (see section 3,2). pe,fonnance (active DD, simple concepts of relational

databases), and simple realization (few extensions of the
In detail, the deductive relational database formally con- existing DBS). Logic is applied as a formal background
sists of (Prei]31987): only, not as a mechanism to provide deduction.

• a restricted Horn language: Although our proposals refer to the DBS INOVIS-X86,
the concept may be applied to any other DBS that offers

-- range restricted Horn clauses (all variables the a DD, a programming interface, and an SQL interface.
right side must appear on the left), Mainly, the database language must be extended for the

-- at most linear recursive Horn clauses (at most definition of possibly recursive derivation rules (DRs) and
one Ai is mutually recursive to B), integrity constraints (ICs) and for the formulation of cor-

responding queries. Accordingly, the data dictionaiy must
• a theory with: be extended to store the new types of declarations. Fin-

ally, a deductive component is added as a front end to the
-- axiomsl (elementa,facts), DBMS transforming the deductive query into a sequence
-- axioms2 (dedvation mles), of conventional query expressions evaluable by the con-

ventional DBMS. Note that this approach of a deductive
• a set of integiity constmints, extension requires only few modifications on the user

level. Thus, the database environment applied in conven-
• a metarule: negation as finite failure (which applies tional data processing is preserved.

to the well-known closed world assumption (CWA)
in conventional DBSs).

3.1 Derivation Rules

The facts are often referred to as extensional database 3.1.1 Formulation of Derivation Rules
(EDB) whereas the derivation rules and integrity con-
straints are called intensional database (IDB). Logical Expressions

This approach of a deductive database enables us to in- Generally, in the context of databases, a logical formula
corporate more rea/ world knowledge into the relational such as a database rule in PROLOG is considered as a
database, to enhance the expressiveness of the database derivation rule representing the definition of a virtual re-
language, and to treat the query evaluation and integrity lation or view. As described in section 2, in our deductive
preserving in a uniform manner. The deductive database DBS the logical formulation of such a definition is res-
is more complete (linear recursion) and less space con- tricted to definite, range restricted, function free, and at
suming than conventional databases. Furthermore, it can most linear recursive Horn clauses. In addition, there are
be used to support PROLOG-based XPSs efficiently some pure syntactical restrictions bringing the logical for-
(PreiB 1988). mulas closer to the SQL expressions and enhancing their

152

readability. Moreover, these restrictions preserve the An important issue in deductive databases is the introduc-
DBMS from the renaming overhead during query evalua- tion of recuision as a means to define and process specific
tion as it is performed in PROLOG. views. This is a very interesting research area in which

the least Apoint operator (Aho and Ullman 1979; Bayer
In detail, a logical formula as a derivation rule (or inte- 1985; Bancilhon and Ramakrishnan 1986) represents the
grity constraint) must obey the following syntactical res- most popular approach transforming the recursion into a
trictions if used in the database context: special kind of iteration. However, although this ap-

proach provides a very powerful view mechanism, it lacks
A logical formula consists of the possibility to stop the iteration before the least fix-

point is obtained. This is required, for example, if we
• n-ary relationa/predicates representing base relations want to know the productions with a special number of

and virtual relations including database procedure elementary production steps on the same machine.
relations,

Therefore, to specify recursive definitions, the approach
• binary evaluable predicates (<, >, 5,2, =, <>) re- of the least fixpoint is applied with a slightly modified

presenting join and selection conditions and assign- imph-cation operator. the desired number of iteration
ments (the ' ='-predicate is used to assign a constant steps is added as an index to the implication symbol (the
or an argument of a relational predicate Ai of the default value is one and the least fixpoint iteration is
formula {1} (sce section 2) to an argument of the marked by " + " - - see Example 2). We note that every
relational predicate B). recursive definition requires an initial (EDB or IDB) re-

lation and, in the case of an indirect recursion, a se-
The evaluable predicates must be used to express the join quence of dependent view definitions.
and selection conditions. Join definitions by means of
equal arguments in relational predicates, or selection de- Example 2:
finitions by means of constants as arguments in relational
predicates are not allowed. That is, all of the constants If we are looking for productions with at most two steps
appear in evaluable predicates (aggregate and arithmetic performed on the same machine then the view PRO-
functions are considered as special constants) and, there- DUCT of example 1 is defined as follows:
fore, only variables - Le., attribute names -- are allowed

EL_PRO (Mach, ln, Out)as arguments of relational predicates (sec Example 1).
- PRODUCT (Mach, In, Out) .

