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ABSTRACT  

Iteration is an essential element of software development processes. Software methodologies like agile and waterfall 

use the term ‘iteration’ in several different ways for improving either the quality or the functionality of the software. 

There are no studies, however, which have thoroughly analyzed and characterized these forms of iterations and their 

differences as they are enacted in organizations. In order to reveal these iterative forms we conducted a study of two 

mid-sized software development projects at a large global Fortune 100 corporation – one agile project and one 

waterfall project. Using advanced event sequence-analytic techniques based on detailed process data, our analysis 

reveals that agile and waterfall iterations differed in design and development phases due to different sources and 

types of iterations.  

Keywords 

Software process, iterations, agile, waterfall. 

INTRODUCTION 

There is a rich body of prescriptive literature touting the advantages of agile methodologies and offering guidance 

for managing iterations(Beck, Beedle et al. 2001; Cockburn and Highsmith 2001). However, even as the methods 

have been touted for more than a decade, and while some empirical research exists that compares elements of agile 

methodologies with those of other approaches(Boehm 2002; Larman 2004), there is little empirical work that 

compares the actual day-to-day activities across different espoused methodologies.  

This is problematic, because we know that the ‘espoused’ method is never fully reflected in the performative 

practices of software design (i.e. method use). It is for this reason that ostensive (i.e. a method prescribed) method 

specifications have been criticized for their inability in effectively guiding the software development process 

(Lindvall, Basili et al. 2002; Damian and Chisan 2006; Dybå and Dingsøyr 2008). To wit, investigations into the 

impacts of using particular methods show significant variance in the way any methodology is being enacted across 

contexts (called “situational method adaptation”(Russo, Wynekoop et al. 1995; Sillitti, Ceschi et al. 2005). 

Therefore, though researchers have observed varying outcomes (such as quality and cost) associated with alternative 

methodologies, they have investigated less systematically as-is performative practices to understand what are the 

enacted differences between methodologies.  

An important area of difference among methodologies involves the way they attend to the inevitable iterations that 

arise in the software development process. Certainly modern agile methods are iterative – they are typically touted 

for their attention to iteration(Larman 2004). However, so are more traditional methods such as waterfall(Royce 

1970). Theoretical and empirical work both find that all software development is quite highly iterative, but this 

iteration is shaped differently across different methods(Thummadi, Shiv et al. 2011). Since all software development 

is iterative, it is not the presence of iteration that influences project outcomes, but instead the granularity, visibility, 
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and locus of control in iterations that result in varying design outcomes(Berente and Lyytinen 2005; Berente and 

Lyytinen 2009). However, beyond pointing out some patterns of difference, there is no detailed, empirically-driven 

work aimed at detailing out what iterations mean in practice between agile methods and more traditional methods. 

To get at the differences between two broad software development methodologies (i.e., agile & waterfall) it is 

important to explore what different types of iterations there are, what are the sources for these different iterations, 

and what are the impacts of different forms of iteration. Thus we ask: 

What are the sources, impacts, and types of iteration? Further, how do iterations differ across agile and 

waterfall projects?  

We address this question by first looking at the sources, impacts, and types of iteration evident in the literature. Then 
we investigate how one global organization adopted (and adapted) both the waterfall and agile methods for very 
similar software development projects. Specifically, we investigate the iterative nature of the enacted agile method 
and its use across the different phases of a software development project and how it compares to a traditional 
waterfall project. Since the two processes take place in the same organization and involve similar scopes, time 
frames, and team compositions, we treat them as a sort of natural experiment that is rife for theory 
generation(Shadish, Cook et al. 2002). We use a sequence analytic technique to investigate the differences, sources, 
types, and impacts of iteration across the two projects.  
 
Overall, the study contributes to software design in two ways: 1) it compares Markov chain of iteration states 
between two processes as to detect the probabilities of iteration and its scope and occurrence in a given process and 
2) it carries out an exploratory qualitative study to detect sources, types, and impacts of iterations in agile and 
waterfall processes. The remainder of the paper is organized as follows: in the next section, we review the literature 
on iteration, followed by a presentation of our method. Then we discuss the empirical study, describe the two 
projects, and report the findings. We conclude with a discussion of our findings. 

ITERATION IN SOFTWARE DEVELOPMENT  

In the early 1970’s, software development methodologies were proposed to mitigate the failure of the large software 

development projects and the “spaghetti code” that resulted from unstructured development practices(Boehm 1988). 

