
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2010 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-1-2010

A study on Mobile Requirements Elicitation by Boilerplate A study on Mobile Requirements Elicitation by Boilerplate

Requirements Specification Language Requirements Specification Language

Sundar Gopalakrishnan

Guttorm Sindre

Follow this and additional works at: https://aisel.aisnet.org/iceb2010

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2010 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2010
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2010?utm_source=aisel.aisnet.org%2Ficeb2010%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

A study on Mobile Requirements Elicitation by Boilerplate
Requirements Specification Language

Sundar Gopalakrishnan, Guttorm Sindre, Department of Computer and Information
Science, Norwegian University of Science and Technology, Trondheim, Norway.

E-mail: sundar@idi.ntnu.no, guttorm.sindre@idi.ntnu.no

Abstract
With the increasing use of mobile information
systems, mobile devices are being used for
gradually more complex tasks. Therefore it is also
necessary to pay more attention to requirements
methods for such systems. One way of supporting
requirements engineering is through templates for
how to write requirements, often guided by
taxonomies. In this paper we propose templates
especially for mobility-related requirements, based
on a combination of so-called requirements
boilerplates as presented by Hull et al. and a
taxonomy of mobility-related requirements
presented in a previous publication by ourselves.
The proposed requirements templates are illustrated
by examples, and our work indicates that
mobility-related requirements specification may
benefit from the use of boilerplates as long as
natural language remains an important part of such
specifications.

Keywords
Mobility, taxonomy of mobility, Requirements
Specification Language (RSL), Boilerplate RSL,
requirements template.

1 Introduction
Requirements engineering [1] is an important task
in a system development project, finding out what
system to build, for instance as part of a contract
between customer and developer, and as a basis for
design and testing. A number of different
techniques have been proposed for the elicitation
and specification of requirements, ranging from
informal to formal, textual or diagrammatic, and
covering a lot of different perspectives, such as
object-oriented, process-oriented, rule-based,
goal-oriented, actor-oriented, etc. [2,3]. Some
techniques are generic, while others are targeted for
special system domains (e.g., [4] for e-commerce)
or for certain types of requirements (e.g., [5,6] for
security requirements).

With the increasing use of mobile information
systems, mobile devices are being used for
gradually more complex tasks – meaning that
challenges with uncertain goals, conflicting
requirements, and design trade-offs also become
bigger, mandating an increased attention towards
good requirements specification. Therefore it is
also interesting to investigate requirements

techniques specifically for mobile systems - would
such systems best be developed by specifically
targeted techniques, or by the same techniques as
used for requirements engineering in general?

In spite of lots of academic research on formal
and semi-formal requirements specification
languages, natural language remains - by far - the
most usual representation of requirements in the
software engineering industry, for instance in the
form of "The system shall..." requirements or
textual use cases [7], often written in plain word
processing or spreadsheet tools. It is therefore
important to provide tools that might support the
quality improvement of requirements written in
natural language, and this would also be an
interesting starting point for investigating specific
techniques for mobile systems requirements: How
to support better quality in mainstream textual
requirements for such systems?

In previous work we presented a taxonomy for
mobility-related requirements [8]. This taxonomy
tries to answer what different kinds of requirements
specifically related to mobility would typically
come up for a mobile information system, i.e., in
addition to other categories of requirements that are
well known from before (such as functional
requirements, security requirements, etc.). On the
other hand, the taxonomy hardly provides any
guidelines on exactly how to write these various
types of requirements [6,9]. A natural next step is
therefore to make some requirements templates
based on this taxonomy. A simple and common
sense approach to such templates are so-called
boilerplates as suggested in [10]. An example of
such a boilerplate and its usage could be (quoted
from the boilerplates webpage, [11]):
Example boilerplate:
 The <user> shall be able to <capability>

at a maximum rate of at least <quantity> times
per <time unit>.

Example instantiation:
<user> = order entry clerk; <capability> = raise
an invoice <quantity> = 10; <time unit> = hour

giving
 "The order entry clerk shall be able to raise an
invoice at a maximum rate of at least 10 times per
hour."

(end quote).

The current catalog of boilerplate templates at

[11] does not include any category specifically for

613

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

mobility-related requirements. The main research
questions for the current paper are therefore:
RQ1) Will the previously defined taxonomy for
mobility-related requirements lend itself to
refinement into boilerplates?
RQ2) Will the resulting boilerplates have any
advantages in supporting the elicitation and
specification of mobility-related requirements?

The rest of the paper is structured as follows:
Section 2 discusses related work. Section 3
summarizes briefly our existing mobility-related
requirements taxonomy from previous work.
Section 4 provides boilerplate adaptations from
repository for mobility-related requirements.
Section 5 provides some examples with mobility
boilerplates. Section 6 offers discussion and
concludes the paper.

