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Abstract: We examine whether emotional expression (joy, anger, sadness, fear, disgust) occurring in social media content is 

associated with a user’s information sharing behavior. Our research is in the context of Hurricane Irma and Tweets associated 

with that event. We find that negative emotions play an important role in the communication of information, among which, 

fear has the most significant effect. Meanwhile, the initial stages of the information life cycle have the most prominent 

influence on the information dissemination. 
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1. INTRODUCTION 

Social media has experienced tremendous growth in user base and has an impact on the public discourse 

and communication in society. Using social media, such as Twitter and Facebook, users post many messages, 

including their opinions and feelings as well as facts. One of the most successful social media services, Twitter, 

allows users to post tweets, which are short messages with a limit of 140 characters. As a result, Twitter is an 

ideal platform for users to spread information where the original tweet is propagated to a new set of audiences, 

namely, the “followers” of the tweeter. By retweeting, users may not only share information but also engage a 

certain audience or publicly agree or disagree with someone 
[1]

. Compared with traditional communication 

platforms, the communication and dissemination of information and emotions in Twitter is more active and 

influential 
[2]

. In addition, because of the low threshold, low cost, and instant and concise information 

distribution method used by twitter, people are more willing to use it as the preferred channel for personal and 

emotional communication. When emotions promote large-scale emotional resonance and discourse coordination 

among netizens, the imbalance of social emotions may be aggravated. The accumulation of negative emotions 

may be the hotbed of network events and social conflicts. Therefore, in public health emergencies such as 

natural disasters, it is of great practical significance to identify emotions in online social media and to analyze 

the differences in the transmission of different emotions at various stages of network evolution. 

Factors affecting word-of-mouth message dissemination in social media have been extensively analyzed 
[3-4]

. For instance, it has been shown that tweets with features such as URLs, hashtags, and emotional words are 

more likely to be retweeted than those without these features 
[5]

. Each user in the online social media could be a 

social censor.  A large number of tweets convey complicated signals about the users and the real-world events 

they are experiencing, of which the sentiments are an essential part. Therefore, emotion states of the users play a 

key role in understanding the user behaviors in social media, whether from an individual or group perspective 
[6-8]

 .  

The paper is organized as follows. The next section provides a literature review on microblogging 

information dissemination with an emphasis on factors, particularly regarding text content and time. In the 
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subsequent section, the methodology is laid out. Followed by the results of our study. Finally, the paper 

concludes with a discussion of our results, research, and practical implications, as well as limitations and 

potential future work. 

 

2. RELATED WORK 

Factors affecting “retweet ability” of tweets have been analyzed in previous works.  This was done by 

using  content-related features such as, topics
[9]

,URL（uniform resource locator）, and hashtag inclusion
[3-4]

. 

Hong et al 
[5]

. have shown that tweet topics determined by topic modeling, which is a widely used natural 

language processing technique, and the number of followers of the tweet publisher are useful features for 

predicting the volume of retweets. As part of human communication, social media content usually conveys 

information about the author's emotional state, his or her judgment or evaluation of a person or topic, or 

anticipated emotional communication (that is, the sender wishes to have an emotional impact on the recipient) 
[10]

, commonly known as "sentiment". Hansen et al. 
[11]

 analyzed the relation between sentiment contained in a 

tweet and “retweet ability”. An analysis of approximately 560,000 tweets showed negative tweets have higher 

“retweet ability” than the positive tweets, while the opposite is true for non-news related tweets. Stieglitz et al. 
[12] 

have analyzed about 170,000 tweets related to political elections in Germany and revealed that the number of 

negative and positive tweets forwarded was higher than that of neutral tweets. However, few studies have 

identified emotions as another potential driver of information dissemination in social media environments, in 

particular, the user’s information sharing behavior. Physiological arousal has been shown to be a driver of 

information sharing 
[13,14]

. Content that evokes high-arousal, or activating, positive or negative emotions is more 

viral. Content that evokes low-arousal, or deactivating, emotions is less viral. Festiger
[15]

deems that any form of 

cognitive dissonance can cause anxiety, so individuals will have the desire to reduce or eliminate this disorder. 

Cognitive imbalance theory refers to the fact that individuals recognize the contradiction between their attitudes 

and behaviors, that is, people tend to find reasons for their actions, such as free justification and self-persuasion. 

Therefore, this study will focus on the impact of emotional factors in the dissemination of emergency 

information. 

The evolution process of emergencies often has a certain life cycle. If the dynamic change of public 

sentiment with the life cycle of an event is analyzed we can accurately capture the evolution process of public 

opinion information with the life cycle transmission. The famous division of the life cycle by scholars includes: 

in 1976, Turner 
[16]

 who described the development of the disaster model and divided the evolution process of 

the disaster into six stages: 1) the beginning point, 2) the incubation period, 3) the rush period, 4) the outbreak 

period, 5) the rescue period, and 6) the social adjustment period. In 1986, Steven, introduced the life cycle 

theory into crisis management and put forward the four-stage theory of crisis communication: potential stage, 

outbreak stage, spread stage and resolution stage 
[17]

. Based on previous studies, this paper divides hurricane 

events into six stages: the initial stage, the outbreak stage, the first recession stage, the second growth stage, the 

second recession stage and the recovery stage. 