Royce’s (1970) waterfall method is perhaps the most well-known of these early structured methods (although there 

were a variety of others such as SDLC, see (Davis and Olson 1985). Although Royce explicitly characterized 

waterfall method in a way that allowed for iteration between stages, the method has since been typically conceived 

of as a sequential model indicating that once a stage was complete the development team has to move onto 

subsequent stages. In practice, of course, development activities are messy and non-linear in contrast to how the 

method conceives them (Parnas and Clements 1985); hence iteration is inevitable even when following a sequential 

concept of waterfall method(Dowson, Microelectronics et al. 1987). In response to what was found to be an 

unrealistic sequential view of methods, a variety of scholars have emphasized the inevitability of iteration in system 

development. They have proposed methods for explicitly dealing with this iteration(Wirth 1971; Basili and Turner 

1975; Brooks 1975). This explicit accounting for iteration led to a variety of methodological innovations – including 

prototyping-based methods(Alavi 1984); rapid application development(Martin 1991); the spiral model (Boehm 

1988); and a host of others. The most recent body of literature that pays particular attention to iterations in software 

processes are known as “agile” methods(Cockburn and Highsmith 2001). 

 

Agile methodologies, at their very root, explicitly attend to the inevitability of iteration in software development and 

focus more on proper management of the iteration (Boehm 1988; Laplante and Neill 2004). Iterations in agile 

methods are managed using a variety of relatively novel techniques such as sprints, pair-programming, and time 

boxing – and they make also intensive use of traditional design techniques such as prototyping and refactoring 

(Miller 2001; Abrahamsson, Salo et al. 2002). However, the idea of iteration a multidimensional construct(Berente 

and Lyytinen 2005) and there is on-going debate about what “iteration” in software development is(Boehm 1988; 

Abrahamsson, Salo et al. 2002). In this section we would like to (re)define what iterations are and how they can be 

characterized specifically in the context of software development and related methodologies.  

Iteration defined  

The verb ‘to iterate’ is derived from a Latin word itero which means “to repeat” or “say again”(Riddle 1847) which 

emphasize repetitive behavior as an essential element in iteration(Berente and Lyytinen 2007). In the context of 
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software development iteration can be considered as a (1) cyclical process of generating and testing the code (Beck 

2000; Berente and Lyytinen 2007) or “repetitions of phases of development due to rework” or repetitive “subphases 

within a main phase”(Iivari and Koskela 1987; Berente and Lyytinen 2007) or any looping operations of activities 

occurring either in (2) prototyping  or 3) problem-solving activities (Berente and Lyytinen 2007). Here we use the 

term “iteration” to refer to repetitive activities in software development so as not to confuse with the sprints of agile 

process(Berente and Lyytinen 2009) 

Sources of iteration 

The common sources of iterations in software process are 1) inadequacies in the specifications or assumptions; 2) 

changes in the requirements; 3) or errors in the design (Dowson 1987). The inadequacies in specifications about 

software design can be found in the initial specification documents like Software Requirements Specifications 

(SRS). The requirements in the initial stages of the development process are very uncertain as the “problem-

solution”(Cheng and Atlee 2007) domain is quite blurred which results in iterations of the specifications artifacts. 

The next source of ‘iterations’ occur due to changes in the requirements. Requirements are never static and new 

information from the development process sheds light on the additional features that need to be catered in realizing 

the ultimate goals of the project(Smith and Eppinger 1997).  The final source of ‘iterations’ occur due to errors in 

the code and design artifacts.  Errors are by far the most common sources of iterations and hence software 

development teams equip quality control teams to improve the quality of the software.  

Types of iteration  

Iteration in software development can be classified into four categories based on the nature of the iteration 

(Humphrey 1986; Dowson 1987). Functional iterations are carried out for improving the functional elements of the 

design. Users realize the need for changes in the systems only when exposed to the new environment. Further 

inadequate understanding of the functional elements can lead to iterations early on in the process. Second types of 

iteration are performance iterations which are meant to improve the performance of the system. Developers and 

users realize the performance deficiencies only after the deployment stages. These iterations are unavoidable and 

can result in budget overruns and project delays. Thirdly quality iterations occur as a result of non-compliance to the 

requirements or the use cases. Code inspection and testing of the software can indicate the need for quality 

iterations. Fourth combined/mixed iterations occur as a result of combining performance/functional deficiencies and 

quality issues. Mixed iterations can result in complex management issues and large scale software failures(Dowson 

1987; Humphrey 1994; Humphrey 1995). 