PRODUCT (Mach, In, Out), EL PRO (Mach, in, Out)
- (PRODUCr.Mach, EL PRO.9ach), - (PRODUCr.Out, EL PRO.In)The naming convention for relational predicates obeys the ·+ PRODUCT (PRODUCTM.4 PRODUCr.In. EL_PRb.Out).

unique name assumption (UNA), that is, two relational
predicates with the same name refer to the same relation. In PROLOG these rules represent a view that contains
If the argument list does not represent the full attribute all productions possible on one machine. However, if
set, then a projection is specified. But such a projection such a fixpoint is desired in our deductive DBS, the im-
must not appear as the conclusion of a derivation rule plication symbol 'I + " must be applied in the second for-
because such a definition contradicts the UNA. mula.

If the same relational predicate is defined more than Besides recursion, another important issue in our deduc-
once, it gets its own attribute list. If the same relational tive DBS is the introduction of a model manager that en-
predicate occurs several times within a formula, the oc- hances both the expressiveness of view definitions and the
currences are indexed making feasible the identification integrity preserving capabilities. As mentioned above,
of arguments by prevailing predicate names (see Example relational predicates may be used to represent database
1). Finally, every deductive definition must be based on procedure mlations, i. e., special views that are derived by
existing definitions and must not define a hybrid rela- database procedures (PASCAL programs with database
tional predicate, i.e., one that belongs to the EDB. constructs). Although this feature allows an enormous

flexibility it must be noted that the DBMS has no in-
Example 1: fluence on the processes of the database procedure and

thus cannot guarantee the correct derivation.
Let the relation "EL_PRO (Mach, In, Out)" contain the
elementary production steps on machine "Mach' with in- SQL Expressions
put "In" and output "Out". Then, the view "PRODUCT
(Mach, In, Out)" containing productions performed in With these issues about the formulation of DRs in mind,
two steps on the same machine is defined in terms of the we have to consider the modifications on the user level,
relation EL_PRO as follows: i.e., the SQL environment. In detail, the management of

a logical database as a deductive relational database re-
quires the following extensions to SQL (we refer to the

EL PROl (Mach, In, Out), EL PR02 (Mach, In, Out), proposals of DIN [1987]):- OIL PROIMach, EL PRO21!ach), - (EL PROI.Out, EL PROZIn)
-4 PRODUCT (E[.PRO1Msch, EL.Pi-01.ln, EL_PR62.Out).

153

• As done by Bayer (1985) the UNION-operator is in- In detail, a derivation rule is stored in the DD in com-
troduced in the <view definition> statement to allow piled form, i.e., as a graphical representation of its logical
several subdefinitions of a virtual relation or view formula (see Figure 1). If a relational predicate is de-
(see Example 3): fined more than once, the union opemtor (U) combines

the subrelations. The. operator node (OP) contains the
CREATE VIEW <table name> [(<view column list>)] evaluable predicates (joins and selections) referring to the

AS < query specification > [{UNION <query specification > }...] involved relational predicates. Note that in this way com-
mon subexpressions can easily be recognized by multiple• The recursive definition requires an extension be- references to a relational predicate (base, virtual, or data-cause of our special treatment of the implication ope- base procedure relation). An amibute list (AL) is used torator. For that, the key word SELECT is changed to represent the respective projection determined by theSELECT7 according to the indexing of the implication occurrences of attributes in the SQL expression, as wellsymbol above. Of course, SELECT as the default as attribute assignments (see section 3.1.1), e.g., re-

value of SELECI'i' is used as usual (see Example 3). namings.

• A database procedure relation is defined as a special
view that can only be described by an algorithmic

V (Cl .. Cl)procedure and therefore is not expressible in Horn
logic or SQL (the table name corresponds to the pro-cedure name):

CREATE VIEW* < table name > {AL} f L{ALI
(< table element> [{,<table element> }...]) '/

321 -CE)
Example 3: (AL / LI//The view PRODUCT of example 2 is expressed in SQL
as R (Al.. Am) S (81.. Bn)

CRE[7E [·7EW PRODUCr
AS SELECT •

FROM EL-PRO Figure 1. DD Description of a Derivation Rule (View Definition)
UNION
SELECT PRODUCT.Mach, PRODUCT.In, EL PRO.Out

