
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1985 Proceedings International Conference on Information Systems
(ICIS)

1985

Learning from Prototypes
Vasant Dhar
New York University

Matthias Jarke
New York University

Follow this and additional works at: http://aisel.aisnet.org/icis1985

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1985 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Dhar, Vasant and Jarke, Matthias, "Learning from Prototypes" (1985). ICIS 1985 Proceedings. 14.
http://aisel.aisnet.org/icis1985/14

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1985%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985/14?utm_source=aisel.aisnet.org%2Ficis1985%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Learning from Prototypes
Vasant Dhar and Matthias Jarke

Graduate School of Business Administration
New York University

ABSTRACT
Structured methods for the analysis and design of information systems have largely focused
on representations and control mechanisms for the outcomes of the design process. Proto-
typing methods are more sensitive to critiques during the designprocess itself but do not pre-
serve knowledge about it explicitly. In this paper, a systems arc iitecture called REMAP is
presented that accumulates design process knowledge to manage systems evolution. To
accomplish this, REMAP acquires and maintains dependencies among the design decisionsmade during a prototyping process. It includes a model for learning general design rules from
such dependencies which can be applied to prototype refinement, systems maintenance, anddesign re-use.

Introduction ulated explicitly jy users or analysts. Second, when sys-
tems are developed in a piecemeal fashion following theThe process of large systems development is often itera- prototyping idea, analysts apply analogies to transfertive, involving continuous modifications to programs experience gainek! from one subsystem to "similar com-

before a "satisfactory" design emerges. Designers have ponents" of andther. Unfortunately, current develop-attempted to use aprotoryping approach whereby a work- ment methodologies preserve none of these aspects ofing prototype system is assembled quickly on the basis of process knowledge, making the process of prototypean initial assessment of a a problem situation, and then refinement and transfer of experience ad-hoc and sus-
refined repeatedly in response to critiques from users or ceptible to error
design personnel. While this approach may offer signifi-
cant advantages over "structured" approaches in terms It appears that the systems development process wouldof earlier user involvement, a major drawback is that the benefit greatly if the dependencies among decisons couldinitial construction of the system and the process of suc- be represented e plicitly, and more importantly, if thecessive refinement can be haphazard, failing to take cog- general basis for them could be extracted during thenizance of the rationales for the initial design decisions course of analysi6 and development. This could lead to aand for successive changes in these decisions. more systematic| modification of prototypes and im-

proved maintenance of full-blown implementations. Per-This paper employs a case study in the oil industry to haps more importantly, this knwledge could be used toanalyze these shortcomings in some depth, and presents identify analogous features of different systems pre-an artificial-intellignece based architecture called cisely, enabling the use of cumulative learning for sub-REMAP (REpresentation and MAintenance of Process sequent designs in the same general application area.knowledge) which enhances the iterative design proce-
dure typical for the prototyping approach by the capa- The paper is orgapized as follows: Section 2 begins withbility of preserving knowledge about the design process, a brief description of the prototyping process; detailed
and applying this knowledge in analogous design situa- real-world exam#les are then used to show the need totions. maintain process knowledge. A formal model of our

approach is presented in section 3, along with an over-The case study has revealed several types of process view of a partial limplementation of the REMAP archi-
knowledge that appear to be central to systems develop- tecture. Section]* provides a discussion relating thement. First, the design process consists of a sequence of model to previous work in systems analysis and artificialinterdependent design decisions. The dependencies intelligence. We conclude with a summary of possibleamong decisions are typically based on general applica- applications whi :h may benefit from the REMAPtion-specific rules; however, these rules are seldom artic- approach.

114

The Need for Process Knowledge diagram is a network where the nodes represent pro-
cesses, externkl entities, or data stores (files), and
directed arcs represent the data flows from one node to

REVIEW OF PROTOTYPING another. Proce6s nodes are frequently called "bubbles";
each bubble ca be decomposed into a lower-level data

Prototyping is an iterative systems design and develop- flow diagram. 4Bubbles at the bottom level have asso-
ment methodology. Figure 1 provides a highly simplified ciated mini-specs on which the program designs are
illustration of the main steps involved (Jenkins, 1983).
After an initial design has been established, the method

based. Data flow and data store information is managed

follows an assessmenUrevision/enhancement cycle of
in data dictionaries. Figure 2 shows the notational con-

working prototype refinement. Driven by user critiques,
ventions used i this paper.

this cyclic process continues until a satisfactory system,
the "operational prototype", has been inplemented

Part of the strudtured top-down design of OC's Sales sub-

(right branch of Figure 1). However, if systems require- system is illustmted in figures 3 through 6. Figure 3

ments change subsequently (dashed line in Figure 1),the
shows level 0 of the system. In this example, since Sales

system leaves the steady state achieved in the "opera-
comprises the entire system, this can also be used as the

tional prototype" and enters a new refinement cycle. In tem to external entities. Figures 4,5, and 6 are data flow
context diagran; which depicts the relationship of the sys-

large systems development, where a single user cannot
completely understand the reprecussions of requested

diagrams for 1*els 1 and 2 of the sales system. Level 2

changes, designers frequently employ a "protocycling„ (fgures 5 and 6) are the bottom level decompositions ofthe bubbles 1 and 3. Each of the bubbles at this level have
approach which permits user critiques at multiple levels
of a quasi life-cycle approach such as the data flow dia-

an associated Mini-spec (not discussed here).

gram or the program specification level (Balzer et al.. 1' We now illustrate the problem of design adaptation using
1982). three scenarios.i Each requires a different extent of modi-

Prototype refinement as well as requirments modification
fication to the oiiginal design, and illustrates the need for

frequently involve a reconsideration of the design devel-
a different aspect of process knowledge. All of the

oped in earlier cycles. It is the purpose of the REMAP
examples involte external requirements changes (dashed

approach reported in this paper to accumulate the knowl-
line in Figure 15 but similar problems also occur during

edge gained in every cycle in order to focus and facilitate the refinement ycle.
later revision and enhancement steps of the cycle.

