Association for Information Systems

AIS Electronic Library (AISeL)

International Conference on Information Systems

ICIS 1984 Proceedings (ICI1S)

1984

Dynamic Metasystems for Information Systems
Development

Jeftrey E. Kottemann
University of Hawaii

Benn R. Konsynski

University of Arizona

Follow this and additional works at: http://aisel.aisnet.org/icis1984

Recommended Citation

Kottemann, Jeffrey E. and Konsynski, Benn R., "Dynamic Metasystems for Information Systems Development" (1984). ICIS 1984
Proceedings. 14.
http://aisel.aisnet.org/icis1984/14

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1984 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact

elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1984%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1984?utm_source=aisel.aisnet.org%2Ficis1984%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1984%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1984%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1984?utm_source=aisel.aisnet.org%2Ficis1984%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1984/14?utm_source=aisel.aisnet.org%2Ficis1984%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Dynamic Metasystems
for Information Systems Development

Jeffrey E. Kottemann
Department of Decision Sciences
University of Hawaii

Benn R. Konsynski
Department of Management Information Systems
University of Arizona

ABSTRACT

Dynamics in the use of metasystemsin the development of information systems is discussed.
‘An axiomatic level of specification is used to allow dynamic specification of “median” level
metasystems which are, in turn, used in information systems specification, analysis and
design. Existing metasystems are reviewed and principles for metasystem evaluation are
considered. The implementation and use of dynamic metasystems in the Plexsys system is
overviewed. The Plexsys system implements generalized integrity analysis at all levels of
logic and mechanisms to insure the mutual integrity of these levels over time.

Introduction

A science is a well made language.
—Condillac

Computer-aided environments are evolving to facilitate
the specification and development of large-scale infor-
mation systems. Tbols to support enterprise analysis,
logical data and process modeling, database design,
process organization, automatic code generation, and
other design activities exhibit a variety of models, se-
mantics, and terminology. A degree of dynamics must be
introduced if the design support tools are to be effective.
These dynamics are fundamentally important as both
language definitions and target models change over
time. That is, as more is learned about the organization
and about the development process itself, the develop-
ment environment must support the modification of
language and target model definitions such that the
models are internally snd mutually complete and
consistent.

Coneeptual underpinnings, as well as the structure and
function of metasystems, are discussed in this paper. A
metasystem framework of three basic definitional levels
is developed. Requirements for an effective metasystem
are outlined, including succinctness, dynamism, scope,
and granularity. Three metasystems used in information
systems specifications—SEM, SDLA, and SDS—are
analyzed. The emphasis of the analysis is an assessment
of the degree to which the metasystem can be a guaran-

187

tor of the integrity of models. The integrity of a model
concerns its semantic completeniess. An alternate meta-
paradigm is proposed. The paradigm draws on the
relationship of the metasystems concept to semantics
and knowledge representation in linquistics and artificial
intelligence. The meta approach and system presented
gllows for the generalization of a set of integrity rules for
language specifications and target system descriptions.
The implementation, which provides for dynamism of
the overall three-tier model, is discussed in the final
section.

The Metasystem Concept

In describing information systems, a large set of often
disjoint terminology is used among development settings.
In many cases, several terms are used to name a given
term or concept. For example, “record,” “group,” “rela-
tion,” and “data structure” have all been used to name a
conceptually analogous term.

One major drawback of many computer-aided metho-
dologies is that the predefined terms used in the metho-
dology may not be the same as the terms used by target
system developers in any given setting. This drawback
leads to one of two outcomes; namely, the computer-
aided methodology will not be adopted, or it is adopted
with the accompanying cost of reorienting all individuals
involved in systems development. In the second out-
come, extensive training of developers with respect to

understanding the “packaged” system view and becom-
ing fluent in the methodology’s terms is required.

Despite the existence of differences among deveiop-
ment settings, these differences can beisolated, through
the process of abstraction. Through this abstraction
process a conceptual, or axiomatic model is attained
which can be used to define modeling forms for relatively
disparate development settings. The result is a com-
puter-aided methodology that is tailorable to any of a set
of development environments.

UNDERLYING METASYSTEM PRINCIPLES

A metasystem view consists of definitional levels. The
three metasystem levels of Figure 1 have been named
with the adjectives“ axiomatic,” “axiomatamedian,” and
“instantial.” The definition of these, given in Webster's
Third New International Dictionary, are:

1. Axiom: a proposition, principle, rule of maxim
that has found general acceptance or is thought
worthy thereof whether by virtue of a claim to
intrinsic merit or on the basis of an appeal to
self-evidence.

2. Axiomatamedia: the general principles that
are above simple empirical laws yet inferior to
the highest generalizations or those that are
taken to be fundamental.

3. Instantial: reference to any particular person,
thing, or situation.

Forthe sake of parsimony, median will be used in place of
axiomatamedian. In Figure 1, two continuums are drawn.
The first is a continuum moving from abstract to con-
crete. “Abstraction” has come to have muitiple interpre-
tations (Brachman, 1983). For our purposes, we con-
sider abstraction as presented in Locke’s Essay Con-
cerning Human Reasoning.

Words become general by being made the signs of
general ideas; and ideas become general by sep-
arating from them the circumstances of time and
place, and any other ideas that may determine
them to this or that particular existence. By this
way of abstraction they are made capable of
representing more individuals than one; each of
which having in it & conformity to that abstract
idesa, is (as we call it} of that sort (type).

The other continuum is from deep to surface structure.
Perhaps the best explanation is by example. Chomsky
(1971) formalized the notion that the surface grammar of
any given instance of a language is a manifestation of a
deep structure. The deep structure, in this case, is a basic
grammatical system from which the whole variety of
manifest surface structures (actual communication in a
langusage) can be generated. The axiomatic level, to be
discussed shortly, is a deep structure.

A system has system structure and system function. Struc-
tures themselves do not function, but systems function
because they have the structure to do so. One can infer,
only in part, one from the other. An effective axiomatic
model should abstract both notions of system structure
and system function. The distinetion between system

ABSTRACTION DEEP

A STRUCTURE

AXIOMATIC 0

AXIOMATAMEDIA
INSTANTIAL
Y
(SURFACE
OBSERVATION STRUCTURE
Figure 1
A Conceptual Schema for Metasystems

structure and system function is analogous to the dis-
tinction between language syntax and semantics.

A target system is the system being described at the
instantial level, and so is a description of an existing or
proposed implementation of an information system {IS).

An axiomatic model or system has acquired two basic
interpretations, the more traditional being that found in
mathematics where a set of axioms are used to formally
prove the truth of an assertion. The second interpreta-
tion of an axiomatic model comes from the empirical
sciences; the truth of an axiomatic modelis judged, over
time, on the basis of its power to explain observable
phenomena. Pascal referred to this as deductive syn-
thesis—rather than premises extending to consequences
via formal proof, the truth of the premises “rebounds
back” from the consequences. This second interpreta-
tion of an axiomatic model is the one used in this
discussion.