{retpective* SELECT+ PRODUCT.Mach, PRODUCT.In,E[_PRO.Out}
FROM PRODUCT, EL PRO 3.2 Integrity Constraints1*7LERE PRODUCT.MEch - EL PRO.Mach AND

PRODUCT.Out = EL_PRO.In

An integrity constraint (IC) is an abstraction of a logical
Note that the FROM part of an SQL expression always restriction that objects in the database must obey. There-
refers to whole relations whereas the predicates in the fore, the existence of an IC manager is an essential pre-
body of a logical rule also refer to projections. That is, in supposition for the consistency of a database. Derivation
the case of an SQL expression, the DBMS has to perform rules increase the number of facts retrievable from the
an optimizing attribute selection (i.e., automated projec- database while integrity constraints reduce the number of
tions). , facts that can be stored and retrieved. To achieve this,

ICs must be treated as special Horn formulas (special
3.1.2 Management of Derivation Rules semantics, see section 3.2.1) because a general Horn

clause does not restrict anything.
So far, in INOVIS-X86 information about the database
has been stored in the data dictionaiy, a graphical repre- The IC manager of the deductive DBS provides
sentation of the external, conceptual, and internal
schemes. This semantic net in main memory showed an . the formulation of database state dependent ICs,
excellent runtime behavior in updating and accessing the • the consideration of at least the well-known semantic
DD. This is exactly the point in evaluating deductive ICs, and
queries by some sort of mle-goal graph (Ullman 1985). • the management and the application of ICs including
Therefore, the DRs (and ICs) are stored in the DD re- database procedures.
presenting some sort of complete rule-goal graph of the
intensional database which we call the derivation graph. Moreover, in the context of ICs we are not only con-
This DD graph is better suited for the management of cerned with IC enforcement but also with semantic quely
relational definitions than the rule-goal graph of Ullman optimization. Semantic query optimization is the rela-
(1985), which is too complex for practical application (2 tively new approach of utilizing ICs to simplify user speci-
nodes for an n-ary relation instead of one). Moreover, fied queries by reduction of search space or identification
from the DD graph a query specific derivation graph is of redundant join and selection clauses.
easy to obtain (see section 4.2).

154

3.2.1 Formulation of Integrity Constraints constraints, and constraints throug}t database procedures
that are all based on the "PRINCIPLE OF EMPTY DE-

Usually, integrity checking in deductive databases is con- RIVATION":
sidered in the context of logical databases and theorem
proving. However, our approach of a deductive DBS . The Princewe of En:pty Derivation states that an IC is
uses logic only as the formal background (PreiB 1987). to consider as a query that must not derive any result
Although the IDB is separated from the EDB, both are tuple (see section 3.2.2), otherwise the database is
treated in the same language environment, namely the inconsistent. This principle allows the formulation of
standard database language SQL. In the DD, the ICs are ICs in two ways:
loosely coupled to the EDB relations and DRs enabling
the deductive DBMS to select the profitable ones at - In the usual case of a restrictive IC, the conclu-
query evaluation time. The formulation of integrity con- sion of formula {1} is missing (Kowalski, Sadri
straints obeys the following rules: and Soper 1987). In this case, the query is repre-

sented by the conditional part of formula {1}
• The syntactical form of an IC corresponds to that of that is specified in the < query specification >

a DR: part of the syntax rule {2}.

{1} - If a relational predicate is specified in the con-
clusion of formula {1}, then the IC checks some

The Ai and B represent relational and evaluable pre- kind of completeness. Again the query is repre-
dicates. sented by the conditional part of formula {1} but

this time a query result according to the conclu-
· The only syntactical diFerences to DRs (definite Horn sion is expected. In that case, the difference of

clauses) are that B may be an evaluable predicate, or the query result minus the (projection of the)
missing, and that a projection may appear in the con- base or virtual relation B must be empty. The
clusion. Note that a relational predicate B requires difference is expressed in the < query specifica-
an existing base or virtual relation B, otherwise the tion> part of syntax rule {2} by a NOT EXISTS
IC restriction for B makes no sense. statement. (In Horn logic, this semantics is not

explicitly expressible because it requires negation
• On the user level of the deductive DBS, an IC is de- in the rule body.)

fined in SQL. In addition to the limited possibilities
of standard SQL to specify ICs (DIN 1987) an inde-
pendent <integrity constraint definitioll> statement 311 Semantic Integrity Constraints
similar to the view definition is introduced in order to
capture the intended constraints: In this section, the scope of our ICs comprises the weU-

known semantic integrity constraints, specifically those
CREATE IC which are referred to as reasonable in real world data-