2 Related Work

There are several ways to support quality assurance
of natural language requirements, by means of
guidelines or tools, either (i) to ensure high quality
of requirements while writing them, or (ii) after
they are written. In both cases, several underlying
means may be applied, such as recommended
guidelines [12], patterns [7] or templates [13] to
indicate how each requirement should be written,
or ontologies [14] and taxonomies [12,15,16] for
more in-depth recommendations on the semantical
content of requirements and what types of
requirements to include in a specification, as well
as various natural language parsing techniques,
either of pre-existing documents to elicit
requirements [17] or of the written requirements for
the purpose of analysis and validation [18].

The work presented here is naturally closest to
the boilerplates approach of [10], attempting a
similar style and simplicity of the templates. In
particular, it is inspired by some recent work [19],
which has taken place in the context of the EU
project CESAR [20]. However, CESAR looks at
safety requirements for embedded software, while
our work focuses on mobility-related requirements
in information systems, has investigated
adaptations to the boilerplates catalogue to specify
safety-related requirements. [19] is also much
more ambitious in that it has an underlying
ontology and a tool that can also be used for
suggesting requirements based on natural language
investigations of safety standards, while our work
is initially just a simple proposal to support the
writing of mobility-related requirements by means
of boilerplates, without any underlying ontology
[21]. The main novelty of our work, on the other
hand, is that it looks specifically at boilerplates for
mobility-related requirements, which to our
knowledge has not been done in any previous
works.

3 Taxonomy of mobility-related
requirements

Our existing taxonomy for mobility-related
requirements [7,22] is shown in Fig. 1, much
inspired by a similar taxonomy by Firesmith [15]
for security-related requirements. A central part of
both these taxonomies is the combination of
achievement levels and challenges, i.e., given some
challenge <X> the system should achieve <Y>. For
security the challenge might be a certain type of
attack (e.g., an intrusion attempt to the system) and
the achievement level something the system should
be able to do in this case (e.g., detecting or
preventing the attack). For mobility the challenge
might instead be that the user needs to travel e.g. at
high speed, and still the system needs to sustain a
network connection, give good navigation advice,
etc. In more detail, the proposed taxonomy includes
four categories of requirements:

- mobility requirements: purely specifying
some level of mobility, without indicating
design solutions. i.e., specifies mobility
challenging factors and mobility
achievement levels. Examples for mobility
challenge factors may be:
o the speed of movement needed (the

larger the speed, the more difficult it
might be to support the movement or
provide non-degraded service while
moving)

o the area / range of movement (the
larger the area, the more difficult)

Examples for mobility achievement levels
may be:
o ability to (actively) move. This could

be particularly relevant for embedded
systems, e.g., where a software
application is running an engine and
steering system, but less relevant for
enterprise information systems,
which is our main concern

o ability to facilitate movement. e.g.,
real-time positioning, mapping and
navigational services

- mobility-system requirements:
requirements associated with sub-systems
whose purpose is to support mobility. It
obviously depends on whether the system
needs to be in a particular network or not.
Examples may be:
o positioning system
o network scanning and acquiring

system (looking for available
networks)

o service scanning and acquiring
system (looking for available
services)

- mobility constraints: design decisions
ensuring mobility that have been lifted to

614

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

the requirements level. Examples may be:
o decision to use one specific standard

for mobile communication
o decision to use one specific type of

mobile equipment, or equipment
compatible to that

o decision to use one specific operating
system for mobile applications

o decision to use one specific network
system for safety/cost reduction

Fig. 1. Taxonomy of Mobility-related Requirements

- mobility data requirements: data

requirements associated with subsystem
which support data and mobility.
Examples may be:

o Limitation with the data network usage
o Altitude affects limitation of data
o Available and connections used
o Location

With this mobility taxonomy briefly described
above, we can see how requirements elicitation
techniques can be useful to elicit naturally the
mobility requirements in the following sections.

We discuss about the three possible
techniques among the available techniques and
provide initial analysis with related to mobility
requirements. This study work analyzes in depth on
boilerplate RSL since initial analysis provides the
boilerplate RSL having predefined repositories [11]
than other RSL techniques overlooked.

4 Refining the taxonomy into
boilerplates

In the following four sections we will discuss how
the various parts of our taxonomy as presented in
section 3 may be refined into boilerplates. To the

615

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

extent possible, it would be interesting to use
boilerplates as-is, maybe just adding clauses to give
more detailed support to requirements authors. But
in some cases it might also be necessary to
introduce entirely new boilerplates, in case the
existing ones do not cover our needs.

4.1 (Pure) Mobility Requirements

For the pure mobility requirements we have to face
two questions: what boilerplates to use for the
challenges and what boilerplates to use for the
achievements? Then, it will hopefully be
straightforward to combine these into templates for
complete requirement statements.