Impact of iteration 

Iterations play a vital role in software development process and their impact is inevitable in the form of consumption 

of resources and time (Dowson, Microelectronics et al. 1987; Dowson 1987; Eppinger 2001). Organizations 

encourage iterations in the form of feedbacks for identifying critical inconsistencies in the current software(Dowson 

1987). After certain stage, iterations can reach a state when they can be called as “too much” as they don’t 

significantly improve the existing software systems and are only marginally beneficial. Good iterations can boost 

the performances and productivity while bad iterations can totally derail the projects; hence bad iterations need to be 

weeded out for improving the success of software projects(Eppinger 2001). Further, iterations are perceived as 

“slack” when excessive rework and backtracking occurs(Dowson 1987). Hence, organizations encourage frequent 

iterations in the early stages of requirements in order to reduce bad iterations in the later stages of development.  

Iteration in waterfall and agile methods  

Agile and waterfall projects treat iterations quite differently. Especially agile method assumes iteration to be 

synonymous with the ‘sprint’ phase of SCRUM (see Fig.1). In agile methods, iterations are planned early on to 

cover a certain number of story points
2
. The uncompleted story points from previous iterations are carried on to the 

next iteration cycles.  

                                                           
2
 We use Cohn’s (2011) definition  for story point which refers to an  “ideal day of work (i.e. a day without any 

interruptions whatsoever-no meetings, no emails, no phone calls etc) with fixed stories”  
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Waterfall on the other hand uses the term iteration to define refinement of the code after the completion of the 

phases by using feedback loops (see Fig 2)(Royce 1970; Brooks 1975). However, in practice both agile and 

waterfall exhibit iteration within the development life cycles in the form of sub phases wherein few set of sequential 

activities are repeated to meet certain ends(Iivari 1990; Berente and Lyytinen 2009). Unlike planned iterations, sub 

phase iterations are never planned for and occur due to uncertainties and complexities in the software development. 

Empirical studies have not tested the reasons, sources, characteristics for the iterations in the sub phases(Berente and 

Lyytinen 2009).  

 

Figure 1: Iterations in agile process (Source: “Agile software development methods” P Abrahamsson 2002)  

 

Figure 2. Iterations in waterfall process (Source: “Managing the development of large software systems” Royce, W. W. 

(1970)) 

Iteration 

Iterations 
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Thus, while iterations are clearly different in agile vs. waterfall approaches, however, we do not understand how 

iterations manifest in practice. And what relevant types of iterations occur between these two approaches, and their 

drivers and their outcomes?  

RESEARCH DESIGN  

We studied two processes take place in the same organization and involve similar scopes, time frames, and team 

compositions. The only major difference is that one project followed an agile method and the other followed a 

waterfall-based method. Thus we view the study as a sort of “natural experiment” where many of the contextual 

issues are controlled but the explanatory variable differs(Shadish, Cook et al. 2002). Natural experiments are a sort 

of “quasi-experiment”(Shadish, Cook et al. 2002) and are well-suited to generation of theory.  

Study sites and data collection 

We collected process data from a large software development unit within a large multinational automobile 
manufacturing organization (referred to as “Beta”) for specifically understanding how iterations occur in the case of 
software development. This unit focuses on developing and integrating the software that organizes product 
information and the associated processes for design and manufacturing. We selected one traditional waterfall project 
(BOM Search) and one agile project (LCM) of comparable scale and complexity that were developed during 
roughly the same time period using roughly the same sized team, and overlapping with many of the same artifacts 
and other infrastructural elements. For the waterfall project, we interviewed 7 of the 24 team members, and 5 of the 
20 agile team members. We interviewed the managers of each team and also key personnel that those managers 
identified to give us a complete picture of the project. interviews were open-ended where we asked respondents to 
describe the initiation and sequence of events throughout the project. After the respondents introduced themselves 
and their role in the project, they typically were asked to describe the sequence of events with probes into “what 
happened next” and “describe that activity in more detail. What tools did you use? How did you use them? For what 
purpose?” Both projects involved a combination of distributed and co-located teams, but the agile project was 
primarily co-located, whereas the waterfall project was widely distributed – including internationally (between the 
U.S. and India).  The waterfall team has a great deal of experience with the method, whereas the agile team is 
relatively new to agile methods. Although not a perfectly controlled experiment, the projects were selected with the 
idea that the main difference between the projects would be the explicit focus on using an agile methodology for one 
(LCM) and a waterfall method for the other (BOM), thus offering a possibility to conduct a sort of quasi-experiment 
or natural experiment (Shadish, Cook et al. 2002). We conducted in-depth interviews with project managers and 
team members and validated the process models using a thorough review process. Then we categorized these 
projects into phases for determining where similar types of activities happened (Kumar and Welke 1992; 
Abrahamsson, Warsta et al. 2003). We used two dimensions - 1) the level of detail reached in the activity based on 
design object to determine the start and end points for these phases and 2) task coverage to determine whether a 
specific task for the overall process was complete i.e. if it covers all the aspects of the phase-for determining the 
phases of the project (see Table 1&2) (Kumar and Welke 1992; Abrahamsson, Warsta et al. 2003).  