SCENARIO 1:,THE ROLE OF
A CASE STUDY GENERAL AND SPECIFIC

KNOWLEDGE
In order to establish a context for the discussion, we shall
use an example obtained from the case study of a very "London Sends Formatted Invoices". In the original
large systems analysis and design project, The problem design, the difference between the New York and Lon-
involves the design and subsequent maintenance of a don invoices was that the former were accessable jbr-
series of sales accounting systems for different products maned whereas the latter were received unformatted, on
of an oil company, here referred to as OC. OC sells oil magnetic tape. Hence, a minor "convert" operation was
and natural gas-based products with different character- required to bring the inputs into a format required by the
istics to its subsidiaries and to outside customers in dif- "verify and cori·ect on line" operation (bubble 1.1).
ferent parts of the the world. Sales Accounting at OC's |
Corporate Headquarters requires generating various Asa simple. change, suppose that the London office
integrated reports for purposes ofaudit and control. Input begins to send dorretly formatted invoices on magnetic
to Sales Accounting is based on invoices generated from tape to central headquarters. What kinds of design modi-
transactions in a number of offices in the U.S. and fications are required?
abroad.

It is clear that the change is not at a high enough level to
For the sake of readability, the system representation is affect the more abstract parts of the design in figure 4.
restricted to the Structured Analysis level (DeMarco, However, at the next lower level (figure 5), the "con-

1978; Gane and Sarson, 1979). Note, however, that the vert" bubble is hot required anymore since the London
problems described here, and our approach to solve invoices should pow proceed directly for verification.
them, are not restricted to this level but appear in any I
prototyping situation. In order to be able to assimilate this minor change, the

system must kno that in the existing design, the convert
Systems designs are described in terms of data flow dia- bubble is dependent on the existence of the dataflows rep-
grams at various levels of abstraction. A data flow resenting Londolll invoices. On recognizing that London

115 |

DEVELOP THE INITIAL

PROTOTYPE SYSTEM

»L
\ n*L p99TGTYpE

4

IS THE

/OPERATIONAL PROTOTYPE (/WORKING
ANHANCED

J! PROTOTYPE SATISFACTORY? PROTOTYPE

A

«) t- PROTOTYPE It

WORKING

4.
REVISE AND ENHANCE
THE PROTOTYPE

Figure 1

Application System Prototype Model
(Adapted from Jenkins, 1983)

invoices are now not unformatted, it should be able to SCENARIO 2: THE ROLE OF
detect the fact that conversion is unnecessary. Further, it ESSENTIALITY
should also know that in general, formatted invoices
proceed directly for on-line verification. Based on this, "London and Tokyo Will Not Sell Fuels Anymore".
it should direct London invoices to the "verify and cor- This represents a more radical type of change than the
rect on line" operation. first. Intuitively, it seems clear that there are likely to be

design changes as well as major related modifictions in
In summary, we have used two types of knowledge in several section of the code. In this case, lack of invoices
understanding the existing design and the effects of from Tokyo obviates the need for a manual add and edit
changes to it: general knowledge about domain-specific operaton at level 1 (a manual input operation was re-
constraints (i.e., unformatted invoices require conver- quired because these werepaper invoices). However, the
sion), and specilicknowledge about the purpose of exist- auto load and edit is still required because New York
ing design objects in the form of rationales for existing invoices must still be processed.
design choices (i.e., the existence of the convert bubble
in figure 5 depends on the existence of unformatted This example illustrates the idea of essentiality in design;
invoices). the tokyo invoices dataflow was an essential input for

116

C.X

(libit> : EXTERNAL COMPUTER SYSTEM

(1*bel> : INTERNAL COMPUTER SUBSYSTEM

(1*bll) : DATA STORE / FILE

_3
EXTERNAL BUSINESS ENTITY(libel)

<lebel) zATA now

Figure 2

Data Flow Diagram Conventions

manual add and edit. In a more general sense, thepu,pose those operatons is not deleted since it is shared with the

tlcas:ul,5f,Z eitt: ot e at n easdti: =¢142% auto load and edit process.
slips, codes and expenses) were auxilia,y, and in fact i
dependent on Tokyo invoices.1 In effect, bubble 1 stays SCENARIO 3: THE ROLE OF
(although some of its lower level components corre- ANALOGY
sponding to London operations are removed) while |
bubble 3 must be deleted. The revised level 1 dataflow "The Venezuela Office Will Sell Fuels". This corre-
design is shown in figure 7. spends to a hidh level change that is likely to induce wide-

spread change's into the existing design. First, some addi-
It should also be noted that although the manual add and tions must be made at level 1. The types of changes,
edit operation is no longer necessary, some of the lower however, dep6nd on the nature of the sales invoices from
level operations associated wth it are still required in Venezuela. If the invoices are computerized, an input
order to process New York invoices. At the program- into bubble 1 |is required whereas paper invoices would
ming level, this means that the code corresponding to call for introducing a manual add and edit operation.

117

1-1 111 '11

PRODUCT TOKYO SALES
SoppLY OPERATIC]5

11 11
ACCOUNTS COX]ORATE

RECEIVABLE CONTROLLIR

SAU)
ACCOUNTI=

C.1 :Tmn C 4
LONDON GENERAL

LEDGER
Arrnt :,STEM

C.2 C 3
MEV YORKMA]KITIE

Figure 3

Sales Accounting Systems Context Diagram

118

1-! mscornnPAYABLE SLIP
SALES -SJOPERATIONS

TOKYO
1 CODES 1

NEWTORK ASSIGNED CODES REFERENCE
SALES INVOICES FILES TOKYO DIRECT

SALES INVOICES
<C.3 \ n, RATE

/1:EW YORK NEW YORK DIRECT STANDARD 3[INVOICING 1 SALES INVOICES EXP FILE MANUAL\ SYSTEM / ADD AWD AUDIT TRAIL LOGEXPINSE
- ATDOW STATISTICAL AUTO RATE I EDIT 4SALES INVOICES LOAD -LI
, M tfm= EDIT ¥IwvotcES CORPORATEAND SALES