AS <query specification> {2} bases. A good survey is given in the papers of Fagin
(1981) and Fagin and Vardi (1984) in which the inte-

Note that contrary to the view definition and ac- rested reader can find further, more "exotic" 1Cs.
cordmg to the Principle of Empty Derivation (see be-
low) no < table name> part is specified. That is, in As traditional dependencies -- often referred to in the
SQL we are able to distinguish DRs and ICs -- i.e., context of schema design, less often in the context of
their semantics -- while this is not the case in Horn query evaluation -- we consider functional dependencies,
logic. multivalued dependencies as a special kind of join depen-

dencies, and inclusion dependencies. Furthermore, we are
This kind of IC specification is a great step forward in concerned with domain constraints and implication con-
dealing with database restrictions because it extends the straints. In the following these ICs are presented in their
scope of applicable ICs, applies query processing to inte- logical form (Horn clauses) and as SOL expressions ac-
grity checking, allows semantic query optimization, and cording to the user interface of the deductive DBS.
supports a un<form user inte,face (SQL).

A FUNCTIONAL DEPENDENCY "A - B" with A, B
The proposed standard of SQL (DIN 1987) offers only subsets of UR (attribute set of the relation R) is repre-
limited possibilities for the declaration of integrity con- sented by m conjunctively connected Horn clauses (A =
straints which are specific to attributes of base relations (Al... An), B= (Bl... Bm), i=1... m):
(domain, primag key, foreign key, unique, not null'). Our
extensions comprise some of the weU-known semantic Rl (Al..An, Bl...Bm), R2 (Al..An, Bl...Bm),
constraints (e.g., general functional dependencies), inter- =(R1A1, 112Al).... = (Rl.An, R2An) -• = (Rl.Bi, Ru.Bi)
relational constraints (e.g., inclusion dependencies), view

or equivalently:

155

Rl (Al..An, Bl...Bm), R2 (Al..An, Bl...Bm), A DOMAIN CONSTRAINT "Ai op C" with Ai c UR, OP
=(R1A1, R2A1),...,= (RlAn, R2.An),< >(Rl.Bi, R2.Bi) -•. 4 { < , > , 5, 4 = , < >},and C as a constant is repre-

sented by the Horn clause
This Horn formula is declared in SQL as follows:

R (Ai) - op (Ai, C) or equivalently R (Ai), -op (Ai, C) 4.
CREATE IC

AS SELECT *
FROM R Rl, R R2 The corresponding IC declaration in SQL is
;mERE RiAl = R2Al AND.AND Rl.An = R2.An

AND (Rl.Bl < > R2.Bl OR...OR Rl.Bm < > R2.Bm). CREATE IC
AS SELECT *

Note that the < unique specification> of standard SQL FROM R
offers a short form to specify special functional depen- H*rERE Ai -op C.
dencies, namely key dependencies.

Note that the <column definition> of standard SQL also
offers the possibility to specify such ICs.

A JOIN DEPENDENCY "® [Xl ... Xk]" with Xl u ... u
Xk = UR is a generalization of the multivalued depen- An IMPLICATION CONSTRAINT "Al opl Cl -+ A2
dency and is represented by the following Horn clause op2 C" (relational) respectively "Al opl Cl, A2 op2 Bl
(note that we do not want the expression to be regarded -+ B2 op3 C2" (inter-relational) with Ai E UR, Bj Us,
as a recursive definition): opk < { < , > , 5, 2,=, < > } , and Cn as constants is repre-

sented by the Horn clauseR (Xl),..., R (Xk)- R (UR)·
R (Al, A2), opl (Al, Cl) - op2 (A2, C2)

We consider the special case of a MULTIVALUED DE-
PENDENCY "A - > B" with A, B subsets of UR and C = or equivalently
UR\AB:

R (Al, A2), opl (Al, Cl), -op2 (A2, C2) -,
Rl (Al..An, Bl...Brn), R2 (Al..An, Cl...CIO,
=(R1A1, R2A1)'..., - (Rl.An, R2An) 4

R (R1A1...Rl.An, Bl...Bm, Cl...CIO. respectively

R (Al, A2), S (Bl, B2), opt (Al, Cl), op2 (A2, Bl)This does not represent a recursive definition and leads -• op3 (82, CZ)
to the following SQL expression (remember that we only
use projections): or equivalently

CREATE IC R (Al, A2), S (131, B2), opl (Al, Cl), op2 (A2, Bl),AS SELECT RIAl...Rl.An, Rl.Bl...Rl.Bm, R2.Cl..R2.Ck
FROM R Rl, R R2 -op3 (82, (2) -.