As for the challenges, the most obvious
candidates in the boilerplate catalogue [11] is a
BP63 “If <operational condition> and a number of
boilerplates with the phrase “while <operational
condition>”, namely BP36, BP39, BP43, BP44,
BP53, and BP65. The main motivation for having
so many seemingly similar yet differently
numbered boilerplates appears to be that they are
subclauses to other boilerplates related to different
quality criteria, such as rapidity, timeliness and
sustainability, as indicated in the rightmost column
in the table of boilerplates appearing when clicking
the “VIEW BOILERPLATE REPOSITORY” in
[11]. Anyway, the “if / while <operational
condition>” phrase can certainly be relevant for
mobility requirements too, but as such it gives only
limited support to the requirements author, since
there are many different kinds of operational
conditions that could come into play in mobile
information systems. Currently, the author only
gets the word “while” for free, the rest of the
operational condition will have to be written
manually for each requirement without any
particular guidance. More help could therefore be
achieved if we are able to identify typical
operational conditions that could be interesting for
mobile information systems and make more
detailed Mobility boilerplates (MBP) for these. So,
some possible subclauses (or sub-boilerplates) here
could be:
1. speed: related to the challenge of speed, the

operational condition might be specialized to
something like
MBP1: <way of moving> at a speed of
(maximum | minimum) <quantity> <unit>,

2. where way of moving could again be
instantiated to e.g. driving, walking, running,
flying a helicopter, riding a bus or train, etc.
So, an example requirement could start like
“While driving at a speed of maximum 100
kmph...” and then to be completed by some
achievement part (here for instance, “...the
application shall be able to give updated
arrival time estimates every minute.”. It could

be assumed that the word maximum would be
used more often than minimum, since the
challenge normally increases with increasing
speed, either when it comes to sustaining a
network connection, updating information
rapidly enough, forecasting the user's
position, or whatever.

3. range: related to the challenge of range, the
operational condition could be specialized to
something like
MBP2: in <named geographical area> |
along <route> | within <range> <measure>
from <location point> | within area covered
by <network operator>

- probably there are also other alternatives that
could prove interesting when we start looking
at a bigger number of example requirements
like:
"…more than <quantity> <unit>s from

<object>"
4. predictability: related to the challenge of

predictability, the operational condition could
be something like

 MBP3: moving according to <a
prescribed route> | deviating at most
<quantity> <unit> from <a prescribed
route> | …

Again, there are probably more
alternatives to be found when we look at
bigger example sets of requirements.

5. environment: here, the operational condition
could be
MBP4: in <terrain type> | indoors |
outdoors | in the air | on land | on water
|underwater | ... | in environments with
<certain condition>, where <certain
condition>
could again be noisy, crowded, highly
trafficked, or something else. Making various
templates also for this would probably be to
go too far – the user necessarily has to fill in
something for himself, too, as we cannot
guess in advance all different kinds of
requirements that might emerge.

6. network: related to the challenges of
identification and selection of networks,
outage, switching and supporting of the
networks could be
MBP5: to<identify network type> |3G |
EDGE | GPRS | network in <specific
network provider> |Telenor | Tele2 | ...
|where <network connectivity>
could be continuous, high speed connectivity
to the network…-the network user to fill
whether he needs continuous networking by
switching with networks like that.

7. But also some of these requirements could
already be satisfied by existing boilerplates,
e.g., requirements to be able to resume a task
after an outage or to transfer a session to

616

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

another device in case of device breakdown
might be satisfied by boilerplates BP32 +
BP34 as they stand now, e.g. "The user shall
be able to resume the session within 1 minute
from the network connection returns after a
breakdown".

8. device: related to the challenges in switching
devices could be
MBP6: switching from<device type1>
|IPHONE | IPAD |…| Notebook | to <
device type2> |IPHONE | IPAD |…|
Notebook |
- where the user switching his devices from
one to other portable devices

So, for these types of requirements, one

could investigate if mobility achievement types
could result in more detailed clauses for
<capability> in BP32 and for <action> or <entity>
in BP2, and challenge types could result in more
detailed clauses for <event>, e.g. low power |
power loss | return of power | poor network
connection | loss of network connection | return of
network connection | ...

For the mobility achievement types, there
is not necessarily a lot of new boilerplates needed.
For instance, "Provision" is just about providing
the same service as otherwise, with some mobility
challenge. So, it creates clauses related to the
mobility challenge, but for the mobility
achievement it should be possible to use existing
boilerplates. The same with providing degraded
service given some mobility challenge; the
requirement will normally be phrased in a positive
manner (e.g., what services which are still to be
provided, with what level of quality) so this will
appear like a normal provision requirement except
that what is provided is more limited than
normally, but this will be apparent by comparison
with the normal state requirement and does not
have to be mentioned explicitly in the reduced
service requirement.