With axiomatic models derived by deductive synthesis,
completeness of the axioms is shown pragmatically over
time. That is, the completeness of the axioms is initially
governed by past experience and insights. Incomplete-
nesses are later discovered through use of the axiomatic
model in practical application. The axiomatic models
presented here, therefore, are hypotheses.

In light of the above definitions, the axiomatic level
(model) is a deep structure arrived at by abstraction that
is used to define a description language at the median
level which, in turn, is used to describe specific target
systems at the instantial level All three levels, taken
together, form the system description model.

A metasystem, for purposes of the present discussion, is
an computerized implementation of an axiomatic model
that provides facilities for the definition and analysis of
median and instantial models. The current discussion
concentrates on the description of complete and consis-
tent system descriptions and is not concerned with
metasystems used to generate executable programs
(Cameron and Ito, 1984).

A schematic of a typical metasystem is shown in Figure
2. Given the concepts and facilities provided at the
axiomatic level, a system description language is defined
giving the median level view. Target systems are defined
using the descriptive forms defined at the median level
and so form the instantial model.

Levels in a Metasystem: A General Description
Figure 1 depicts the conceptual structure of a typical

metasystem. Aspects of metasystems that the figure
attempts to illustrate are:

189

1. The levels in a metasystem build from each
other. The model at a lower (more surface)
level inherits concepts from the levels above

TARGET LANGUAGE META
DEFINITION IN LANGUAGE
META LANGUAGE PROCESSOR
:‘ LOADS
TARGET
SYSTEM -
DESCRIPTION MEDIAN DEFINITION
DATA BASE
\/\EFERENCE S
GENERALIZED
TARCET SYSTEM TARGET LANGUAGE.
DESCRIPTION USIN PROCESSOR
TARGET LANGUAGE
F 4
E LOADS
TARGET
LANGUAGE
DEFINITION
DATA BASE

\/

Figure 2

A Schematic of a Typical Metasystem Implementation

and are a refinement of the model at the upper
level(s) (e.g., the axiomatic term “entity” is
used to type the median term “file” which, in
turn, is used to type the instantial term “ master
customer file.”). As shown in a later section,
the Plexsys metasystem (Konsynski and
Nunamaker, 1982; Kottemann, 1984; Stott,
1984) involves the inheritance of context de-
pendent system roles from the axiomatic to
the median, and the median to the instantial
levels.

. Although lower levels inherit from upper lev-
els, they may choose to disregard concepts of
upper levels (i.e., the levels may be disjoint).
(E.g., the instance level modeler may choose
to override a completeness rule specified at
the median or axiomatic level)

. The lower the level the less abstract the model
and the more it is descriptive of observable
phenomena. (E.g., “master customer file” is a
more detailed description of the target system
than is “file” or “entity.”")

. Each level may indeed have levels of abstrac-
tion within it. (E.g., within the median level
itself, “file” may be further refined into “master
file” and “transaction file.”)

. Lower level models contain more information,
in the information theoretic sense, than upper
level models (lower level models are more
verbose). The single term “entity” is refined
into a multitude of median terms such as
“file,” “data item,” “process,” and “output
report.” File, then, is refined into a multi-
tude of instances of files-—"“customer file,”
“product file,” and “employee file.”

. The completeness and consistency at upper
levels determines the intrinsic completeness
and consistency of models atlowerlevels. This
point is the focus of the present discussion.

Given the previous list, particularly number 4, it is
apparent that the breakdown of a metasystem into three
levels is not so much due to a law of nature, but ratheris
due to the fact that there are differing implications,
motivations, and goals at each level Also, the model
definers at each level are concerned with different as-
pects of the world being modeled: the axiomatic level—
to define fundamentals of target systems in a set of
development settings; the median level—to define the
mode] tailored to specific development settings; the
instantial level— to define the target system itself, Finally,
the three tier view is useful for purposes of discussion
and for the realization of a metasystem implementation.

190

For purposes of discussion, models at all levels are
stated in a language. These languages are composed of
terms and expressions. As noted, the higher levels are
abstractions and thus a term at one level becomes a
definition of a term type at the next lower level The
relations among, and motivations at the respective levels
are as follows.

AsshowninFigure 2, the concepts at the axiomatic level,
manifest in the meta language provided by the meta
system, are used to define a target system description
language at the median level. That median language is
then used to describe actual target systems at the
instantial level

The axiomatic level provides abstract terms (axjomatic
terms) which become term types at the median level
Example axiomatic terms are *“entity” and “relation.”
Alllanguage terms defined at the median level then, are
declared as either type “entity” or type “relation.”
Language statement constructs—median expressions—
to be used at the instantial level are also defined: e.g.,
“Process instance- slot-1 produces file instance-siot-2.”

Using axiomatic concepts, and corresponding metasys-
tem facilities, the language definition may also include
rules of composition to be imposed at the instantial level.
For example, a rule might be defined to assure that a
given instance of type “file” is produced by one and only
one “process” instance. Suchrules are specified with the
goal of insuring the integrity of instantial models— the
descriptive models of target systems. As noted, the
thrust of the present discussion is the degree to which
the axiomatization can insure integrity of the median
and instantial levels,

In addition, some axiomatic terms and concepts may be
understood at the axiomatic level, for example, “is part
of” and “is a subtype of.” Thus, the meaning of “A is
a subtype of B” is understood at the axiomatic level In
the metasystem, this understanding means that the
metasystem has predefined operations invoked to act
appropriately in the case where A is a subtype of B. One
operation may be the inheritance of properties of A by B.

Finally, at the instantial level, the language defined at the
median level is used to describe the target system (e.g.,
“Process Employee-update Produces File New-em-
ployee-file.”}

As discussed in the following sections, one criteria for
evaluating or constructing metasystems is the degree to
which its axiomatic level can understand the meaning of
abstract definitional terms and enforce resultant gen-
eralized rules of system integrity. This implies that there
exists an ideal axiomatic model one that is abstract
enough to cover a large set of development settings yet
concrete enough to make meaningful, operational dis-

tinctions of “what an information system is” at the
axiomatic level.

Requirement for a Metasystem

Although each level in a metasystem can overcome
definitional deficiencies in upperlevels, itis argued here
that the power of a metasystem is quite dependent on
the power of the axiomatic level Indeed we define the
ideal axiomatic model as a deep structure arrived at by
abstraction that is used to generate models at the median
and instantial level and that ensures intra-and inter-
level completeness and consistency. Such completeness
and consistency concerns are evident in any require-
ments or design specification, for example, database
specification (Brodie, 1983).