BOM Search Project (Waterfall) 

The Bill of Material (BOM) search project followed a traditional waterfall structure as dictated by Beta’s life cycle 

development methodology that is founded on object oriented data modeling, use cases, and derivation of a software 

design architecture using object oriented design. The project was initiated in the first quarter of 2009 to enhance 

search in the Bill-Of-Material (BOM) database and it lasted for about two years. It is relatively large in size (over 20 

man years) and involved 24 people working in two locations (U.S. and India). Both these locations  

The BOM project followed the phases of the prescribed in waterfall methodology enforced by the OEM that 
involved gathering requirements, creating designs, coding and testing the product sequentially with gate decisions in 
between. (See Table 1 &2 for details of the phases)  

LCM Project (Agile)  

This project addressed how the BOM database deals with engineering specification changes. The project has now 

been running for a few years and the software team creates a new release every three months with patches in 

between. We specifically investigated the design of the 1.5 and 1.6 releases referred to as “light change 

management” or LCM. The 1.5 release began in September of 2009 and went live with the release of 1.6 in January 
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2010. The project involved nearly 20 designers and a large number of lead users in OEM locations in the U.S. and 

Europe. 

The development team chose to use an agile process for developing this application which was similar to the Sprint 

phase of Scrum containing: requirements, design, development and testing. The software progress and deadlines are 

assessed daily and changes are made as necessary. 

Data analysis  

We analyzed the interview data using a mixed-method approach i.e-use of qualitative (content analysis) and 

quantitative (markov chains) techniques simultaneously (Wheeldon).  

 

We first used structural analysis using Markov chains and state transition tables as to understand the scope, 

frequency and structure of iteration in agile and waterfall processes (Pentland 2003). Markov methods have 

traditionally been used in engineering, economics and finance to predict the probability of an occurrence of a certain 

state. One assumption of the first order Markov chain is that it assumes that the given sequences obey a Markov 

property i.e., the occurrence of any given event is only dependent on the immediate preceding event(Gilks, 

Richardson et al. 1996). Though not always reachable in software design, approximations based on Markov models 

help detect structural differences in different processes and their regularities.  In our case Markov chains help 

identify distinct states of iteration and hence are used to differentiate various states of iterations in agile and 

waterfall process(Feldman and Pentland 2003). 

 

To build the Markov models we coded the process activities and their sequences into three categories to 

operationalize three different aspects of iteration. We classify activities that do not iterate as “non-recurring” states. 

Those activities that have some probability of iterating (repeating) are classified into two types of “recurring” states. 

Simple recurring states (here after, simply “recurring states”) involve activities that have some probability greater 

than 0 for repeating at some point throughout the development process. We further define “embedded recurring” 

states as sub-activities nested within recurring activities as a special class of recurring state. For explaining the 

coding states for the Markov chain, we use two set of scenarios where requirements gathering takes place. The first 

involves sequential requirements gathering (like waterfall) and the second involves requirements gathering parallel 

with the design activity (like agile, see Table 1). In the first scenario, requirements gathering happen sequentially 

following the activities (A1) virgin data model creation (A2) first round of gathering requirement (A3) meeting to 

negotiate requirement (A4) clarification of the requirements in emails (A5) updating use cases. In this scenario, 

there is an iteration i.e. repetition of a set of events <3, 4 and 5> two times. We can describe this iteration as a 

“recurring state (S1).” The first two events of 1) virgin data model creation 2) first round of gathering requirement 

instead do not repeat themselves, and are thus coded as  a “non-recurring state (S0).” 