H·HERE R1A1 = R2A1 AND ... AND RlAn= R2An
AND NOT EXISTS (SELECT • The corresponding IC declaration in SQL is

FROM R
WHERE RIAl = R.Al AND.. CREATE IC

.. AND R2.Ck = R.Ck). AS SELECT *
FROM R
1,7,ERE Al opl Cl AND A2 -op2 C2

An INCLUSION DEPENDENCY "R (A) subset of S
(B)" with A subset of UR and B subset of Us (R and S respectively
may be the same relation) is represented by the Horn

CREATE ICclause AS SELECT *
FROM R, S

R (Al...An), = (Al, Bl) ... = (An, Bn)- S (Bl...Bn). ;mERE Al opl Cl AND A2 op2 Bl AND 82 -op3 22.

The corresponding IC declaration in SQL is Of course, the well-known semantic integrity constraints
are not the only ones expressible in our restricted Horn

CREATE IC
AS SELECT Al..An language. We will show by a concluding example that

FROM R some arbitrao' ICs can also be handled, e.g., some sort of
WHERE NOT EXISTS (SELECT * tupk dependency (see Example 4).

FROM S
»71ERE Al = Bl AND -AND An = Bn). Example 4:

Note that the <referential constraint definition> of stan- Assume that it must be guaranteed that for every elemen-
darci SQL offers the possibility to specify special inclusion tary production step on the machine "assembly-5" there is
dependencies, namely imports offoreign keys.

156

a following production step on the machine "assembly-6". The direct pointers (DP) refer to the components of the
For this, the following integrity constraint must be de- DRs and ICs enabling the deductive DBMS to extract the
fined: query specific derivation graph from the DD (see section

4.2) in a very short time period. On the other hand, the
EL PR01 (Mach, Out), = (EL PR01.Mach, •assembly-5•), lists of references (LR) represent the backward chaining
= (but, In), = (•assembly-6", EIL_PR02.Mach) that enables the DBMS to perform fast and complete-• EL_PR02 (Mach, In).

update operations on the DD graph.
This IC is expressed in SQL as

This structure of the DD allows the twofoid application of
CREATE IC ICs in the query context: on the one hand, an IC repre-

AS SELECT' sents a queo, e*pression to verify database consistency,
FROM EL PRO EL PR01 and on the other hand, ICs can be used to siniph# theWHERE Mach = "a embly-5' /IND derivation process of a query evaluation (not of an IC eva-NOT EXISTS (SELECT •

FROM EL PRO EL PR02 luation). In both fields, the deductive DBS provides a
HWERE EL PROl.Out = EL PROZ.In AND variety of ICs (see section 3.2.2) and a trigger mechanism

EL_Pli02.Mach - "ass bly-6"). for database procedures. Note that the application of
database procedures offers a very flexible possibility of
declaring arbitrary constraints. For example, the defini-

313 Management of Integrity Constraints tion

As with all of the other information about the database CREATE IC
scheme, the ICs are stored in the data dictionmy. Be- AS SELECT *
cause of the syntactical similarities between DRs and ICs, FROM <database procedure name>an integrity constraint can be described like a derivation
rule (graphical representation of its logical formula -- see triggers a PASCAL program that might generate tuples
Figure 2). The union operator is replaced by a di;Terence contradicting some arbitraly semantic intepity constraints.opemtor (\) according to our interpretation of an IC (Pri-
nciple of Empty Derivation). If a relational predicate
occurs as the conclusion of an IC, then the difference 4. DEDUCTIVE QUERY EVALUATION
operator is applied to point to the corresponding base
relation (BR), specifically virtual relation (VR), and to 4.1 General Overview
the conditional part of the IC definition (see Figure 2).

The idea of using an IC in semantic que,y simpldicanon is
ic a relatively new field of research especially in the context

of deductive databases. Our approach incoiporates the
relevant IC de initions into the query specific derivation
graph during query evaluation. That is, from the ICs of

IAL} 324 IALI the involved relations, those chosen restrict the query pre-
dicates by reduction of search space or identification of

BRNA (01.Dj) redundant predicates (see section 4.2). Because of the
{AL.1/ AL) pointer structures in the DD, a matching IC -- i.e., all/ 1. conditional predicates of the IC are applicable to the con-

A (Al .. Am) S (81 - Bn) ditional predicates of the (sub)query -- is found in short
time.