Four characteristics that influence the power of a meta-
system are:

1. Scope of the axiomatic model--Scope is de-
fined as the variety of median levels that the
axiomatic model is capable of generating. In
short, scope is the variety of the development
settings addressed.

. Granularity at the axiomatic level— Granu-
larity is a measure of the fundamental distinc-
tions intrinsic at the axiomatic level. Anopera-
tional definition is the number of axiomatic
terms and concepts. These, then, are axio-
matic concepts that are understood and oper-
ationalized by the metasystem.

. Succinctness (efficiency) of language defini-
tion— Succinctness concerns the ease with
whcih the median model can be defined. Note
that in the median definition the language to
beused at the instantial level aswell asrules to
be imposed in the formulation of instantial
models may be defined. Succinctness can be
defined via information theory and the related
metrics of software science (Halstead, 1977).

. Dynamism of the median and instantial levels—
Target systems and views of system develop-
ment change over time. It is desireable for a
metasystem to allow changes to the median
model and that those changes propagate to
the instantial models generated from it. This
characteristic is largely a metasystem imple-
mentation issue and is discussed in a later
section,

There are several implications of, and relations between
the concerns just listed. In short, a conflict stems from
the fact that too drastic an abstraction looses much of

191

the general semantics of systems. Indeed, total abstrac-
tion would leave us with one single axiomatic term—
“everything.” A certain degree of abstraction at the
axiomatic level is obviously desirable. As we abstract
we gain scope. As we abstract, however, we also sacrifice
granularity and succinctness. Referencing the preceding
list, the major advantage of abstractionis to broaden the
scope of the metasystem. If, however, the axiomaticlevel
is too abstract:

1. The lessthe axiomatic level can “understand”
the meaning of terms and expressions at the
median and instantial levels, consequently

2. Theless powerful can be axiomatic analysis—
the metasystem provided integrity analysis of
the median and instantial models—and

3. Themore distinctions must be made at the
median, language definition level This im-
plies that numerous completeness and consis-
tency rules must be specified at the median
level. In short, succinctness is sacrificed.
Further, the definer of the median level is left
wondering if all requisite rules have been
defined

It is desirable for the metasystem to understand vari-
ous aspects of general system structuring and function,
or behavior. As proposed in general systems theory, see
for example (Checkland, 1981), certain features of sys-
tems are omnipresent. Some areasin which the generali-
zations exist include:

1. Distinct roles played by terms in a system,

2. Role completeness rules— all necessary roles
filled, _

3. Role consistency rules— functional dependen-
cies among processes, for example,

4. Temporal aspects of system behavior, and

5. Purpose (goals) of processes.
One go;al of a metasystem is to axiomatize not only the
“syntax” of systems, but also the “semantics” of system

functioning. In the following section, three metasystems
are selected for discussion.

Existing Metasystems:
SEM, SDLA, and SDS

Existing metasystems provide quite abstract axioms.
Specificaily, the components of a system are abstracted

into two or three axiomatic terms. All are closely allied to
the Entity-Relationship- Attribute model proposed for
logical database design (Chen, 1976).

SYSTEM ENCYCLOPEDIA MANAGER (SEM)

SEM (Teichroew, Macasovic, Hershey, Yamamoto,
1980) was developed under the auspices of the ISDOS
project at the University of Michigan. It is used primarily
to implement the PSL (Teichroew, Hershey, 1977,
Teichroew and Gackowski, 1977) system specification
language, but has also been used to implement languages
for office (Konsynski and Bracker, L., 1982) and network
{Konsynski and Bracker, W., 1980) specification. An
architecture similar to SEM has been proposed for an
Information Resource Dictionary System (Kerschberg,
etal, 1983). SEM uses asits axiomatic descriptive terms
“object,” “relation,” and “property.” This general model
was proposed as a logical database design modeling
form by Chen (1976)—the Entity-Relationship- Attribute
model

The first version of SEM (Yamamoto, 1981) allowed for
the definition of:

1. Terms to be typed as objects (entities), rela-
tions, or properties (attributes).

2. Statement forms which are strings of terms.

3. The structure type (n-ary cardinality) associ-
ated with the relation in a statement form.
These cardinality structures involve up to 4-
ary relations.

The median model is defined using the Information
System Language Definition System. The following is a
sample definition of a language subset for describing
information systems. Details, such as the definition of
synonyms for objects, are omitted for clarity.

Objects are defined by,

OBJECT agent;
QBJECT process;
OBJECT report;

Properties are defined by,
PROPERTY average-size;
APPLIES report;
VALUES INTEGER 0 THRU 1000;

Relations and their respective n-ary cardinalities
are defined by,

192

RELATION performs;
PARTS agent- part, process-part;
COMBINATION agent-part, agent
WITH process- part, process;
CONNECTION-TYPE S4;
CONNECTIVITY ONE agent, process;

RELATION produces;
PARTS process-part, report- part;
COMBINATION process-part process
WITH report- part report;
CONNECTION-TYPE S2;
CONNECTIVITY ONE process-part
MANY report-part;

The actual statement forms to be used at the instantial
level are given by,

STATEMENT performs-statement
USED agent-part performs;
FORM performs process- part;
USED process-part performs;
FORM is performed by agent-part;

STATEMENT produces-statement
USED process-part produces;
FORM produces report-part (report- part);
USED report- part produces;
FORM is produced by process- part;

Finally, example terms and statements defined at the
instantial level are given by,

DEFINE AGENT chicago- processor,
DEFINE PROCESS sales-reporting;
DEFINE REPORT salesman- performance;
DEFINE REPORT regional-sales- performance;

AGENT chicago- processor
PERFORMS PROCESS sales-reporting;

PROCESS sales-reporting
PRODUCES REPORT salesman- performance,
regional- sales- performance;

The axiomatic level in SEM is limited. Instead, specifi-
cation of integrity rules are relegated almost entirely to
the median level The robustness of rule types, moreover, is
limited largely to the specification of cardinalities for
n-ary relations and static type checking.

In the previous example, the instance chicago- processor
can only be used in relationships defined for type
AGENT. Static typing is typing that is context inde-
pendent. Thatis, despite the use of “chicago- processor”
in the instantial model, it is consistently typed as AGENT.

An extension to SEM was later proposed to support the
specification of integrity rules at the median level(Kang,
1982). These rules are specified in predicate calculus.

1. Implication- derivation—if an object exists in
a given part of one relation then it can be
assumed thatit exists ina given part of another
relation. Thus if x is a parent of y, and yis a
parent of z, then x must be a grandparent of z.

2. Mutual exclusion—an instance of an object
may exist in only one of a set of possible
relations. Thus, a person cannot be both
married and single.