More special are of course the ability to move
or the facilitation of movement, for both these there
could be more detailed clauses describing exactly
what kind of movement is needed.
• Ability (to move): related to the ability of

achieving movement, the boilerplate could be,
MBP11: The <product> shall be able to
<move>,
e.g., The robot should be able to move. Note
that this is different from BP2 "The <system
function> should be able to move <entity>",
which does not sound very natural here, e.g.,
the sentence "The robot engine should be able
to move the robot" sounds somewhat
contrived compared to the simpler sentence
above. In addition to just requiring the ability
to move, there could also be some conditions
for the movement. Notice that this is different

from the "while <operational condition>..."
clauses discussed earlier, e.g., "The robot
should be able to move at a speed of up to 10
meters per second" is entirely different from
"While moving at 10 meters per second, the
robot should be able to..." Hence, an
additional boilerplate could be

◦ MBP 12: The <product> shall be able to
<move> <condition for movement>,

where <condition for movement> could
again be expanded with clauses about speed,
range, predictability or environment as
discussed earlier, or also other clauses about
energy efficiency, avoiding collisions with
obstacles or coordinating the movement
with other moving entities.

• Facilitation (of movement): This should be
able to use BP32 or BP2, e.g. "The navigation
application shall be able to tell the driver a
proper route". However, the requirements
author could get additional support if this was
refined into some more detailed alternatives
specifically for facilitation of movement, such
as:

◦ MBP13: The <system function> shall be
able to inform <user> about <current |
predicted future location>.
Typically there might then be additional
data requirements to explain exactly what
information is wanted about various
locations; data requirements will be
discussed in section 4.4.

◦ MBP14: The <system function> shall be
able to provide <user> with <optimal>
directions how to <move> to <wanted
location>.
 Here, optimal could mean a lot of
different things, for instance the shortest
route or quickest route (which are not
always the same, depending on speed
limits, traffic congestion, etc.), the
cheapest route (e.g. if going with public
transportation) or simplest route (e.g.,
minimum number of switches, if there is
no direct bus from A to B) - or maybe the
safest route, say if some parts of a town
are more crime-ridden than others.

◦ MBP15: The <system function> shall be
able to warn <user> if deviating more
than <quantity> <length unit> from the
<optimal route>.

This will come into play for instance if the
user takes a wrong turn and the system has
car navigation functionality. The quantity
here would then indicate something about
the accuracy of the system. For the user it
might be a lot more helpful with a system
which gives a warning when the user is only
a couple of meters into the wrong alley -
when there might still be time to back to the

617

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

intersection and take the right turn - than a
system which does not discover the mistake
until the user has gone some hundred
meters. Even more helpful of course a
system which would even discover that the
car is in the wrong file, so that it could issue
the warning before the mistake has
happened (E.g., an audio message saying
"You need to get over to the right file as
soon as possible, your exit point is only a
mile ahead")

◦ MBP16: The <system function> shall be
able to provide the estimated arrival time to
<given destination> (updated every
<quantity> <time unit>)

• Resumption of service is relevant after e.g. a
network outage or device failure. Again, it
should be possible to use existing
boilerplates like BP2 ("The <system
function> shall be able to <action>
<entity>") in combination with for instance
BP42 ("...within <quantity> <time unit>s
from <event>), e.g., inserting "resume" for
<action>, "operation" for <entity>, and "the
network connection returns after a
breakdown" or "the device is rebooted after
a shutdown". Similarly, if the concern is not
how quickly you can get back in business
when the device or network is again
working, but how quickly you can work
from the time of the breakdown itself (e.g.,
using something else than the crashed
network or device), this could be achieved
using BP32 ("The <user> shall be able to
<capability>") in combination with BP34
("...within <quantity> time unit>s from
<event>"), e.g. replacing <event> with
"device shutdown" or "loss of network
connection", and <capability> with e.g.
"transferring his working session to another
device" or "...another network", possibly
also with some extra demands, e.g.,
"without any loss of data or context" (which
is, of course, quite ambitious, but could be a
requirement in certain applications where
the user's work is urgent and of high value).
So, this could be achieved by existing
boilerplates, yet again it could be valuable
to introduce new subclauses about resuming
operation instead of simply the generic
<capability> and about network or device
failure (or returning availability) instead of
<event>, to give better support to the user in
having ideas for relevant requirements for
mobile information systems. So, some
possible boilerplates here could be:

◦ MBP17: The <user> shall be able to transfer
the following work tasks: <list of work
tasks> to <other device> | <other
network>...

◦ MBP18: The <system function> shall be
able to resume the following operations:
<list of operations>...

◦ MBP19: ...within <quantity> <time unit>s
from (warning about low power | warning
about poor network | device shutdown |
network outage | device reboot | network
comeback)

◦ MBP20: ...with <max amount> loss of
<data> | <context>

Here, the most ambitious requirement would be to
fill in "zero" for amount in MBP20, but if this is
not achievable (or would be too expensive), one
could also go for something less ambitious, e.g.,
"max 5 minutes of rework due to loss of data".