Figure 1 DD Description of an Integrity Constraint
A detailed description of the deductive processing goes

The uniform treatment of DRs and ICs allows a homo- beyond the scope of this paper. Therefore, an illustrative
geneous graphical representation of the database scheme example is presented to give an idea about the use and

operation of our deductive DBS. The principle steps ofand, thus, the data dictiona/y comprises four groups of deduction are introduced in advance.definitions connected as shown in Figure 3.

First, the GOAL rule of the query expression is tempora-
rily integrated into the DD graph. The GOAL subgraph

10 -rom base relations d. p. relations views Ics is then extracted including those ICs that exclusively con-base relations - - - DP DP
d p. relations + - DP DP cern the involved relations. The leaves of the resulting
views LA LR DP/LR DP hieranhical derivation graph comprise base relations and
ICS LB LA LR + database procedure relations. Cycles in the derivation

graph represent recursively defined virtual relations.
Figure 3. Pointers in ¢he DD of the Deductive DBS Common subrelations are marked by multiple references.

157

In a second step, a bottom up evaluation of the derivation This IDB is defined in SQL:
graph generates a (sequence of sub)quety expression(s)
which can be processed by the conventional DBMS to AS SELECT In-A, Out-A AS SELECT'

CREATE 17EW EL PRO (In. Out) CRE•!TE MEIV PRODUCT

determine the result of the overall query. For that, the FROM EL_PRO_A FROM EL-PRO
UNION UNIONvirtual relations in the derivation graph are resolved, i.e., SELECT In-B, Out-B SELECT+ EL PRO.In, PRODUCT.Out

the upper operator node and the lower one are combined FROM EL.PRO.B FROM EL PRD, PRODUCT
1*HERE It._PRO.Out - PRODUCT.]n

taking into consideration the restrictions of matching ICs.
CREATE IC CREATE I/LEWSEC PRO_BRecursively defined views, common subrelations, virtual AS SELECT ' AS SELECTla, OuSh

FROM EL PRO B FROM EL PRO. EL PRO Brelations with a UNION node, and those involved in ag- HHERE IE-B - 'silicon' 1*7/ERE (Sit - In-r
gregate functions are not resolved but selections are
pushed through -- except in the last case. The SQL definitions lead to the data dictionaiy shown in

figure 4 (for reasons of clarity only direct pointers are
The amalgamation produces a simplified GOAL subgraph listed).
consisting, besides base and database procedure relations,
of the non-resolved virtual relations. Of these, the lowest
is specified first, then the upper one, and so on. Finally,

PRODUCT (In.Oul) %the statement for the overall query can be expressed 4
using the intennediate results of the subexpressions. Note i {1 1 PRO h. SEC_PRO_B (In. Oul-B)
that only the recursive evaluation requires deductive sup-

=pzi7 \ \port for the conventional DBMS applying Semi-Naive
evaluation in the regular case and an enhanced version of

- {EL. PRO Out. PRODUCT.In)

the method of Henschen and Naqvi (1984) otherwise. EL_PRO (In. Out) --<ZEEED

lin B.

4.2 Illustrative Example *LA, "s1ic6* OJ, Al / \f ,1 el
4 +

To show the principle of our deductive query evaluation, EL_PRO_A (Mach·A, In·A, Oul·A) EL_PRO_B (Mach-8. In·B, Out·B)

we consider the following formal specification of a sample
"manufacturer" database (DRs and ICs):

Figure 4. DD Graph of Sample Application
The elementary production steps are performed in two
factories A and B: Obviously, from this DD graph a quety specific derivation

graph to find the two-step productions of SEC_PRO_B
EL PRO (In, Out) :- EL PRO A (Mach, In, Out).
EL. RO (14 Out) :- EL- 'RO> (Moc)4 14 Oul). based on silicon is easy to extract (Figure 5).

There is a regulation that factory A must not use any sili-
GOAL (Ou!-B) (EKEED-_ SEC_PRO_B (In. Out-B)con:

:- EL-PRO-A (Mads tuicon; ouo.