3. Exclusion—if an instance is in one relation it
may next participate in a limited set of other
relations. Such rules constrain state transitions
of a description. For example, marrital status,
once given the value of “married,” may be next
assigned the values of “divorced” or “widowed”
but not “single.”

The later specification of SEM, although allowing for a
substantial degree of integrity definition, has not
abstracted many more concepts into the axiomatic level
The definition of the above integrity rules must be given
at the median level Further, SEM stores median and
instantial models in separate databases. Any median
level modification necessitates regeneration of the data-
bases. Also, if a median term is deleted, the change does
not propagate to the instantial model In summary, SEM
scores well on scope and poorly on dynamism, granularity
of the axiomatic level, and succinctness of median level
definition.

SDLA

SDLA (Knuth, et al., 1979; Demetrovics, et al., 1982) was
developed, in part, at the Hungarian Academy of Sciences.
Qur discussion of SDLA is brief as only differences
between SEM and SDLA are highlighted. The major
differences between SEM and SDLA include:

1. The distinction between “relation” and “ entity”
is abstracted into “concept.” A concept is
associated with attributes.

2. SDLA allows abstraction at the median
(language definition) level If a concept?2 is a
subtype of a conceptl, concept2 inherits the
attributes associated with conceptl.

3. Axioms of system structure are refined.

Depending upon one’s view of a term, a term may be
treated as an object or a relation The concept of

193

“communication,” for example, may be used as a relation
—John is in communication with Judy—or as an object
—communication is difficult. In SDLA, this problem is
alleviated, not by allowing multiple roles, but by
abstracting away the distinction between objects and
relations to form “concepts.”

As noted in a previous section, the conceptuallevelsina
metasystem may indeed contain levels. Unlike SEM,
SDLA axiomatizes abstraction to be used at the median,
language definitionlevel. Thus, inaninformationsystem
there may be the concept “file.” There exist, moreover,
types of files such as disk files and print files. In SDLA,
the definer of the median level may define a type *file”
with the attribute “size” and the subtypes *print file”
with the attribute “average number of pages,” and “ disk
file” with the attribute “average number of bytes.” The
types “print file” and “disk file” inherit the attributes of
their supertype and thus also have the attribute “size.”
Language statement forms may be defined that include
superor subtypes. Thus the statement form “FILE x IS-
LOCATED-AT y” allows instances of type “file,” “print
file,” or “disk file” to participate. The statement form
“PRINT FILE x IS-LOCATED-AT ¥,” on the other
hand, constrains the instances to be of type “print file.”

Lastly, SDLA allows for the specification of structure
types for binary relations. These integrity rules are
gimilar in effect to cardinslity rules; they constrain
described system structures. The concept “parent-child
{human, human),” for example, is undeniably ant-
symmetric (ie., my mother cannot also be my daughter).
SDLA allow for dinary relational property specification
to enforce structures to be:

antisymmetric,
irreflexive,
hierarchic,
precedence, and
lattice,

where “hierarchic” implies a tree structure, “precedence”
implies a structure with a transitive closure that is a

partial ordering, and “antisymmetric,” “irreflexive,” and
“lattice” are used in their algebraic sense.

SDS

SDS (Levene and Mullery, 1982), as with SEM, uses an
entity/relationship scheme. In SDS terminology, entities
are termed “components,” which may have attributes
termed “properties,” and components are associated via
“relationships.”

The SDS system is weak withrespect to the axiomatization
of and availability of facilities for median definition of

integrity rules. The primary support forintegrity analysis is
a query facility. That is, a user may query the requirements
database in an attempt to discover integrity violations.

Conclusions on Some Current
Metasystems

The development of metasystems for system develop-
ment lends a degree of flexibility to the application of
formal system specification tools. A metasystem
represents an axiomatic view of information systems.
The contribution of a metasystem rests not only on the
computerization of tools for system description but also
in the power of the meta view of information systems,
particularly: what are the essential abstract elements in
an information system that dictate its integrity? In this
sense a meta paradigm represents a theory of information
gystems.

The meta approaches described above go far toward
realizing both abstract formalism of information systems
and the facilities for automation of IS specification
languages. The approaches, however, abstract at the
axiomatic level to such an extent that integrity rules
cannot be axiomatized. Given the SEM entity-relation
axioms, for example, virtually all integrity rules must be
explicitly defined at the median level Axiomatized
integrity checking at the median level is limited to rules

such as“amedian term typed as arelation cannotalsobe

typed as an entity,” and “all median terms should be
used in at least one statement form.” Axiomatized
integrity checking of the instantial level is limited
analogously. However, at the instantial level the statement
forms defined at the median level imply integrity
constraints. In the example givenfor SEM, if an instance
term is defined as median type “process,” that instance
term may only be specified in relations (and associated
statements) containing “process.”

In the following section, an alternative meta paradigm is
developed with the intent to provide an aziomatic model
with sufficient granularity for generalizing integrity rules
and integrity verification for both the median and
instantial models generated using the metasystem.

The Plexsys Meta Paradigm

The Plexsys project is an ongoing effort to realize a
development environment that provides methodological
and computer-aids for IS development (Konsynski and
Nunamaker, 1982; Kottemann, 1984; Stott, 1984). The
Plexsys computer-aids are both active and passive,
where active tools actually perform system design
activities. The emphasis here is on the relatively passive
tools for system description.

194

AXIOMATIC TERMS AND CONCEPTS

As asserted in the previous sections, the distinctions
drawn at the axiomatic level of a metasystem should be
abstract enough to address a large number of median and
instantial models while also granular enough to formalize
and axiomatize basic aspects of system structure and
functioning. As a side benefit of granularity, the more
distinctions intrinsic to the axiomatic level, the fewer
distinctions, or integrity rules need be explicitly stated at
the median level, hence the more succinct the media
(language) specification. Indeed, as shown below, gener-
alizing one type of integrity rule may circumvent the
need to explicitly state a large number of manifestations
of the general rule type at the median level A second
major benefit of granularity at the axiomatic level is that
it potentially allows for integrity checking of the median
model, that is, the metasystem can perform integrity
checking of the language definition.

Many authors have proposed axiomatizations of systems,
these axiomatizations being a list of aspects shared by
all systema Checkland (1981), for example, gives the sys-
tems elements as

Transformation process
Ownership of the system
Actors in the system
Customers of the system
Environmental constraints

Nadler (1975, 1981), gives:
1. Function— The mission, purpose, or primary
concern of the system.

. Inputs—The physical, information, or even
human items that the system must recognize
and handle.

. Outputs—The physical, information, or human
items, both desirable and undesirable,
which the system will predictably produce
from the given inputs.

. Sequence—The step-by-step process by
which acceptable inputs are transformed into
predictable outputs.