4.2 Mobility-system requirements

Unlike the pure mobility requirements of section
4.1, which are composed of a mobility challenge
and an achievement level, mobility system
requirements can be any ordinary kind of
requirements (e.g., functional requirements), only
that they relate to subsystems which are there for
the sake of mobility. Examples could be
positioning systems, navigation systems,
movement detectors, network scanning and
connection components… etc. Thus, it is
reasonable to assume that these requirements can
be expressed using ordinary pre-existing
boilerplates, e.g. BP2 The <system function> shall
be able to <action> <entity>, which would work
fine for requirements such as “The positioning
function should be able to determine the device's
geographical position” or “The network scanner
should be able to find and identify all available
networks”. It could be possible to make more
detailed boilerplates containing various actions and
entities that would be particularly relevant for
mobile settings, but again it is a question about the
feasible level of detail, as it is hard to predict all
kinds of requirements that might come up here.
Moreover, since these requirements are in a way
more “normal” requirements, it makes more sense
to stay with the predefined boilerplates until they
are somehow proven insufficient.

Also, the specification of WHERE a
system capability is needed, which is highly
relevant for functional requirements for mobile
information systems, will be possible already with
the mentioned templates. For instance, using BP53
("While <operational condition>...") and BP54
("...the <user> shall be able to <capability>") - or
adding our previously mentioned refinements of
the operational condition, it would be possible to
write requirements like "While at the patient's
home, it should be possible for the home-care
assistant to record the patient's symptoms in the
system".

618

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

4.3 Mobility constraints

A constraint is e.g. some design decision which has
for some reason been lifted up to the requirements
level, for instance that a certain type of mobile
device or mobile operating system shall be used, a
certain type of user interface (e.g., smartphone
touch screen), a certain mode of communication
(e.g. audio), etc. Intuitively, the section on
Constraints on the boilerplates webpage would be
the most appropriate place to look for inspiration,
but the boilerplates found here are not necessarily
covering our needs. The templates here focus a lot
on “shall not” phrases, i.e. constraints in terms of
what the user or system shall not be allowed to do,
rather than constraints in terms of design decisions
made into requirements. Hence, some new
boilerplates might be needed here:
• MBP21: The <system | application> shall run

on <type of device or platform>
• MBP22: The inter-device communication shall

be able to use <some type of network or
protocol>

4.4 Mobility data requirements

Mobility Data requirements are requirements
about what data the system should be able to
handle, and could either have a semantic style
(defining what various concepts are, e.g., "A
customer shall be classified as a VIP customer if
and only if having made purchases worth at
least USD 100,000 per year for the last 5 years
and have never been more than 2 weeks late
with a payment") or a syntactic form explaining
what types of information is needed, with what
attributes, e.g., "The system shall handle
information about customers, including
customer name, billing address, delivery
address, phone no., and contact person name."
The boilerplate repository of [9] does not seem
to contain any templates fitting this need, but it
is easy to suggest some. For the syntactic style of
data requirement, the following could do:

• MBP31: The <system | application> shall

handle information about <entity>: <list of
attributes>

This, of course, would be the same whether the
system in question is mobile or not. Some
particular adaptations for mobile information
systems might be to make data requirements
dependent on mobile operation conditions:

• MBP32: While <operational condition>... the
<system | application> shall handle
information about <entity>: <attributes>

• MBP33: While <operational condition> ... the
<system | application> shall not handle
information about <entity>: <attributes>

For the semantic type of data requirement, a
possible boilerplate might be
• MBP34: <Concept1> shall be defined as

<concept2> if <condition>
This will be the same in a mobile information
system as in other information systems, and we
cannot see any particular mobile adaptations that
are obviously useful, so we do not discuss it any
further.

In Fig. 2, a prototype interface of Boilerplate
for mobility-related system is presented. So the
boilerplate practitioners can specify the
requirement attributes along with stakeholders and
associated capability so that the requirement can be
elicited.