The multi-step productions are derived as follows: F*7 EL_PRO (In. Out) ---<=(Out. In-811 -
PRODUCT (In, Out) : EL PRO (In, Out). (33
PRODUCT (4 Out) :· EORO (In. 40), PRODUCT (I/O, Out). lin A, - Iln B. a, 81

<EliI;-A, .silice, (1*Al/

1/\A last derivation rule defines the two-step productions
ELPRO_A (Mach·A. In-A. Out-A) ELPRO_B (Mach.B, In.8. OvEE)

with the second step performed in factory B:

sEC.pRO-8 (4 ow) :. EL PRO (In, 1/0). Figure 5. Derivation Graph of Sample Application
ECYRO.p (Mach, Vo, OU:).

To use this logical database as a deductive relational data- The virtual relation SEC PRO B is now resolved, i.e., the
base, we specify the IDB as follows: upper operator node and the Swer one are united. Fur-

thermore, the selection predicate can be pushed into the
EL_PRO.A (Mach-A, In-A, Out-A), - (In-A,In),-(Out-A, Out) virtual relation EL PRO according to Figure 6.

-* EL PRO (In, Out).
EL_PRO_B (Mach-B, In·B, Out-B),= [In-B, In),= (Out.B, Out)

4 EL PRO (In. Out). The IC condition contradicts the selection condition ofEL_PRO.B (Mach-B. In-B. Out-B), - On-B, 'silicon')
relation EL PRO A which therefore can be removed.

EL PRO (In, Out) - PRODUCT(ln. Out).
EL_PRO (In, 011), PRODUCT (In, Out). = (EL PRO.Out, PRODUCT.In), The virtual -relatio-n EL PRO can now be resolved by

-+ PRODUCI (EL PROAn, PRODUCT.Out).
EL_PRO (In, Out), EL_PRO_B (Mach-B, In-B, Out-BI, - (Out, In-B) renaming the corresponding identifiers. This yields the

4 SEC.PRO.B ([n, Out-B). final graph of Figure 7.

158

XPS inferencing and therefore may be used to support
GOAL (11-8) PROLOG based XPSs efficiently.

While preserving the conventional relational database

EL Ch' 00) <=COw. In-B)

environment, we provided a comprehensive concept for
the deductive extension including an atended view mec-
hanism (derivation rules with recursion and database pro-

FIE-1 1 f 11*8 cedure relations) and an advanced management of integmy
ic./81 constraints. Contrary to other approaches, deduction is

performed by the DBMS itself while logic is merely usedT --Tv<SE]jED lin A,

: 10",
C.181 as the formal background. So, on the user level, the de-1{"» ductive database is specified through SQL expressions;

ELPAO_A (Mach·A, In-A, Out·Al ELPAO-B (Mach.B, M·B, Out·B) that means, the EDB and IDB (DRs + ICs) are treated
in a uniform manner.

Figure 6. Simplified Derivation Graph of Sample Application DRs and ICs are stored in the data dictionary as graphi-
cal representations of their logical formulas (range res-
tricted, function free, at most linear recursive Horn
clauses). From this DD a quety spec#ic derivation graph

GOAL (ELPRO_82.Out.B) is easy to extract which may be used to transform a de-
ductive query into a sequence of preoptimized conven-
tional query expressions evaluable by the conventional
DBMS.

= (ELPRO_81.In-8. "silicon"),
, (ELPRO_81.Out-B, ELPRO_82.In-8) Future developments and research efforts will be dealing

with formal issues concerning the deductive database. On
11: In.8, Out-Bl 12: In-B, Out-81 the one side, the deductive evaluation and the kind of re-

lational completeness provided by the extended SQL must
ELPRO_B (Mach-B, In-B, Out-B) be described formally. Moreover, it is an open question

when to check an IC and how to guarantee consistency of
the IC system itself. On the other side, we are concerned
with the precise analogies between logic programming

Figure 7. Final Derivation Graph of Sample Application and deductive relational database management. These
may be used to determine an automatic substitution ofConsequently, our deductive component performed a specific logical inferences in a knowledge processing sys-

transfomlation from the original query tem based on logical rules by more efficient query evalua-
tions in the deductive DBS.SELECT Out

FROM SEC PRO B
WHERE In= 'silicon'

6. ACKNOWLEDGEMENT
to the conventional query expression:

I would like to thank W. Stucky and F. SchOnthaler for
SELECT EL PRO 82.Out-B the valuable discussions and remarks that helped to make
FROM EL PRO GEL PRO Bl, EL PRO B EL_PRO_82
1*HERE EL PRO BLIn-B - •siticoi" AND this paper possible.