. Environment—The physical, and psycho-
socio-logical setting in which the system
operates.

. Physical—The physical resources that are
catalysts used ineach step of the sequence but
are not part of the output.

7. Human-- The human resources that are agents
used in each step of the sequence but are not
part of the output.

8. Information— The information which is used
in each step of the sequence but is not part of
the output.

Although the axiomatization choosen for the Plexsys
meta view is influenced by taxonomies such as those
above, it draws most heavily from work in linguistics:
specifically, in deep case analysis (Bruce, 1975). It differs
from the meta approaches discussed above inthat 1} itis
axiomatically more granular, and 2) it treats the role of
median and instantial terms context-dependently.
Context-independent, or static typing involves the
invariant correspondence between instantial, median,
and axiomatic terms. Thus, a“file” is statically typed as
“entity,” and “ employee file” is statically typed as “file.”
Context-dependent typing involves the variable roles of
terms. For example, a “file” may be produced as a result
of a process and may be used as an input to another
process.

CASES IN LINGUISTICS AND ARTIFICIAL
INTELLIGENCE

In a natural language such as English, words assume
different cases or roles in different sentences. In “the
man sees the dog,” the dog is the object of the sentence.
In “the dog sees the man,” the man is the object.
Whereas in languages such as Latin therole of awordina
sentence is manifest as a surface case—different spelling
of the word for different roles. Languages such as English
rely on word order, prepositions, and other similar
implication mechanisms.

Despite the manifestation, or lack thereof, of surface
cases that indicate the role of works in sentences, linguists
such as Fillmore (1968, 1971} note the presence of deep
case structures, Take, for example,

Bob wrote a letter with a pencil

Bob is the ACTOR of the verb wrote, the letter is the
OBJECT, and pencil is the INSTRUMENT. Note that
although the sentence

The note was written with a pencil by Bob.

has a different surface structure, the cases, or roles, of
Bob, note, and pencil remain the same. In the sentence

Judy poked Bob with a pencil

although Bob may be statically typed as a‘““human,” the
roie assigned to Bob is now OBJECT. Thus, while type is

195

context-independent, role is context-dependent. It is this
notion that allows for axiomatization of integrity rules.

A case formalism represents an attempt to abstract out
the essences of language semantics. The challenge in
delineating a case formalism is similar to that in forming
the axiomatic level—to maximize the captured
semantics with a minimum of distinctions or cases. The
number of proposed roles, or cases vary between five
and thirty (Bruce, 1975). They are used both for
linguistic analysis and natural language processing (see
Schank (1975) for an example of the use of case grammars
in natural language understanding systems). Here, the
purpose in developing a case formalism is to derive an
axiomatic model that affords a generalization of integ-
rity rules for models at both the median and instantial
levels.

USE OF CASES IN PLEXSYS

A case is arole type that a given term assumes in a given
context or language statement form. Although a given
median term (e.g, “Bob is a human,”), it assumes
different roles in different contexts (e.g, Bob is an
ACTOR in one context and and OBJECT in another).
The role types chosen for the axiomatic level in Plexsys
are:

1. Process: an action that changes the state of the
system under investigation, (e.g., performinga
sales assessment task).

. Actor: the performer of a process (e.g., sales
manager performs sales assessment).

. Instrument: the term is used by an actor to
perform a process. A term in the role of an
instrument is not changed by the process(e.g.,
sales manager performs sales assessment
using the sales performance report).

. Directive: the term(s) that control(s) the
process—these may be constraints and/or
objectives (e.g., sales manager performs sales
assessment to increase sales performance).

. Material the term thatis changed by a process
in its state before the change (e.g., a file to be
updated).

. Result: the term that comes into existence asa
result of the process. In a different context, the
term that is a result here may be a process,
actor, instrument, directive, or material (e.g,
an updated file).

. Temporal qualification roles: These include—
momentary verbs that state transition {e.g.,

“stop proéessing”), and continuative verbs that
represent states (e.g., “is processing’).

8. Spatial qualification roles include: locus: where a
term resides, and movement: which infers the
existence of source and destination loci, speed,
and process to move the term, which in turn,
infers the existence of instrument (transport
medium), actor, directive, material (locusbefore
move), and result (focus after move).

9. Object: a term whose existence or structure is
merely being considered—not used in a
process behavior description context (e.g.,
“The sales coordinatoris human,” “Disk file is
a type of file,” and “File has a size))”

In defining the median level—the language to be used at
the instantial level] for instance modeling—a language
construct is defined. A language contruct is a series of
axiomatic terms, median terms, and slots for instances:
Manager instance-slot has-authority-over manager
instance slot for-task instance-slot-3.

For each median term that is to be associated with an
instance slot, the allowable string format of the instance

term is defined. Thus, example instance name formats
for median terms are defines as:

Aim: string of printable characters

Task: string

Agent: string

Information set: string

Priority: enumerated string (1,2,3,4,5,6,7,8,9)

Frequency: enumerated string (daily, weekly,
monthly).

For each language construct two types of specifications
are defined: context-independent and context-
dependent typing. One, the median type to be checked
for, or assigned to an instance defined in that slot is
defined. In the above, slot-1 would be associated (typed)
as‘“Manager.” Two, the role of the median terms, and the
role assumed by the instance when it is placed in a
corresponding slot, is defined.

Thsk: Process
Realizes Aim: Referent
With Priority: Object

Agent: Actor
Performs Task: Process
With Frequency: Momentive verb
Task: Process
Is Performed At Location: Spatial Qualifier

196

Agent: Process
Uses Information Set: Instrument
To Perform Task: Process

At the instantial level, then, statements such as the
following may be defined:

Task Check-Delinquents
Realizes Aim Reduce-Bad-Debt
With Priority 5.
Agent Collections- Manager
Performs Task Check-Delinquents
With Frequency Monthly.
Task Check-Delinquents
Is Performed At Location Tueson- Office.
Agent Collections- Manager
Uses Information Set Aging- Report
To Perform Thask Check-Delinquents.

AXIOMATIZED INTEGRITY RULES

Granularity of the axiomatic level and the use of context-
dependent roles provides the potential for axiomatizing
various types of integrity rules. There are two varieties of
axiomatic integrity rules—those whose violation indi-
cate a definite integrity violation. Given the role formalism
proposed in the preceding section, the following integrity
rules for the language definition can be axiomatized,

I3

1. Except for the special case of sources and
sinks, all median terms that exist in a process
role must be associated with terms in the roles
of actor, directive, material and/or instrument,
and result. This rule is assuring complete
process description, that is, a process must be
performed by some actor for some purpose,
uging some inputs and/or instruments to pro-
duce some outputs.

2. A median term in the role of result should also
be in the role or process, actor, instrument,
material, or directive. This rule asserts that a
result must serve a useful purpose in another
context.