Fig.2 prototype of boilerplate tool

5 Examples

To analyze the boilerplates provided in the
previous section, we consider a couple of cases
preferably, which are quite different, so that a
broader coverage is achieved in terms of testing the
boilerplates with different types of requirements.
So, there is one case possible where the product
itself is supposed to be able to move (e.g., some
kind of robot), another where the main goal of the
system is to facilitate movement by the user (but by
a device which is carried by the user, not moving
on its own accord), and finally one case which is
not so much about movement as such, but where
the user have to perform some information
processing tasks while on the move (e.g., the
home-care application). We shall see the home-care
application as an example than other two since this
example more close to IS field and provides easy
understanding regarding the scenario. The case is
described as below:

The work process within a home care unit,
offering practical help and home nursing care to its
clients, can be considered as potential case. In the
‘Mobile Care’-project [23], it is planned to better

619

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

support the mobile aspects of the home care service
by providing the employees continuous access to the
central health information system (software used in
PDA to log/receive info) and other relevant systems
from wherever they are using a combined
PC/PDA-solution. This is related to the ‘Wireless
Trondheim’-project [24], which is currently
managing and extending a mobile broadband
(WLAN) infrastructure for Trondheim. The shift
leader distributes patient visits on available
personnel in the morning meeting, each homecare
assistant then decides on the sequence of visits to be
made while still in the office. Then while driving to
the patient's home, the assistant prepares for the
visit by obtaining some information about the
patient (typically through an audio interface, to be
less disruptive for concentrating on the driving).
Normally, the patient only needs help with
day-to-day activities (e.g., shopping, cleaning,
taking the right amount of medication), but in case
there are some health complications that the
assistant cannot handle, a nurse is contacted. Using
a system called Gerica accessible by her PDA, the
home care assistant can log information about
patients on the go. If the health care assistant needs
further medical expertise he/she can request help
from the nurse at hospital through logging in
information via Gerica. The nurses at the hospital
get the request and provide further info/advice to be
followed by the healthcare assistant (HCA). Finally
the HCA finishes her job by reporting at the office.

The mobility-related requirements for this
home –care application can be listed as follows:

1. The home-care application in PDA should work
on the moving car at 80 KMPH. (MBP1)
2. The HCA shall be able to get briefing
information about the next patient while driving
within 2 km from the patient's home. (combining
BP32 and MBP2)
3. The car navigation system shall be able to
automatically warn HQ about delays while HCA is
driving in Trondheim municipality.(combining
BP32 and MBP2) .(e.g., if the HCA is caught in
slow moving traffic and therefore seems to be
unable to get to the next patient within a certain
time limit)
4. The HCA shall be able to transfer the following
work tasks: reporting of delays, recording of
patient status, recording of performed patient care,
to the backup device within 30 seconds of being
warned about low power. (combining MBP17 and
MBP19)
5. The patient status recording function shall be
able to resume operation within 90 seconds from
network comeback, with maximum 2 minutes of
rework due to loss of data. (combining MBP18,
MBP19, and MBP20)
6. The application shall run on all standard
smartphones and PDA platforms with a Norwegian

market share of at least 10% per 1.1.2011.
(MBP21)
7. The inter-device communication shall be able to
use both Telenor's and Netcom's wireless networks.
(MBP22)
 8. The mobile application shall handle information
about clients: name, address, medication needs,
dietary requirements, preferred visit times,
housekeeping assistance needs, personal hygiene
assistance needs, and shopping assistance needs.
(MBP31)
9. While driving within the Trondheim
municipality the mobile application shall handle
information about the road network: street names,
intersections, allowed driving directions, speed
limits, and any temporary information about
blocked or highly congested parts of the
roadmap. (combining MBP2 and MBP32)

10. While the mobile device is more than 5 meters
from the HCA, it shall not handle information
about patients (combining MBP2 and MBP33)

(Here it would of course be assumed that the
system at large still handles this information, i.e.
probably keeping it on a secure server somewhere,
but the mobile device being dislocated from the
HCA, one might fear that it has been stolen, lost or
forgotten somewhere, and some non-authorized
person has it in his/her possession, which makes it
a good idea not to be able to access any sensitive
info from the device. Note: for this to work, the
HCA might for instance have to carry yet another
small tracking device on his / her body, and the
mobile device would measure its distance to this
other tracking device. However, exactly how to
achieve this is a matter of design decisions, here we
only concern ourselves with the possible
requirement).

6 Discussion and Conclusion

Our first research question was whether our
taxonomy for mobility-related requirements would
lend itself to refinement into boilerplates similar to
those in the repository of the boilerplates webpage
[11]. Having worked through our taxonomy, we
find that mobility-system requirements and
mobility constraints can use existing boilerplates,
which is not surprising, since these categories of
requirements are pretty much like other system
requirements and constraints, only that the target
system is mobile. For data requirements, we found
no boilerplate in the repository, but it is easy to
suggest one. This boilerplate, however, contains
nothing that would be specific to mobility-related
data requirements. So probably, these could use
exactly the same boilerplate(s) as any other data
requirements. True, in mobile information systems,
the user's information need may depend on the

620

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

user's location and movements. For instance, with a
smartphone-based system for guiding tourists on
city walks, you would expect information about
certain attractions to become available when the
user gets close, e.g., "On your right hand side you
will now see the Modern Art Museum", followed
up maybe by more detailed information on opening
hours, ticket prices, special exhibitions that are on
right now, etc. However, data requirements concern
themselves with what data the system should be
able to handle, not so much with how these data are
acquired or how and when they will be presented,
which would be more dependent on functional
requirements and maybe usability requirements. In
this respect, it is reasonable to assume that
mobility-related data requirements should be able
to use the same boilerplate as data requirements for
non-mobile systems.