CONTROLLIR
/ LONDON \ SALES INVOICE DATABASE

INVOICING LONDON ASSIGNED 8
SYSTEM SALES INVOICES REFERENCI

SALES FILES
INVOICESERROR EXCEPTION

REPORT REPORT
11 CODES

AUDIT TRAIL
COMORATE 4 LOG 4
CONTROLLER OPERATIONAL

2 REPORTING

CORRECT |
AND SALES INVOICES ,

CHANGE CHANGE CORRECTIONS/CHANGES I
21 NOTICE ACCOUNTING

EXCIFTI ON REFORM REPORTS
SALES

OPERATIONS
OFERATIONS IJ

REFERINCE - r REPORTS
FILES SALES v j CORa DRATE

OPERATIONS CONTROLLER

Figure 4

Fuels Sales (Initial)

119

5 LONDON STATISTICALSALES INVOICES
LONDON

IN'VOICING
SYSTEM U/171

LONDON DIRECT i
SALES INVOICES CONVERT

LONDON ASSIGNIA'*---//SALES INVOICES SALES INVOICE
DATABASE

A

ISTANDARD EXPENSE
FORMATTED IFIlt
LONDON · INVOICE
SALES EXPENSE RECORDPLATE

REFERENCE
FILES

/ NEW YORK 1 EW YORK 1 ICODESA INVOKING j DIRECT /1 2 1 -1.3
\ SYSTEM ,< SALES C VERIFY W

AND VERIFIED SALES -/ CREATE
-M CORRECT j 7 IWOICE

NEW YORK ASSIGNED , ON-LINE A 1 RECORD
L ALIa,IN CIL-_-*. VIRInCATION

NON- \5° /INSERTION NON-STANDARD
IVERIFIED \ COSTS
 SALES

AUDIT TRAIL /-15™\/iT\ FILE
PRODUCEPRODUCE

29
EXCEPTION
REPORTREPORT

ERROR EXCEPTION
REPORT REPORT

I V

Figure 5

Auto Load and Edit

120

SALES INVOICE
DATABASE

DISCOUNI PAYABLE
A

SLIPS ISTANDARD EXPENSESALES
OPERATIONS |FILE

IMVOICE\ EXPINSI RECORD*TE
REFERENCE
FILES

-1.1
r/§11 I CODES

TOKYO DIRECT , VERIFY WTOKTO SALES INVOICES AND VERIFIr D SALES J CREATE \
CORRECT m INVOICE
ON-LINE 1 RECORD /

VERIFICATION ,,'4-
LOG

/INSERTION NON-STANDARD

4 Ns· COSTS

AUDIT TRAIL
FILE .33

i PRODUCE \
EXCEPTION
REPORT

EXCEPTION
REP ORT

Figure 6

Manual Add and Edit

121

NEW YORK ASSIGNED CODES REFERENCE
SALES INVOICES FILES

,/C.3 1
t EV Y 0= 1 NEW YORK DIRECT . STANDARD
1 INVOICING j SALES INVOICES Elf MLE
 SYSTEM)

AUTO RATE

LOAD
AND

SALES INVOICE DATABASE

11EFERENCE
SALES FILES

ERROR EXCEPTION INVOICE
FLEPORT REPORT

-L
CODES

AUDIT TRAIL
CORPORATE 4 LOG 4

CONTROLLER
OPERATIONAL

2 REPORTING

CORRECT
AND SALES INVOICES

CRANGZ

2.1. NOTICE
CHANGE CORRECTIONS/CHANUES 1 ACCOUNTING

REFOMTS
SALIS

OPERAT ONS ODES
,

OPERATIONS -L
RETERENCE 4 REPORTS
rILIE SALES CORPORATE

OPERATIONS CONTROLLER

Figure 7

Fuels Sales (Modified)

122

Similarly, at the next lower level, the operations, Remap: An Architecture for Process
required would depend on other, more detailed features
of the invoices (i.e. are they formatted, unformatted, Knowledge
elc.).

It is apparent fro the examples that application-specific
This example illustrates the use of analogy in reasoning knowledge plays a key role in reasoning about a design.

about a new situation. Design additions at the various This raises an important question, namely, how is this

levels depend on how "similar" the Venezuela invoices knowledge to be acquired by the system?
are to existing ones, and the design ramifications of these I
similarities and differences. This type of reasoning re- In most projects involving th construction of a knowledge

quires a system to carry out an elaborate match between based system, the system builder constructs the model of

design parts the system currently knows about, and a new expertise by firAt specifying a representation, and then
design in order to draw out their analogous features. accreting the kn6wledge base in accordance with the pre-

Specifically, it requires some notion of what the impor- cepts underlyi g the chosen representaion. Unfortu-

mnt dimensions are in the analogy being sought. In this nately, large scale application developments take place in

example, relevant attributes in drawing the analogy are a wide variety)f domains that may have little in com-

the medium of the invoices, that is, whether they are com- mon. This uniqueness of each application situation dis-

puterized or manual, and whether they are fonnaned. courages construction of a knowledge base that might be

Once the important features are realized, the design rami- valid for a reasonable range of applications.
fications become clear. 1

If a knowledge based system is to be able to support the
process of systems analysis and design, it must have an

SUMMARY: THE NEED FOR initial representational framework, and mechanisms to

TELEOLOGICAL KNOWLEDGE augment this framework with domain specific knowledge
that captures the purpose of design decisions and rela-

In walking through theexamples, we have attached fairly tionships amopg them. As more is learned, it should be
rich interpretations to the various design components that possible to use this process knowledge to reason about

are implicit in the design. These interpretations derive design changA, and draw analogies in extending a design

from the pu,pose of the application which cannot be to deal with lew situations.
determined form looking at the resulting design alone.
Since the design is an artifact (Simon, 1981), its teleo- A knowledge based tool needed to support such a process

logical structure is imposed by the designers' conception requires four, major components:
of the problem. This conception may change repeatedly
during the evolutionary design process. In other words, 1. a classification of application specific "concepts"

there is no a priori "theory" relating problems to de-. into a tkxonomy of design objects, and mechanisms

signs; rather, the rationale for a particular design follows for elaborating this structure as more knowledge is

from a subjective world-view of the designer. acqui d by the system;