3. A median term in the role of process, actor,
instrument, material, or directive should also
bein the role of a result. This rule isthe inverse
of rule 2 and asserts that something of use
must come from somewhere.

4, All median terms should be in the role of resuit
in only one statement construct. This rule
asserts that nothing is produced by two dis-
parate median types. Thngentially, it also
helps assure unambiguous typing.

. Existence of a median term in the role of
material or instrument shouid be associated
with a process that uses it. This rule asserts
that a material or instrument is useful only as
used by a purposeful process.

. Existence of a median term in the role of result
should be associated with a process that pro-
duces it.

. All terms in the role of process should have
temproal qualification. This rule asserts that
all processes take place in time, and are inter-
related.

. The language definition should have a language
construct to associate processes to loci Move-
ment of results is inferred by the locations of
processes.

The preceding integrity rules can be interpreted as
utility and possibility rules—that a system never does
anything if there is no use for the action, and that a
system must do something to produce necessary ele-
ments in the system. Using the role paradigm, the above
integrity rules can be analyzed for an arbitrary language
definition. As outlined inan above section, a metasystem
should have the capacity for a lower level to disregard
concepts at an upper level This is accomplished via the
option of naming certain roles as “implicit.” Thus, for
example, the directive for a process type “Decision
Making Task™ may be associated with “Directive is Im-
plicit.” In this case the directive for a decision making
task need not be specified at the median or instantial
levels.

The rules for the median level have analogs at the
instantial level. These are as follows:

1. Except for the special cases of sources and
sinks, all process instances should have associ-
ated instantial terms in the roles of actor,
instrument and/or material, result, and direc-
tive. This insures a complete process de-
scription.

. Aninstantial term in the role of a result should
also be in the role(s) of process, actor, instru-
ment, material, or directive in a different con-
text. This insures utility of process outputs.

. An instantial term in the role of process, actor,
instrument, material, or directive should be in
the role of a result in another context. This
insures that nothing comes from nowhere.

. Existence of an instantial term in the role of
material/instrument or result implies the ex-

197

istence of a process that uses or produces
respectively.

. All instantial terms should be in the role of a
result in one and only one instantial state-
ment— two distinct terms do not produce the
same thing.

. All instance terms in the role of result must be
associated with a process that produces it—a
result must be produced by some process.

. All instance terms in the role of process must
have temporal qualification—a process takes
place in time.

. All processes should have a location. Further,
if A produces X and B uses X, the existence of
a process to transport X from the locus of A to
the locus of B is inferred.

Note that if the language definition satisfies the median
level integrity rules given above, integrity checking of the
instantial model is straight-forward. For example, the
first median rule insures that there are statement forms
for associating a given median type that is extant in the
role of process with actors, directives, results, etc. Roles
are inherited from median terms to their corresponding
instance terms. At the instantial level, then, the integrity
checking reduces to the verification that an instance of a
given median type is extant in all statement forms
containing the median type.

Completeness and consistency are closely related to the
notion of ambiguity in language specification and use.
The rules above do not insure total integrity. As for
ambiguity, there are differing concerns between specifi-
cation of an algorimthmic language, such as Pascal, and
systemic languages. With specification of algorithmic
languages, it is critical that no ambiguities exist, thus
necessitating the use of a context sensitive grammer.
With respect to IS modeling, however, a certain degree
of ambiguity is indeed necessary due to the continual
reality of limited system knowiedge. The Plexsys axio-
matization presented above only partly insures unam-
biguity in the median and instantial models.

All of the rules just given are integrity rules that are
generalized into the axiomatic level of the Plexsys sys-
tem. Descriptions of target systems at the instantial level
expressed in an arbitrary language can be analyzed by
the system for violations of the rules given above without
the need to identify and define the rules. The integrity
analyzers and other Plexsys tools are discussed in the
following section.

rl==ar2) _
ltaskl | | 6------ 1r T——
bewoed mmm e 1 ! |priority| |unspecified]|
lrealizes| bermre——— 499 !
r4-ar>5) i8 i
taim] | | i7 '
Le—md L) 16 I
IS I
Description Ig :
This form is used to relate tasks to crganizational aims. : % ||
L]

Priority of a task is relative to the degree it realizes
an aim.

b — ——

Creating a new family, Enter FAMILY description then < ENTER >

Figure 3

A Statement Form Definition in Plexsys

I
task |[check_delingquent_accounts | I
L ! priority |unspecified

1
|
realizes |19 |
o - |8 |
aim |improve_cash_flow | >17 }
. |16 !
{5 l
i4 I
Description : g :

! 1
‘I The checking of delinquent accounts... I ! 1 !

J

Enter description for the term, then < Enter >
Figure 4

Defining an Instance Statement in Plexsys

198

aim priorities

task priorities

task locations

agent tasks

task attributes

task info sets

item referents

referent names

info set contents

info set access items
info set orderings

info set time horizons
info set responses

info set volumes

info set priorities

item currencies accuracies
item edts

process information sets
process data stores
process specs

item derivations

> | primitive function names
data store contenis

data store order keys
data store access keys
info proc schedules
response reqs

data store histories.

data accuracy controls
data store currency
communication links
data store locations
development precedences
development logs

Position cursor then < ENTER >, or < E>zxit

Figure 5

Menu of Statement Forms in Plexsys

The Plexsys System
Implementation

In Plexsys, a special purpose database system, JAMES,
has been designed and implemented for storing and
manipulating symbolic knowledge and text. It is similar
in some ways to the internal storage structure used ina
typical implementation of a LISP interpreter {Siklossy,
1976). One JAMES database is used to store all model
levels including axiomatic terms and expressions, the
definitions of median terms, and descriptive language
definitions as well as the actual target system descrip-
tions. All expressions are prefixed with terms that indi-
cate the level and type of the expression. For example,
statement form definitions are prefixed with the terms
“is-median-expression” and “statement-form- defini-
tions.” Given that the description language definition
and the target system description language are stored in
the same database, modifications to the target system
description as well as modification to the language
definition itself may be made throughout the develop-
ment process. This differs from current approaches in
that 1) the current database does not need regeneration
upon language modification, and 2) language definition
modifications automatically propagate to the target sys-
tem description. By providing a dynamic language en-

199

vironment, Plexsys allows not only customization to a
given problem domain but also allows for customization
over time— as more is learned of the language required
during the development process.

aim

task

location

agent
information set
item

referent

primitive function
process

data store

Position cursor then < ENTER >, or < E>zxit

Figure 8

Menu of Median Terms in Plexsys

Peruse/James

Item task priorities Matching is__median__expression
Expr. statement,__ form__definition
Found task priorities
canonical __form
Input statement__form__definition tf*Sk priority
Expr task am
Match aim is realized by
task
priority
Matching Criteria: <A>ny Item Order
<R>elative
<S>trict A
Item Isused to assigned priorities to tasks RELATIVE TO the aims the tasks accomplish.
Comment
Expr.
Comment