Our main effort with new or adapted
boilerplates has therefore been with the so-called
"pure" mobility-requirements, which combine a
mobility challenge and a mobility achievement
level. For the mobility challenge, we found that this
could use the "While <operational condition>"
clause already suggested in the boilerplates library,
but that the user could be given increased support if
we introduced a number of subclauses detailing
typical operational conditions that apply to mobile
systems, as indicated by the mobility challenge part
of our taxonomy. A fair question is of course
whether there is added value in introducing these
subclauses, instead of going with the already
available "While <operational condition>..."
clause, since a common advice is to keep things
simple. We believe that there could be a number of
advantages with the additional clauses:
• reduced writing time for requirements. The

pre-existing clause gives only one word for
free ("while") and the rest has to be filled in
the by user manually. With a boilerplates
based requirements tool offering a drop down
menu of subclauses to select from, the user
could get more words for free, and only have
to fill in a couple here and there. Still, this is
only a minor advantage; for a quick typer, the
time spent writing even a 50-letter operational
condition might not be much longer than
selecting a template from a menu and then
filling in 5 letters in a couple of places. And
anyway, the main usage of time in
requirements specification would seldom be
the time to type the requirements - the
difficulty rather lies in (i) finding the right
requirements, and (ii) formulating them in a
precise and understandable manner. Hence,
our next two benefits are much more
important:

• support for finding requirements. A drop
down menu of templates would not only work
for selection once you know what
requirements to include, but could also work
as a repository for ideas (e.g. to feed into a
requirements brainstorming session for a mass
market product) or as checklist (e.g., of
questions to ask the user / customer in an
interview or requirements workshop for a
bespoke product). For instance, seeing that
you have in the drop down menu templates
concerning the speed, environment and range
of movement, you know that you could ask
your customer questions like: "Do you have
any requirements concerning the speed /
environment / range of movement?” Of
course, the customer might provide the same
answers given a more general question like
"What are the operational conditions for this
application?", but chances are high that the
customer will forget something which might
have been remembered with the more detailed
list of questions prompted by more detailed
boilerplates.

• support for writing requirements in a
standardized way. Especially in projects
where a lot of people are collaborating, it may
be a problem that a lot of different writing
styles will be used for the requirements, and
various contributors to the requirements
specification use language differently, for
instance using different terms for the same
concepts (synonyms) or the same term for
different concepts (homonyms). This makes it
more difficult to compare them, check for
completeness, overlaps, and inconsistencies.
Boilerplates help reducing this problem, but
even with boilerplates, the words to be filled
in manually are still open for different styles
by different requirements authors. So, the
more detailed the boilerplate, with fewer
words to fill in manually by the requirements
authors, the smaller the problem with
different individual usages of natural
language. Hence, the more detailed
boilerplates can help writing more precise and
uniform requirements within a large project,
and also save the requirements engineers time
in wondering how to formulate each
requirement.

A typical counter-argument could be: What if the
proposed boilerplates are too constraining? What if

621

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

a mobile IS project comes up with requirements
that do not fit any of the new boilerplates we have
proposed, for instance concerning the <operational
condition>? Then, maybe a tool which insists on
using boilerplates will actually have given the
requirements engineers a harder time, rather than
helping them? However, the simple answer to this
is that if none of our new templates fit, it should of
course still be possible for the requirements author
to go with the more general "While <operational
condition>..." and simply type in the operational
condition himself. Hence, the analyst will get help
from the new boilerplates when these are relevant,
but can resort to simpler and more general
boilerplates if they are not relevant. This answer
the second research question, whether it is
reasonable to assume some advantage from the new
boilerplates. It must be noted, however, that so far
our approach has only been tried out on some small
desktop examples, and more substantial empirical
investigations are needed to make a sound claim
that there is really a benefit gained from this.
Hence, some obvious suggestions for further work
are as follows:

• Collecting all boilerplates (existing ones
and new/adapted ones) in one systematic
catalogue

• Implementing tool support for our
boilerplates, and then trying out this tool
in e.g. student experiments and industrial
case studies.

To achieve a prototype rapidly, it is probably best
to build it on top of an existing tool rather than
developing something from scratch. One possibility
would be to build it on top of DOORS, since the
boilerplate originators have already implemented
their approach with this tool. Another possibility,
which is maybe even easier to achieve quickly,
would be simply to implement it as macros in
Excel or a similar spreadsheet tool. This may sound
a little weird since spreadsheets are not dedicated
requirements tools, but actually spreadsheets are
used a lot in industry practice for documenting
requirements, so a spreadsheet implementation of
boilerplates might have good chances for industrial
take-up, since companies would then not have to
deviate much from their current practice to try out
the tool in their projects.