If a program is to be able to reason about the types of 2. a representation for design dependencies and

changes illustrated in the examples, it must have a formal mechtinisms for tracing repercussions of changes

representation for the knowledge that refiects the teleol- in dedign;
ogy ofthe design. Because such highly contextual knowl-
edge about a potential application area is impossible to 3. a learning mechanism for extracting general bases

design into a system a priori, the knowledge must be for dependencies among design decisions made by

acquired by the system during system design. To do this, the analyst;

the program must be equipped with mechanisms that 1
enable it to learn aobut design decisions in an application 4. an analogy based mechanism for detecting simi-

area that it knows nothing about at the start of the design. laritibs among parts of similar subsystems. This

It must then apply this growing body of acquired knowl- mechanism should make use of the classifications

edge to reason about subsequent modifications to an in the generalization hierarchy to draw analogies

existing design, or to construct new designs based on new between systems parts.

but similar requirements. In the following section, we 1
describe some broad aspects of an architecture called In the foll6wing subsections, we develop a knowledge

REMAP that is geared toward the extraction and manage- representa,ion for this process knowledge, and present a

ment of the process knowledge involved in systems anal- model ofihow it might be extracted and used by the

ysis and design. REMAP system architecture.

123

REPRESENTING DESIGNS USING OBJECT TYPE
STRUCTURED OBJECTS typename : dataflow

child__of : generic_object
The REMAP model centers around design objects. The parent__of : unknown
designer defines insmnces of such objects, whereas the components: (parLof : dataflow;
REMAP system maintains a genemh'zan'on hiemrchy of medium : < string >;
object types. The structure of an object type definition in from, to : process)
the hierarchy is as follows: operators : (redirect, nostart, noend)

OBJECT TYPE OBJECT TYPE
type_name : < string > type_name : transform
child_of : < set of object types > child_of : generic object
parent of : < set of object types > parenLof : (process, external, datastore)
components : < set of slots > components: (inputs, outputs : < set of dataflows >)
operators : < set of procedures/methods > operators :()

The "child-of' and "parent-of ' components position an OBJECT TYPE
object type in the generalization hierarchy. "Compo- type_name : process
nents" slots describe typical aspects of an object instance child_of : transform
of the given type. As an example, consider the initial top- parenLof : unknown
level definition of a generic object type: components : (part_of : process)

operators : (expand, noinput, nooutput)
OBJECT TYPE

type-name: generic_object OBJECT TYPE
child_of :() type_name: datastore
parenLof : unknown child__of : transform
components: (identifier : < string > parent_of : unknown

type : < string > components: (data_structure : < set of data
because_of: < set of objects >) elements >)

operators : (define, remove) operators : (define_structure, noinput, nooutput)

This object type has no parent since it is at the top of the OBJECT TYPE
hierarcy, and its children are yet to be specified. The type_name : external_entity
"because-of ' slot defines the mison d'etre of an object child-of : transform
instance and will be further discussed in the next subsec- parent_of : unknown
tion. components:()

operators :()
A "generic" object provides very little structural infor-
mation about its semantics. It is therefore useful to spec- External entities could be further broken down into data
03, subtypes where additional slots are defined in order to source, data sink, and interactor. The slot value "un-
capture the meaning ofobject instances of such a subtype. known" refers to the fact that the slot values should be,
This can be represented using a generalization hierarchy but have not yet been, defined.
of object types as shown in figure 8. Some instances of
dataflows and transforms used in the three scenarios of As an example of instance ddnitions, consider the fol-
section 2 are shown in figure 9. lowing description of the "London" external entity and

one of the sales invoice dataflows generated by it (cf.
In principle, the system could begin with the generic figure 9).
object type and then learn all subtypes from scratch.
Since such a procedure would be rather cumbersome for {identifier : London
the designer, the system should be provided with a small type . external_entity
initial knowledge base. In the Structured Analysis because_of:()
example used throughout this paper, this consists of the inputs :()
definition of object types corresponding to data flow dia- outputs : (London-direct-sales-invoices,
gram conventions. The five major components are de- London-assigned-sales-invoices,
fined below (cf. figure 8): London-statistical-sales-invoices)

124

GENERIC
OBJECT

DATAFLOW TRANSFORM

DATASTORE EXTERNAL ENTITY pROCESS

DATA.SOURCE INTERACTOR DATAJIUX

Figure 8

Initial Object Type Hierarchies

125

DATAFLOW

I'ST I]ET INST

IMST

LONDON 11¢0]REaI NDON STATISTICAL-\ Mtv YORK ASSIGNED
SALES INVOICES __-<

--- ----
SALES INVOICES SALES INVOICES

LONDON DIRECT EW T ORI DIRECTSALES INVOICES SALES INVOICES

nAMSTORM

IS·A 15-A IS-A

< EXTERNAL)DATASTORE PROCESS
i ENTITT /

INST.

NEW YORK < LONDON \ / AUTO LOAD

YLAND EDIT--- ---

Figure 9

Initial Generalization Hierarchy

126

[identifier : London-direct-sales-invoices In order todemonstrate the usefulness of this dependency
type . datafow network, let us reconsider the first scenario where the

because_of : (London) London invoicek become formatted. In this case, the con-

part_of :() vert operation in no longer required since its essential

medium : magnetic tape support elements have been eliminated. Similarly, in the

from : London second scenari6 where the London office does not sell

to : auto-load-and-edit} fuels anymore! no more invoices are generated from
London. Agaid, no conversion operation is required.