Figure 7

Peruse Screen Format

Interfaces to Plexsys are batch and screen-oriented. A
screen s a set of windows with full text editing capability.
The language definition facility provided in Plexsys,
LANGUAGE-EDITOR, is used to define forms. An
example form definition is shown in Figure 3. The form
definition includes the definition of language terms and
language statements, instrumented as forms, as well as
documentation on both terms and statement forms. The
forms represent a nonprocedural language for target
system description. The form definitions are stored in
the JAMES database and are then used in target system
descriptions. In Figure 4, the form defined in Figure 3 is
used to define a specific instance of a task and its
prioritized relation with an organization aim. Note that
an aim is a general term given to all organizational
objectives, goals, and strategies. Also, documentation
on the language and target objects and statements can
be stored. The documentation specified for the language
definition serves as language documentation to target
system modelers. The form definition tool supports
editing of form definitions, performs consistency analy-
sis for context-independent typings, and stores form
definitions.

A tool, INSTANCE-EDITOR, is provided that allows
the definition of target system descriptions using the
forms defined with LANGUAGE-EDITOR. This gen-

200

eralized tool retrieves form definitions from the data-
base, supports editing of target system descriptions
using the forms, performs consistency checking on the
target descriptions to insure consistent typing, and stores
target descriptions. When invoked, INSTANCE-
EDITOR traverses the JAMES database building
selection menus of statement forms and language terms.
Target sytem description input may be performed by
selecting from the menu of specific statement forms or
by selecting statement form groups based upon a term
type. INSTANCE-EDITOR retrieves statement forms
and language terms from the JAMES database. In
Figure 5, INSTANCE-EDITOR has built a menu of all
statement forms in the database from which the user can
select specific forms to be filled out. Figure 6 shows the
median term menu built by INSTANCE-EDITOR.
Upon selecting a specific term, INSTANCE-EDITOR
allows the user to cycle through the forms that concern
or contain the term. For example, by selecting the
statement group for “task,” INSTANCE-EDIT will
cycle through all statement forms that concern “task”
allowing the user to fill in all information that concerns
tasks.

A generalized database query facility and report genera-
tor, PERUSE, allows for interactive review of the cur-
rent contents of the JAMES database and for genera-

PERUSE REPORT

This report summarizes the statement forms pertaining to aims.
aim priorities

aim
has sub
aim
priority

aim priorities
Is used to assign priorities to organizational aims.

aim
An “aim” is any organizational objective, goal, or strategy.
An aim is, in essence, the purpose of organizational activities (tagks).

has sub
A relation to associate aims and their subaims in the aim hierarchy.

priority
Priority is a nine level ordinal scale used to prioritize
1. Organizational aims, -
2. Tasks relative to the aims the help achieve, and
3. Information sets relative to tasks using them.

Note: The Plexsys priority analyzer is used to assess absolute priorities.

task priorities
aim
is realized by
priority
task priorities
Is used to assigned priorities to tasks RELATIVE TO the aims
the tasks accomplish.

ig realized by
A relation to associate aims and tasks.

task
A task is a business process or activity. Thsks are performed by agents
at, perhaps, various locations. Information sets are supplied to tasks
in support of their performance.

Figure 8

Peruse Generated Report

201

tion of customized reports. PERUSE supports the
selection of statements in the JAMES database based
onuser specified terms and pattern matching criteria. As
all model levels are stored in one JAMES database,
PERUSE can be used to view the axiomatic terms,
language definition and the target system descriptions.
In Figure 7, the user is perusing all expressions in the
database that contain the terms “ statement form defini-
tion,” “task,” and “aim” in any permuted order. In effect
then, the user is perusing all language form definitions
that concern tasks and aims. The matching expression
window contains the current statement form being
viewed. The bottom windows contain the term, or item
and expression documentation

Figure 8 shows a report generated where the user has
selected to report all language form definitions associated
with “aim.” Note that text may be entered at the terminal
while using PERUSE such that the text is outputed to
the report. In the example of Figure 8, this capability has
been used to enter a report heading. Form definitions
and the associated documentation serve as a “help
facility” to modelers. Using this facility a modeler may
ask to see all language forms that concern orgnizational
tasks or that concern both tasks and information require-
ments, or generate a complete language manual, for
example. A modeler may also generate documentation
on the target system model

Whereas consistency analysis of context-independent
typing is performed before a language form or target
system description is stored in the database, complete-
ness checking is performed at user-controlled intervals
during language definition and target system modeling.
Completeness checking is supported by the generalized
completeness analyzers. By using the case grammar
paradigm discussed in the previous sections, complete-
ness checking can be performed on the language defini-
tion itself. The pattern matching functions in JAMES
allow for searching the median level for violations of the
rules specified in the previous section. Pseudo- code for
the algorithm for checking the number two median
integrity rule is:

For each language term
if the term is in the role of result

If not
find the term in the role of process
or find the term in the role of actor
or find the term in the role of instrument
or find the term in the role of material
or find the term in the role of directive

Then 'incomplete language definition.’

Another analyzer reports violations of completeness
rules for an arbitrary instantial mode} defined via an
arbitrary median model or language definition. Asnoted,

202

Plexsys Version 0.1 3-JUL-1984 11:41:44.32
Sample Organization

Incompleteness in user specified object: task

task division budgeting
is not defined in info set volume
task attributes
agent task
task location
task priority

task regional sales evaluation
is not defined in item currency accuracy
info set volume
info set response
info set time horizon
info set ordering

task salesperson evaluation
is not defined in item currency accuracy

info set volume
info set time horizon
info set access items
task attributes
agent task
task location

task product evaluation
is not defined in info set volume
info set time horizon
info set access items
agent task
task location

Figure 9
Generalized Instance Integrity Report for a User
Specified Median Term
given that the median rules are satisfied by the language

definition, integrity checking of the instantial model
reduces to a simple, general algorithm.

For each instance object
Find its corresponding median type
For each statement form
in which the median type appears
If the instance object does not appear in
an instance of a statement of that type
Then report instance integrity violation.

Options provided for compieteness checking of target
systems descriptions include (1) global completeness
checking, {2) completeness checking on all instances of a
given language term, all “tasks” for example— see Figure

Plexsys Version 0.1 3-JUL-1984 11:53:55.53
Sample Organization

Incompleteness in user specified object: product
evaluation

task product evaluation
is not defined in info set volume
info set time horizon
info set access items
task attributes
agent task
task location

Figure 10
Generalized Instance Integrity Report for a User
Specified Instance Term

9—and (3) completeness checlking for a given instance—
see Figure 10.