Table 1.  States of iteration for two given sequence of activities 

Scenario 1 

Non-recurring state(S0) A1A2 A3A4A5 A3A4A5  

Recurring state (S1) A1A2 A3A4A5 A3A4A5  

Scenario 2 

Non-recurring state(S0) A1A2 A3A4A6A7A5  A3A4A6A7A5 

Recurring state (S1) A1A2 A3A4A6A7A5   A3A4A6A7A5 

Embedded recurring state(S2) A1A2 A3A4A6A7A5   A3A4A6A7A5 

 

Next we can describe the second scenario where requirements gathering happen together with writing test cases 

where two repeated activities get squeezed between activities A4 and A5 (see Table 1). In this case, activities A6) 

writing test cases and A7) testing the use cases repeat within the larger  repeated sequence and it happens in relation 
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to the iterated sequence described in the first scenario. Hence iteration here is embedded in a bigger iteration cycle 

and hence it is called as “embedded recurring state (S2)”. In this scenario, all the activities A6 and A7 are coded as 

embedded recurring state i.e S2. (See Table 1). Further, we show how transitions occur from one state into another 

state in a specific set of activities (see Table 2).  

Table 2: State transition table 

Input states 

Output states 

Non-recurring Recurring Embedded recurring 

Non-recurring 1(Ex: A1-A2) 1(Ex: A2-A3) 0 

Recurring 0 1 (Ex: A3 -A4 ) 1(Ex: A3- A6 ) 

Embedded recurring 0 1 (Ex: A7-A5) 1(Ex: A6-A7) 

 0-Indicates no possibility of transition input states to output states 

                                                    1-Indicates possibility of transition input states to output states 

 

We then used the content analysis techniques to detect the sources, types, impact and effects of the iteration in two 

software processes. Content analysis is essential in determining the conditions that led to iterations (Gilks, 

Richardson et al. 1996; Duriau, Reger et al. 2007). To achieve this, we developed coding schema for analyzing 

iterations based on our research questions – what are the drivers, types, and impacts of iteration? Through literature 

review we elicited three sources for iteration (inadequacy, errors, and changes), four types of iterations (functional, 

quality, performance, and mixed), and two impacts of iteration (good and bad). Then we used content analysis to 

systematically code the interview data into few selective categories and themes. To this end we conducted content 

analysis of the interview transcripts using atlas.ti software by coding the categories from our schema established 

from the research questions (Stemler 2001). 

FINDINGS 

In this section we detail the findings of the two research questions. First we address the first research question –How 

do iterations differ across agile and waterfall projects and how are they structured?-using markov chains and 

transition tables. Then in the next section we address our next question- What are the sources, types, and impacts of 

iteration and in what ways do they differ across agile and waterfall-based methods? If they differ, what are the 

differences in sources and impacts and how they related to the methods used? – with the help of qualitative data 

Differences in structure of iterations 

Overall 7 subphases were iterated in waterfall (BOM) while agile (LCM) used only 4 sub phases  for iterating(see 

Table 6). After looking at the requirements phase in agile and waterfall projects, we noticed that iterations were very 

similar in this phase. The frequency of iterations remained quite similar and surprisingly even the length of the 

iterated subphases remained very close. However, the main difference was that agile projects emphasized on 

performing newer activities in requirements than waterfall (see (S0-S0) values) in Table 6). We now show here an 

example of the calculation of probability for the requirements in BOM project. The sequences for the BOM project 

in requirements are as indicated below.  

 

A0 A1A1A1 A1A1A1 A1A1A1 A1A1A1 A1A1A1 

 

For a typical sequence of the transition for State 0 to State 0 is ‘0’ as there is no transition from A0 to A0 in the 

given sequence. Similarly, the probability of transition from State 0 to State 1 is ‘1’ (as there is only one possibility 

of transition i.e. from A0 to A1). In a similar way we computed the probability of other transitions (as shown in 

Table 3). The frequency tabulated in the table represents the number of times an iterated activity got repeated in the 

sequence. In the above mentioned case, the frequency is 5 times as the sequence A1A1A1 got repeated 5 times while 

the length of the iterated activity is 3. The length of time is in hypothetical “units.” 
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Table 3. State transitions and granularity of subphases in agile (LCM) and waterfall (BOM) projects 

Software design phases State transitions Granularity 

Phases of 
SDLC 

Design 
method 
used 

Subphases in 
agile and 
waterfall  

S0-S0 S0-S1 S1-S0 S1-S1 S1-S2 S2-S1 S2-S2 Frequency 
of iteration  

Length 
of 
iteration 

Requirements 

Agile 
Requirement 
negotiation  0.25 0.25 0 0.5 0 0 0 6 2 

Waterfall 
Use cases 
clarification  0 0.5 0 0.5 0 0 0 5 3 

Design 

Agile 

Designing 
prototype 

 0.33 0.165 0 0.5 0 0 0 8 5 

Waterfall 

 