Similarly, instances corresponding to other object types However, theautoload andedit operation is still required

can be defined. Note, that the instance definitions have all because New York invoices are still to be processed.

the slots defined in their immediate type, as well as inher-
iting those of their supertypes. In general, an existing dependency network such as the

one in figure 10 can be used to assess certain ramifica-
This representation allows us to define data flow dia- tions of a chahge, a process commonly referred to as
grams completely. It is also possible to perform "syntac- beliefmaintenance (Doyle, 1978). In the above example,

tic" consistency checks using information in the hier- conversion is not required for London invoices. How-

archy. As a simple example, if a bubble has no inputs, it ever, the depkndency network does not indicate how

must be removed or new inputs must be defined. How- these invoices should be treated because this knowledge

ever, application-specific information is not maintained is not express ed in the network. In order to assess the

in this representation. For instance, if London invoices complete repircussions of the change, additional knowl-
become "formatted", ramifications of this change can- edge of a more general nature is required. For example,

not be assessed using the knowledge in the hierarchy to realize thdt formatted London invoices should be

alone (i.e., without using the "because-of' slot). To treated like New York invoices (and should proceed

reason about such situations, additional knowledge struc- directly for v6rification), it is necessary to know that in

tures are required, which we describe below. general form'atted invoices are verified directly. This
knowledge can then be used to reason about all object
instances corlesponding to formatted invoices.

REPRESENTING RATIONALES

Design decisions at the Structured Analysis level define
bubble and dataflow objects. The rationale or justijica- RULE FORMATION
non of a decision consists, in turn, of other decisions. To
illustrate, consider figure 10 which shows a network of Dependency information as indicated in figure 10 is rep-
dependencies among a few of the dataflows and bubbles resented in terms of object instances. For example, the

considered so far. Specifically, the auto-load-and-edit is auto-load-anki-edit (bubble 1) is justifiedby the two kinds
justified by the existence of New York and London of datafiow objects originating from London. An object

invoices, which form its "set of support" (Doyle, 1978) type corresdonding to this invoice dataflow might have

or the cumulative reason for its existence. The convert slots such #s data, amount, or office originating the
operation is justified because London sales invoices are invoice. However, not all slots are relevant to the justifi-

not formatted correctly. Similar dependencies can be cation. For xample, the auto-load-and-edit is performed
identified for other decisions. because the invoices are computerized, regardless of

their other features. lf the system is to be able to learn

The complete dependency network corresponding to a anything fr m existing designs, it must also have access

design may be viewed as incorporating the overall pur- to the general rules on which the dependencies have been

pose of a set of design decisions. The general form of a based. In effect, the rules differentiate the important fea-

dependencyis: tures of thd relationship from the incidental.

(< decision > <justification >) REMAP allows the designer or user to generalize spe-
cific depenliencies to design rules during the process of

where < decision > and <justification > are both object system analysis and design. This requires articulation of

instances. In REMAP, each design object maintains a the justifications for choices, as well as of the general
cumulative set ofjustifications in its because-of slot that basis for th6 justifications. A more crucial issue however,

constitutes its set of support. is whatjbnn these rules might take.

127

NEW YORK

NEW TORK DIRECT AUTO LOAD
SALES INVOICES AND EDIT
(romMATTED>

LONDON ASSIGNED LONDON DIRECT
SALES INVO]CES SALES INVOICES
(UMFORMATTED> (UNFORMATTED>

CONVERT

VE]Un AND
COIRECT ON-LINE LONDON

LEGEND· A ll : B 15 JISTIFIED BY A

Figure 10

A Dependency Network

On the other hand, the rule can be expressed in terms of types. In looking at the different invoices-which are
objects and their slot values, for example: instances of type dataflow-it is apparent that d(#erent

attributes are relevant in describing the various instances.
{dataflow For example, paper invoices might be distinguished by

medium: computerized} = = > verify on line their color, an attribute that is irrelevant for describing
computerized invoices. Thus, most slots in the extended

{dataflow . dataflow type definition would remain unfilled for many
medium: paper} = = > perform conversion objects.

If the medium slot has not been defined before, the type This situation can be expected to occur in the early stages
definition of dataflow can first be extended to include it. of the system analysis process, when the system is still
Nevertheless, there is a major problem with this scheme. unfamiliar with the application area. New design deci-
Recall that so far, the generalization hierarchy for data- sions could be added and instantiated as instances of an
flows is extremely shallow including only one type, existing type although they differ qualitatively from other
namely the dataflow (cf. figure 9). Adding additional instances, and might therefore be better off described in
slots for each rule will soon yield very complex object terms of a different bundle of attributes.

128

When instances vary sufficiently, it is an indication that mode. Here, the designer may want to change or add to

the generalization hierarchy must be extended to include certain parts ofthe design. Again, feasibility and possible

more specific subtypes. For example, extending the gen- learning opportunities induced by the change can be
esalization hierarchy in figure 9 would involve creating -studied in the belief maintenance and learning modes.

two new typeS, namely paper-invoices and compu- The interaction of these components of the REMAP

terized-invoices and re-classifying the existing instances architecture is d¢scribed below in "Structured English."
in light ofthis new classification. Further, computerized-
invoices can then be broken down into magnetic-tape- Add-mode: 3
invoices and on-line-invoices if appropriate.2 The recon- t. DOWHILE user is entering object instances.

figured generalization hierarchy would then appear as in 2. Accept object instances.
figure 11, and in contrast to the rule representation 3. IF enabling conditions of a rule are satisfied by
above, the rule could then be stated in terms of the newly instances I
defined object types. THEN 3a. Create dependencies generated by

rule.
To illustrate, such rules might appear as: 3b. Invoke belief maintenance.