EL-PRO_Bl.Out-B = EL_PRO_B2.In-B

5. CONCLUSION 7. REFERENCES

When processing knowledge by deduction on a large set Aho, A. V., and Ullman, J. D. "Universality of Data Re-
of $ven facts, a deductive relational database system per- trieval Languages." In Proceedings of the Sirth ACM Sym-
forms better than a logic based system, e.g., a PROLOG posium on Principles of Programming Languages, San An-
based XPS. This paper presented a unique concept for tonio, Texas, 1979, pp. 110-120.
the construction of such a DBS; namely, the deductive
extension of a relational database system. The deductive Bancilhon, F., and Ramakrishnan, R. "An Amateur's In-
extension enhances the expressiveness, the degree of con- troduction to Recursive Query Processing Strategies." In
sistency, and the efficiency of evaluation of conventional A. Nori (edj, Proceedings of the Fifth ACM SIGACT-
databases. Consequently, the deductive DBS is able to SIGMOD Symposium on Principles of Database Systems,
perform conventional database tasks as well as simple Cambridge, Massachusetts, 1986, pp. 16-52.

159

Bayer, R. "Database Technology for Expert Systems." In Kowalski, R.; Sadri, F.; and Soper, P. 'Integrity Checking
W. Brauer and B. Radig (eds.), ssensbasime Systeme, in Deductive Databases." In P. Hammersley (ed.), Pro-
GI-KongreB, Munchen 1985. Heidelberg: Springer- ceedings of the Thirteenth Conference on Vely Large Data-
Verlag, 1985, pp. 1-16. bases, Brighton, England, 1987, pp. 61-69.

Brodie, M. L., and Jarke, M. "On Integrating Logic Pro- PreiB, N. "Data Based Knowledge Processing." In A.
gramming and Databases." In L. Kerschberg (ed.), Pro- Heuer (ed.), Proceedingi of the Wo;*shop on Relational
ceedings from the First International Workshop on Expert Databases and their Ertensions, Lessach, Austria, 1987,
Database Systems, 1984. Menlo Park, CA: Benjamin/ pp. 71-105.
Cummings Publishing, 1986, pp. 191-207.

PreiB, N. "PROLOG-X86: Coupling Prolog with a Rela-
DIN. Deutsches Institut fik Normung "Datenbank- tional Database System." To Appear in Proceedings of
sprache SQL." (identical to ISO/DIS 9075, edition 1986), the Second Workshop on Relational Databases and their
Berlin, 1987. Extensions, Lessach, Austria, 1988.

Fagin, R. "A Normal Form for Relational Databases that Smith, J. M. "Expert Database Systems: A Database
is Based on Domains and Keys: ACM Transactions on Perspective." In L. Kerschberg (ed.), Proceedings from the
Database Systems, Vol. 6, September 1981, pp. 387-415. First International Wod€shop on Expert Database Systems,

1984. Menlo Park, CA: Benjamin/Cummings Publishing
Fagin, R., and Vardi, M. Y. "The Theory of Data De- pp. 3-14.
pendencies -- A Survey." IBM Research Labomtoo:, San Stonebraker, M., and Rowe, L. A. "The Design of Post-
Jose, California, 1984. gres." In C. Zaniolo (ed.), Proceedings Of ACM Confe-

rence on Management Of Data, Washington, D.C., 1986,
Gallaire, H.; Minker, J.; and Nicolas, J. M. "Logic and pp. 340-355.
Databases: A Deductive Approach." ACM Computing
Surveys, Vol. 16, June 1984, pp. 153-185. Ullman, J. D. "Implementation of Logical Query Lan-

guages for Databases." ACM Transactions on Database
Henschen, L. J., and Naqvi, S. A. "On Compiling Systems, Vol. 10, September 1985, pp. 289-321.
Queries in Recursive First-Order Databases." Journal of
the ACM, Vol. 31, January 1984, pp. 47-85.

Karszt, J. "Datenbank-Pascal: Ein ausbaubares Daten-
banksystem nach einem Entity-Relationship-Model fur
Personal-Computer-Anwendungen." Dissertation, Institut
fur Angewandte Informatik und Formale Beschreibungs-
verfahren, University of Karlsruhe, 1984.

160

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1988

	DEDUCTIVE EXTENSION OF A RELATIONAL DATABASE SYSTEM
	Nicolai PreiB
	Recommended Citation

	tmp.1422397449.pdf.WYsCR