Summary

A metasystem is comprised of three logical layers. The
axiomatic level represents the highest level view of
“what information systems are.” The axiomatic model,
and accompanying metasystem facilities, are used to
define a descriptive language which, ip turn, is used to
describe target information systems. Since the axio-
matic model embodied by a metasystem is the founda-
tion upon which models are built, it is important that the
axioms be robust. This robustness is defined in terms of
scope, granularity, succinetness, and dynamism.

Existing metasystems, in their attempt to provide scope,
have sacrificed granularity and succinctness. In adopt-
ing an overly abstracted axiomatic model, the existing
systems fail to generalize rules of system integrity.
Integrity at any level is a function of the integrity of
upper levels, for example, an incompiete language defi-
nition implies the incompleteness of the instantial models
defined using the language. It is desireable, therefore,
not only to generalize integrity rules for instantial models
but also for median models. By defining axiomatic terms
that representroles played by components in a system, a
large number of integrity rules can be generalized. The
roles and corresponding integrity rules can help insure
the intra-and inter-level semantic integrity of both the
language definition and the corresponding instance
definition. This refinement to existing meta models

makes it possible to perform generalized integrity check- .

ing on the language definition (median model) as well as
the descriptions of target systems (instantiali model).
Further, given the Plexsys metasystem implementation,
dynamism is offered. This dynamism allows for the
modifications of model levels and automatic enforce-

203

ment of the propagation of modifications to a given level
to those levels below

REFERENCES

Brachman, R.J. “What IS- A Is and Isn’t: An Analysis of
Taxonomic Links in Semantic Networks,” [EEE
Computer, December, 1983, pp. 30-36.

Brodi, M.L. “Recent Issues in Database Specification,”
ACM SIGMOD, Volume 13, Number 3, April 1983,
pp. 42-45.

Bruce, B. “Case Systems for Natural Language,”
Artificial Intelligence, Volume 6, 1975, pp. 327-360.

Cameron, R.D. and Ito, MLR. “Grammar Based Definition
of Metaprogramming Systems,” ACM Thansactions
on Programming Languages and Systems, Volume 6,
Number 1, January 1984, 20-54.

Checkland, P. Systems Thinking, Systems Practice, John
Wiley & Sons, New York, New York, 1981.

Chen, PP. “The Entity-Relationship Model: Toward a
Unified View of Data,” ACM Transactions on Data
Base Systems, Volume 1, Number 1, 1976.

Chomsky, N. “Deep Structure, Surface Structure, and
Semantic Interpretation,” in Semantics, D. Steinberg,
and L. Jokobovits, (eds) Cambridge University
Press, Cambridge, Massachusetts, 1971, pp. 183-
216.

Demetrovics, J., Knuth, E., and Rado, P. “Specification
Meta Systems,” IEEE Computer, May 1982, pp. 29-
35,

Fillmore, C. “The Case for Case,” in Universals in
Linguistic Theory, Bach and Harms, (ed.) New York,
Holt Rinehart, 1968.

Fillmore, C. “Types of Lexical Information,” in Semantics:
An Interdisciplinary Reader, Steinberg D. and
Jakobovits, L. (eds.), Cambridge University Press,
Cambridge, England 1971.

Halstead, M.H. Elements of Software Science, North-
Heolland Press, New York, New York, 1977.

Kang, K.C. An Approach for Supporting System
Development Methodologies for Developing a
Complete and Consistent System Specification, Ph.D.
Thesis, University of Michigan, Michigan, 1982,

Kerschberg, L. Marchand, D., and Sen, A. “Information
System Integrationn A Metadata Management
Approach,” Proceedings of the Fourth International
Conference on Information Systems, Ross, K. (ed.),
Houston, Texas, December 1983.

Knuth, E., Rado, P, and Toth, A. “Preliminary Description
of SDLA,” Hungarian Academy of Sciences Working
Paper, December 1979.

Konsynski, B.R. and Bracker, L.C. “Computer-Aided
Analysis of Office Systems,” MIS Quarterly, Volume
6, Number 1, pp. 1-17. March 1982,

Kongynski, B.R. and Bracker, W. “Defining Requirements
for a Computer- Aided Network Design Package,”
IEEE Data Communications, July 1980, 75-84.

Konsynski, B.R. & Nunamaker, J.F. “Plexsys: A System
Development System,” in Advanced System
Development/Feasibility Techniques, J.D. Couger,
M.A. Colter, and R.W. Knapp, (eds.) John Wiley &
Sons, New York, New York, 1982, pp. 399-424,

Kottemann, J.E. Formalisms for Business Information
Systems Development, Ph D. Dissertation,
Department of Management Information Systems,
University of Arizona, Tucson, Arizona, 1984.

Levene, A.A. and Mullery, G.E “An Investigation of
Requirement Specification Languages: Theory and
Practice,” [EEE Computer, May 1982, pp. 50-59.

Nadler, G. The Planning and Design Approach, John
Wiley & Sons, New York, New York, 1981.

Nadler, G. Johnston, J. and Bailey, J. Design Concepts for
Information Systems, American Institute of Industrial
Engineers Inc., Atlanta, Georgia, 1975.

Schank, R.C. Conceptual Information Processing, North-
Holland Press, New York, New York, 1975.

Siklossy, L. Let’s Tulk Lisp, Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

Stott, J.W. Principies for Computer-Aided Information

204

Systems Development, Ph. D. Dissertation,
Department of Management Information Systems,
University of Arizona, Tucson, Arizona, 1984.

Teichroew, D. and Hershey III, E.A. “PSL/PSA: A
Computer-Aided Technique for Structured
Documentation and Analysis of Information
Processing Systems,” IEEE Transactions on
Software Engineering, Volume SE-3, Number 1,
January 1977, pp. 42-48.

Teichroew, D. and Gackowski “Checking A System
Descriptionina PSA DataBase for Consistencyand
Completeness,” ISDOS working paper 7742-0189-
2, University of Michigan, June 1977.

Teichroew, D., Macasovic, P, Hershey HI, E.A., and
Yamamoto, Y. “Applications of the Entity-
Relationship Approach to Information Processing
System Modelling,” in ERA Appreach to Systems
Analysis and Design, P Chen, (ed.} North-Holland
Press, New York, New York, 1980 pp. 15-38.

Yamamoto, Y., An Approach to the Generation of Software
Life Cycle Support Systems, Ph.D. Thesis, The
University of Michigan, 1981.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1984

	Dynamic Metasystems for Information Systems Development
	Jeffrey E. Kottemann
	Benn R. Konsynski
	Recommended Citation

	tmp.1422239253.pdf.JSk_T