ELSE 3c. Accept dependency.
[computerized-invoices} = = > perform auto-load- 3d. Invoke Learn-mode

and-edit
Learn-mode:

[paper-invoices} = = > perform manual-add-and-edit 1. Extract essential features (slot values) of objects.
2. IF slot value is an object instance

It should be possible to use these rule structures in two THEN 2al Note its type
ways. First, if an operation such as auto-load-and-edit is ELSE 2b. IF needed slot does not exist
part of a design and has one or more computerized inputs , THEN Create-new-type-mode.
coming into it, these should be added automatically to the 3. Propose generalization (rule) in terms of the iden-
operation's set of support. Second, if no such inputs are tified or defined types.
in the design, the rule can be used to compare "ex-
pected" reasons for the operation to the justifications Create-new-typk-mode:
provided by the user, or to suggest changes in designs 1. Record cont xt (slot values) of object instance.

that appear "inconsistent" with the knowledge in the 2. Define new data type corresponding to relevant slot
rules.3 of this instance. Establish an IS-A link to parent-of

of the object instance.
3. Create a new instance of the new data type.

OVERALL CONTROL STRUCTURE 4. Assign slot Values to the new instance correspond-
ing to the old instance.

In order to incorporate new knowledge and to reason 5. Destroy the,old object instance.
about user critiques, the model requires an overall con-
trol structure that enables it to switch among design sup- Critique-mode.
port and knowledge acquisition modes. Figure 12 pro- 1. Accept user critique in the form of negation to
vides a high-level transition network representation of existing decision, or addition to design.
the main modes. 2. IF negation

THEN invoke belief maintenance
The add mode is the usual starting point for a new sys- ELSE invoke Add-mode.
tem. The designer can add a set of proposed new design
objects and their associated dependencies. The belief
maintenance mode is responsible for checking the con-
sistency of proposed changes with respect to existing

Relationship to Previous Work
object types and rules. The learning mode interacts with
the user in order to establish a generalization of depen- The REMAP concept attempts to integrate the abstrac-

dencies that are not derivable from existing rules, pos- tion concepts of life-cycle methods with the support for
sibly adding new rules and specifying new object types. user critiques provided by prototypes. It is therefore
The system then moves into the belief maintenance mode appropriate to briefly point out the capabilities and lim-
in order to check the compatibility and consequences of itations of each of these parent areas, as compared with
the newly acquired knowledge. the REMAP approach.

If there is an existing design to be improved, or reused Probably the most advanced ofthe life-cycle methods are
for another system, the system will start in the critique the Structured'Methodologies. They offer semi-formal

129

DATAFLOW

15-A

/' COMPUTERIZED \ PAPER
4 INVOICES / INVOICES

IS-AIS-A

,/AG.TAPPh DISK FLOW

 FLOW
INST.

INST-

 /INST. i
--%

/[ONDON DIRECT\ ; /fONDON STATISTIC \ NEW YORK ASSIGNED)

 ALES:INVOICB:/ <.SALES INVOICES-/ (---MLES,NvmE /
INST. INST.

nONDON ASSIGIE W YORK DIRECT
 SALES INVOICES \ ALES INVOICE ,/

- ----

Figure 11

Reconfigured Generalization Hierarchy

NEW ADD / / BELIEF LEARNING
DESIGN ANALOGY < MAINTENANCE

DESIGN I CRITIQUE
REVISION

Figure 12

State Transition Network

130

representational tools (data flow diagrams, data diction- tion-specific knowledge in terms of an "axiomatic"
aries, HIPO's, etc.) for top-down strategies in each ofthe model that can propagate certain types of changes to the
life-cycle stages (Zachman, 1982; DeMarco, 1978; Gane object level where design decisions are represented. This
and Sarson, 1979; Yourdon and Constantine, 1978, Orr, approach is similar in spirit to Davis' (1979) idea of using
1981). These methodologies were developed in the late "meta models" to maintain and reason about object level

1970's as a generalization of the earlier work on struc- knowledge contained in the MYCIN system (Shortliffe,
tured programming. 1976). Several other knowledge base management com-

ponents of AI systems havebeen structured along similar
If sufficient time is available for a careful design, life- lines.
cycle methodologies result in well-documented original
designs from which the programs are constructed. How- While this apprbach has proven successful in situations

ever, subsequent modifications are typically documented where the scope of applications known to the meta-model

only at the program level whereas the design documents can be defined in advance, it has fundamentallimitations

remain unchanged. After a few such changes, the pro- if the application domain is not known a priori. Under
gram bears little resemblance to the original design. As such circumstances, the high level model, even in defin-
a response to this problem, some researchers have pro- able, may become general to the point of missing the sub-

posed preserving a computer-based representation of the tleties involved in an application area. What is needed
design. For example, PLEXSYS (Konsynski et. al., instead, is a mechanism by which the high level model
1984; Kotteman and Konsynski, 1984) uses a hierarchy itself can be synthesized on the basis of experience in the
of so-called "dynamic metasystems" to describe designs application area. Consequently, REMAP follows an
and detect inconsistencies between the existing design "open systems" approach (Hewitt, 1985) that begins by

and proposed changes. representing knowledge about relationships among in-
stances in a domain in terms of dependencies, and gener-

Another practical response to the design maintenance alizes someofthese into a growingcorpus of rules. In this

problem has been the introduction of design and pro- way, the process knowledge involved in building an
gramming standards in most large organizations. Such application can be used for incremental modification of

standards include naming conventions, design methodol- designs, and where possible, to acquire knowledge in
ogies, structured programming rules, and documentation terms of application specific rules.
guidelines. They could, in principle, serve as a knowl-
edge structure for supporting designers and programmers Methodologically, our approach has much in common
(Jarke and Shalev, 1984) but are currently applied man- withthe Programmer's Apprentice (PA) project (Shrobe,
ually, as guidelines for programmers and designers or as 1979; Waters, 1982; Rich, 1984). The PA is an intelli-
evaluation tools for supervisors. It may be difficult to gent system that is designed to assist expert programmers

define the set of required knowledge (and thus standards) with the maintenance of large programs. Like REMAP,
in advance since requirements and design strategies fre- the PA uses a dependency network of choices in order to
quently evolve over time. represent and reason about evolving programs. How-