References

[1] Kotonya, G. and Sommerville, I.:

Requirements Engineering - Processes and

Techniques, Wiley, 1998.
[2] Van Lamsweerde, A.: Requirements

Engineering in the Year 00: A Research
Perspective, In: Proc. ICSE'00, IEEE.

[3] Nuseibeh, B. and Easterbrook, S.:
Requirements Engineering: A Roadmap, In:
Proc. ICSE'00, IEEE.

[4] Gordijn, J. and Akkermans, H.: Value Based
Requirements Engineering: Exploring
Innovative E-Commerce Ideas, Requirements
Engineering 8(2): 114-134, 2003.

[5] Sindre, G. and Opdahl, A.L.: Eliciting
Security Requirements with Misuse Cases,
Requirements Engineering 10(1): 34-44,
2005.

[6] Pavlovski, C.J. and J. Zou, Non-functional
requirements in business process modeling, in
Proceedings of the fifth on Asia-Pacific
conference on conceptual modelling -
Volume 79. 2008, Australian Computer
Society, Inc.: Wollongong, NSW, Australia.

[7] Denger, C., Berry, D.M., and Kamsties, E.:
Higher quality requirements specifications
through natural language patterns. In: Proc.
International Conference on Software:
Science, Technology and Engineering,
Herzlia, Israel, 4-5 Nov. 2003.

[8] Gopalakrishnan, S. and Sindre, G., A Revised
Taxonomy of Mobility-Related
Requirements, In Proc. International
Workshop on Management of Emerging
Networks and Services (MENS'09),
St.Petersburg, Russia, 12-14 Oct, 2009

[9] Ohnishi, A. Software requirements
specification database based on requirements
frame model, in Requirements Engineering,
1996., Proceedings of the Second
International Conference on. 1996.

[10] Hull, E.C.,, Jackson, K, and Dick, J.
Requirements Engineering, 2nd ed., London:
Springer Verlag, 2004.

[11] Dick, J. http://www.requirements
engineering.info/ (website supplementing
[8]), last updated April 2006, last accessed:
12 Oct 2010.

[12] Improving the quality of use case
descriptions: empirical assessment of writing
guidelines. Phalp, K.T., Vincent, J., and Cox,
K. Software Quality Journal 15(4):383-399,
2007.

[13] Robertson, J. and Robertson, S.: VOLERE:
Requirements Specification Template,
Technical Report Ed. 6.1, Atlantic Systems
Guild, 2007.

[14] Kaiya, H. and Saeki, M. Using domain
ontology as domain knowledge for
requirements elicitation. In: Proc. 14th
International Conference on Requirements
Engineering (RE'06), IEEE, Minneapolis,
USA, 11-15 Sep, 2006.

622

Sundar Gopalakrishnan and Guttorm Sindre

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

[15] Firesmith, D.G. Common Concepts
Underlying safety, security, and survivability
engineering. Technical report
CMU/SEI-2003-TN-033, Carnegie Mellon
Software Engineering Institute, 2003.

[16] Firesmith, D.G., A taxonomy of
security-related requirements. In: Proc.
International Workshop on High Assurance
Systems (RHAS'05), Paris, France, 29-30
Aug, 2005.

[17] Goldin, L. and Berry, D.M.: AbstFinder, a
prototype natural language text abstraction
finder for use in requirements elicitation,
Automated Software Engineering
4(4):375-412, 1997.

[18] Gervasi, V. and Zowghi, D. Reasoning About
Inconsistencies in Natural Language
Requirements. ACM Transactions on
Software Engineering and Methodology
14(3):277-330, 2005.

[19] Reichenbach, F., Stålhane, T., and
Omoronyia, I. Ontology-guided requirements
and safety analysis. In: Proc. 6th
International Conference on Safety of
Industrial Automated Systems (SIAS 2010),
Tampere, Finland, 14-15 June 2010.

[20] URL: www.cesarproject.eu, accessed on 10th
Oct 2010.

[21] Veijalainen, J., Developing Mobile
Ontologies; who, why, where, and how?
IEEE, 2007.

[22] Gopalakrishnan, S. and Sindre, G.,
Taxonomy of Mobility-Related
Requirements, In Proc. Int'l conference on
Interoperability for Enterprise Software
Applications (I-ESA'09), Beijing, China,
20-22 Apr, 2009.

[23] URL: http://research.idi.ntnu.no/trimaks,
accessed on 10th Oct 2010.

[24] URL: http://tradlosetrondheim.no/, accessed
on 10th Oct 2010.

623

	A study on Mobile Requirements Elicitation by Boilerplate Requirements Specification Language
	tmp.1582368265.pdf.N3m6n