Data model 
design 0.415 0.08 0 0.5 0 0 0 13 3 

Testing data 
model 0.33 0.165 0 0.5 0 0 0 3 6 

Informal 
inspection  0.425 0.07 0 0.5 0 0 0 3 5 

Development 

Agile 
Code 
development 
and review 0 0.5 0 0.5 0 0 0 13 9 

Waterfall 
Development 
of 
components 0.465 0.03 0 0.5 0 0 0 16 2 

Testing 

Agile Bug fixing  0 0 0.5 0.5 0 0 0 60 2 

Waterfall 

Development 
& testing 0 0 0 0.425 0.07 0.25 0.25 6,5* 6,2* 

Testing and 
release of 
components 0.415 0.08 0.03 0.465 0 0 0 2 8 

Here * represents that there were two sub phases which got repeated. First activity consisted of 6 activities which repeated 6 times 
while second iterated sub phase consisted of two activities which repeated 5 times.  

Next we looked at the design phases in agile and waterfall projects and noticed vast differences in iterations. Agile 

project had just one type of iteration for designing prototype while waterfall had three unique iterations for creating, 

testing and validating the data model. Further, the total numbers of activities iterated in waterfall were 97 and 40 in 

agile (see Figure 3). This is an important finding as it demonstrates agile methods conformance to ostensive 

specifications in creating “short bursts of design” and the exact opposite in waterfall i.e longer design phases. At the 

same time, we noticed that agile’s designing prototype iteration and waterfall’s testing data model iterations were 

similar in terms of activity composition and respective probabilities in transitioning (see Table 3).  

Then we looked at the development phases in agile and waterfall projects and noticed that they are quite different in 

carrying development activities through iterations. Even though these projects emphasized on just one unique set of 

iterated activities for developing the code, the total number of iterated activities varied widely i.e agile 117 and 32 in 

waterfall (see Fig 3). Further, waterfall had a tendency to perform unique activities (see (S0-S0) values) in Table 3) 

while agile just carried iterated activities for developing the code.  
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Finally we compared the testing phases in agile and waterfall projects and noticed substantial differences in the way 

iterations are organized. Agile process contained one iteration which iterated more rapidly both of the waterfall 

iterations put together (see Table 3). Waterfall on the other hand contained complex iterations which involved 

subphases embedded together. The probability of finding the subphase in recurring state and embedded recurring 

state was .425 and .25 respectively which is indicative of the complexity and recurrence of iterations in the later 

stages of the development. Agile process emphasized on frequent and small iterations of the same type in testing 

phase while waterfall encouraged iterations to happen in different actor groups to reduce rework and relied on 

negotiation and clarification procedures (see Table 3).  

Overall we noticed that agile process was more linear in terms of iterations. The frequency of iterations gradually 

increased over time in agile process while waterfall iterations “bulked up” in design phase. At the same time, we 

noticed that iterations in requirements phase were very similar in both these process. 

 

Figure 3. Iterated activities in agile (LCM) and waterfall (BOM) projects 

CONCLUSION 

From our analysis using state transitions tables in agile and waterfall process we identified the concentration of 

iteration efforts in both these process. The agile project relied on progressive iterations while waterfall relied on 

increasing the efforts on iterations in the design phase. This is indicative of the fact that waterfall emphasizes more 

discipline effort by confronting a big design phase to reduce iterations in the subsequent stages. Further iterations 

drastically differed in design, development in agile and waterfall process.  

Agile process introduced quality control teams much later in the development and testing which led to a lot of 

bugs/defects in the later stages. In addressing these defects, agile team employed a “brute force strategy” and tried to 

address most of the defects by Quality Control (QC) teams. This strategy might have been useful for this agile 

project-(LCM-with 1.5 and 1.6 version releases)-as it minimizes defects in the future version releases like 1.7 and 

1.8.  

Practitioners can leverage the framework of iterations provided herin and begin thinking about iterations from a 

perspective of neither blanket iteration reduction. Iterations can be good in either a waterfall or agile context, but 

these are manifested in different activities between the methods – in waterfall iterations occur primarily on 

requirements and in waterfall in design and development.  
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