ever, there are two important differences. Our focus is on
None of these improvements adequately address funda- the more abstrhct parts of the design as opposed to the
mental criticisms voiced against life-cycle methods by level of coding; More importantly, because of the diver-
the advocates of prototyping. Since they involve a long sity of applications, we are unable to assume a fixed
development time frame, working systems are available library of "cliches" or programming constructs, but
for user critique only at a late stage when large parts of must build up this knowledge on the basis of application-
the design have been completed and user feedback be- specific designs. However, once our system has con-
comes ineffective (McCracken, 1980; Martin, 1982). structed and organized a library of cliches, they could be

used to reason about "analogous" situations in a similar
Here lies a major advantage of the prototyping approach manner as the PA.
(Jenkins, 1983). However, without an appropriate envi-
ronment, prototyping can result in very brittle programs,
especially in complex systems in which the consequences Conclusionsof a change cannot be completely understood by a single
user or designer. As a consequence, recent development
efforts have attempted to provide a workbench environ- Some key aspects of the REMAP architecture have been

ment (Reiner et al., 1984) which is equipped with high incorporated in a small system intended to test their feasi-

level knowledge that can be used to reason about the ob- bility. The system contains an implementaion of the ob-

ject domain. ject type hierarchy and an initial knowledge base about
data flow diagrams. Knowledge is represented using

In the general systems arena, Kotteman and Konsynski FLAVORS (Moon and Weinreb, 1981), a LISP-based
(1984) have taken the approach of representing applica- utility that supports object-oriented programming. The

131

current implementation has the capability to accept data ization hierarchy should be extended versus those where
flow diagram object instances, to generalize dependen- little is to be gained by extension? Although we have yet
cies to rules, and to expand the generalization hierarchy. to address this question adequately, it appears that a rea-

sonable heuristic for deciding when to extend the gener-
The approach proposed in this paper suggests a novel alization might be based on the need for additional slots
way of thinking about systems evolution which empha- to differentiate newly defined object instances.
sizes the designer's assumptions andjustifications, rather
than generally valid "meta-theories" of design. This 3This assumes that the rule is "correct". An existing rule
reorientation is of particular importance in the presence that turns out to be inaccurate, leads to a "contradiction"
of multiple designers since many apparent "logical con- in which case the rule can be discarded by the belief
tradictions" may arise as a result of different perspec- maintenance machinery, or refined interactively.
tives, each based on a different set of assumptions.

From a practical viewpoint, the emphasis on design REFERENCES
changes is of particular importance since it is estimated
that at least 50% and probably as much as 70% of soft- Balzer, R., Dyer, D., Fehling., and Saunders., 1982.
ware costs go into maintenance. Yet, problems of design Specification-based computing environment, Pro-
evolution have not been adequately addressed by pre- ceedings 8th Very I rge Data Base Conference,
vious methodologies, whereas they constitute the focus Mexico City, pp. 273-279.
of our approach. The work reported here is considered a CGI Systems Inc., 1984. Presenting PACBASE. Sys-
first step towards a process-oriented design environment tems Development Software from CGI, Pearl River,
which is expected to have important applications in at New York.
least three areas. Davis, Randall., 1979. Interactive Transfer of Exper-

tise-Acquisition of new inference rules, Artijicial
First, the prototyping method of systems development is Intelligence, No.4.
enhanced by a learning component that prevents the repe- De Marco, T., 1978. Strucmred Analysis and System
tition of design errors and supports a better formal under- Spec(#cation, Yourdon Press, New York.
standing ofthe system's domain. Second, the undesirable Dhar, V., and Quayle, C., 1985. An Approach to Depen-
practice of just updating program documentaion in the dency Directed Backtracking Using Domain Spe-
maintenance phase of the software life cycle is replaced cific Knowledge, in Proceedings of the 9th Joint
by a methodology for maintaining consistent designs; International Conference on Artificial Intelligence
furthermore, the method also provides guidance in the (UCAO, Los Angeles, California.
propagation of proposed changes. Doyle, Jon., 1978. A Truth Maintenance System, AI

Laboratory Memo 521, MIT.
Finally, the analogy-based reasoning component of the Gane, C., and Sarson, T., 1979. Strucmred Systems
method supports the reuse ofcode and designs in systems Analysis: Tools and Techniques, Prentice-Hall.
that are similar to existing ones. It also provides the de- Greenspan, S., 1984. Requirements Modeling: A
signer of such systems with access to the rationales for Knowledge Representation Approach to Software
the original design, thus permitting the encapsulation of Requirements Definition, Ph.D. Thesis, Technical
required design differences and the identification of suit- Report CRSG-155, University of Toronto.
able alternatives. This controlled "cloning" capability is Hewitt, Carl., 1985. The Challenge of Open Systems,
particularly valuable in organizations that have to con- BYTE Magazine, April.
struct a large number of functionally similar systems for Jarke, M., and Shalev, J., 1984. A Database Architec-
different divisions. If process knowledge is not main- ture for Supporting Business Transactions, Journal
tained automatically, such organizations have to rely on of Management Information Systems 1, 1, pp.
the experience and loyalty of a few key individuals. 63-80.

Jenkins, Milton A., 1983. Prototyping: A Methodology
for the Design and Development of Application Sys-
tems, Working Paper Number 227, Graduate School

NOTES of Business, Indiana University, April 1983.
Konsynski, B., Kotteman, J., Nunamaker, J., and Stott,

1This illustrates the "non-uniform" nature of dataflow J., 1984. PLEXSYS-84: An Integrated Develop-
diagram entities, that is, relationships among "uncon- ment Environment for Information Systems, Journal
nected" entities, and the design consequences that can of Management Information Systems, volume 1,
emerge due to changes to them. number 3, Winter 1984-85.

Kotteman, J.E.., and Konsynski, B.R., 1984. Dynamic
2This raises the following question: how might the pro- Metasystems for Information Systems Develop-
gram differentiate among situations where the general- ment, Proceedings of the 5th International Confer-

132

ence on injonnation Systems, Tucson, Arizona, pp. Rich, Charles., 1984. A Formal Representation for Plans

187-204. in the Pro rammers Apprentice, in Brodie, M.L.,
Martin, J., 1982. Application Development Without Pro- Mylopoloils, J., and Schmidt, J.W. (eds.), On Con-

grammers, Prentice-Hall. ceptual Mhdeling, Springer, pp. 239-269.
McAllester, D., 1982. Reasoning Utility Package, AI Shrobe, Howaki.,1979. Dependency directed reasoning

Laboratory Memo 667. for compl6x program understanding, Ph.D. Dis-
McCracken, D.D., 1980. A Maverick Approach to Sys- sertation, MIT.

tems Analysis and Design, Conference on Systems Shortliffe, E.H., 1976. Computer-Based Medical Con-

Analysis and Design: Foundation for the 1980s. sudrations.· MYCIN. New York: American Elsevier.

Michie., 1982. The State of the Art in Machine Learning, Simon, H.A.,)981. 7110 Sciences of the Art#icial, 2nd
Introductory Readings in Expert Systems, D. Michie ed., MIT Press, Cambridge, Massachusetts.
(ed.,) Gordon and Breach, United Kingdom. Stallman, Ricllard, and Sussman, Gerald., 1977. For-

Moon, David, and Weinreb, Daniel,, 1981. Lisp ward Reasoning and Dependency-Directed Back-
Machine Manual, MIT Al Lab. tracking ip a System for Computer-Aided Circuit

Newell, Allen., and Rychener, Mike., 1978. An Instruc- Analysis, Art{#cial InteUigence, volume 9, Number
tible Production System, in F. Hayes-Roth and D. 2, pp. 135-196.
Waterman (eds.), Panern Directed Inference Sys- Waters, Rich#d., 1982. The programmer's apprentice:

rents, Academic Press. knowledge based program editing, IEEE Trans-
Orr, K., 1981. Structured Requirements Spedication, actions on sojhvare engineering, number 1.

Orr and Associates. Winston, P.H., 1982. Learning Structural Descriptions
Protsko, L.B., Sorenson, P.G.., and Tremblay, J.P., from Examples, in 77:e Psychology of Conputer

1984. Automatic Generation of Data Flow Diagrams Vision, P.H. Winston (ed.,) MeGraw Hill, New
from a Requirements Specification Language, Pro- York.
ceedings 5th International Conference on Injorma- Winston, P.H , 1979. Learning and Reasoning by Anal-
tion Systems, Tucson, Arizona, pp. 157-171. ogy, CACM, volume 23, Number 12, pp. 689-703.

Reiner, D., Brodie, M., Brown, G., Fridel, M., Kram- Yourdan, E., |and Constantine, L.L., 1978. Structured
lich, D., Lehman, J., and Rosenthal, A., 1984. The Design, Yourdon Press, New York.
Database Design and Evaluation Workbench ,
(DDEW) Project at CCA, Database Engineen'ng,
volume 7, number 4, December 1984.

133

An Investigation of the 66Tables Versus Graphs" Controversy
in a Learning Environment

Gerardine DeSanctis
and

Sirkka L. Jarvenpaa

University of Minnesota
Management Sciences Department

271 19th Avenue South
Minneapolis, MN 55455

(612) 373-5211

ABSTRACT
The study of computer graphics as decision aids has become popular among MIS researchers
in the last several years. However, this area of research, like many others in management
information systems, has been plagued with methodological problems and contradictory find-
ings. In light of these difficulties, the current study examined the "tables versus graphs" con-
troversy within a learning environment. Seventy-five MBA students were exposed to one of
three experimental treatments and asked to develop financial forecasts for fictitious companies
over five experimental trials. Following their forecasts for each firm, participants were pro-
vided with feedback on the quality of their decisions. The information presentation treatments
were as follows: (1) traditional spreadsheet (tabular), (2) graphs using "standard" scaling,
and (3) graphs using "nonstandard" scaling. Results suggest that, although graphics may
initially demonstrate no advantage over tables, they do show an advantage if decision makers
are repeatedly exposed to the novel format and given feedback on their performance. Learn-
ing will occur even when improper scaling is used. The implication is that the effectiveness
of graphics as decision aids depends on practice. Researchers are encouraged to employ
repeated measures, or longitudinal, designs when examining the tables-versus-graphs con-
troversy.

Introduction display methods. Similar conflicting results have been
found when graphs and tables are compared for their

How to best display data to decision makers has been a effects on interpretation speed, user preference, and de-
concern to MIS researchers since Mason and Mitroff cision confidence (see Ives, 1982; MacDonald-Ross,
(1973) first noted the importance of "presentation 1977). Of a total of 7 studies dealing with the impact of
mode" in the design of information systems. A large por- graphics on decision quality, only one reports graphs to
tion of this research effort has centered on comparing the be superior to tables; 3 conclude that tables are superior
relative effectiveness of tables and graphs for the support to graphs, and 3 have found no difference between the
of problem solving activities in business settings. Interest two formats (see DeSanctis, 1984).
in "tables versus graphs" comparisons has intensified
during the past few years as sophisticated, easy-to-use Why is it that computer graphics are not proving to be
graphics technology has become incorporated into deci- more useful as tools for supporting decision making?
sion support systems. The underlying assumption in Several investigators who have found graphs to be fairly
these studies is that graphics should facilitate clearer per- ineffective in improving decision quality have postulated
ception of data relationships and trends over tables. that learning must occur before graphical output becomes

meaningful to people (e.g., Lusk & Kersnick, 1979;
The empirical research dealing with the effectiveness of Vernon, 1946). Business data traditionally has been dis-
graphs as decision aids has been quite controversial. played in tabular form. Consequently, decision makers
Several studies have found graphs to be easier to interpret simply lack the experience needed to properly interpret
than tables; others have found the reverse; and still others novel formats. This argument implies that practice in
report no difference in interpretation accuracy for the two viewing graphs might improve their meaningfulness to

134

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1985

	Learning from Prototypes
	Vasant Dhar
	Matthias Jarke
	Recommended Citation

	tmp.1422243228.pdf.ewo9f