 

3. METHODOLOGY 

 

3.1 Data collection 

Aiming at Hurricane Irma in the Caribbean on September 6, 2017, this study uses NodeXL to crawl data 

from September 6, 2017 to September 20, 2017 on Twitter with the keyword "Hurricane Irma". After removing 

non-English, duplicate and event-independent data from the collected microblog data, 238769 pieces of data 

were obtained, and then 183148 pieces of data were obtained after removing the data with less than 1 
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forwarding volume. At the same time, in the data preprocessing part, special symbols are filtered out for the 

remaining data, such as "/@@xxx", "#xxx", hyperlinks, and the like, which do not contain actual topic meaning 

and emotional information. The paper uses CRF algorithm 
[18]

 (conditional random field algorithm) to divide 

words in the text and further processes related expressions. The emotional annotation section is combined with 

psychologist Plutchik's multi-dimensional emotional model 
[19]

. 

 

3.2 Methods for inferring tweet emotion 

The basic idea of semi-supervised learning 
[20]

 is to use a small number of marked samples and a large 

number of unmarked samples to conduct effective emotional classification. Support Vector Machines (SVM) is 

proposed by Vapnik
[20] 

on the basis of statistical theory and then based on structural risk minimization theory, 

which is often used as a supervised learning method for two classification. And the study has shown that SVM 

also has a good classification effect on multi-classification of emotions 
[21,22]

. Therefore, this paper adopts the 

semi-supervised learning method of SVM to classify emotions in microblog texts. Its algorithm steps are shown 

in table 1 and its calculated results are shown in table 2, with an average accuracy of 83.8%. Experiments show 

that this method has a good effect in the classification of micro-blog emotions.  

Table1. Semi-supervised emotion classification algorithm based on SVM 

Input:Annotated dataset L containing emotion types(joy,anger,sadness,fear,disgust), unlabeled dataset U  

Output:New annotated sample set and model C 

1):Using TF-IDF to Extract Features.  

2):Randomly extract 20% labeled data set R from L and 80% training set L'= L-R for training model.  

3):While(Training threshold not reached) 

4):Using L' to train SVM Classifier C. 

5):Use classifier C to predict unlabeled data U.We can get the classified emotion set Si (i = 0,1,2,3,4), 

where i is the category label of emotion. 

6):Use the classifier C to predict the reserved 20% annotation data R 

7):Combine the unlabeled data with the highest confidence in the predictions in U and their corresponding 

emotion types, and then form a new set L' 

8):The label data with the lowest prediction confidence in the merge R constitutes a new set 

9):End While 

10):Terminate iteration 

 

Table 2. Emotional classification results 

Emotional categories Accuracy Recall rate F-score 

joy 0.83 0.84 0.84 

anger 0.83 0.89 0.86 

sadness 0.86 0.80 0.83 

fear 0.86 0.82 0.84 

disgust 0.81 0.80 0.82 

Average accuracy 0.838 

3.3 Measuring Method of Information Dissemination 

In this paper, the number of forwards per tweet is used as a measure of the amount of information 

dissemination, and the number of tweets less than 1 is removed. Each tweet has its corresponding tweet time and 

emotional category, and the average daily forwarding volume is counted as the time interval to divide the 

network evolution stage.  

This study uses regression analysis to investigate the influence of emotion and life cycle on information 

transmission, and other relevant text content factors, including URL, hashtag and followers, are also taken into 
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account, whose main influencing factors are shown in table 3. The statistical data of tweet description are shown 

in table 4. Since the standard deviation of forwarding amount is much higher than its mean, it is necessary to 

adjust and analyze excessive dispersion. Therefore, this study uses stata15.0 for negative binomial regression to 

analyze the influence of emotion and life cycle on information transmission, and the model is shown in (1) and 

(2). In addition, two-way analysis of variance is used to test whether emotions and life cycles have an interactive 

effect on information dissemination 

                                                                         （ ） 

                                                                         （ ） 

Table3. Variables used in regression analysis 

Variable Description Sym

bol Forwarding volume Number of retweets y  

URL Categorical variable for whether tweet includes URL 1
x  

hashtag Number of hashtags 2x  

follower Number of followers 3x  

anger Categorical variable, showing that tweet is anger 4x  

sadness Categorical variable, showing that tweet is sadness 5x  

fear Categorical variable, showing that tweet is fear 6x  

disgust Categorical variable, showing that tweet is disgust 7x  

the first stage the initial stage 8x  

the second stage the outbreak stage 9x  

the third stage the first recession stage 10x

 the fourth stage the second growth stage 11x  

the fifth stage the recovery stage 12x

 

Table4. Statistics for collected tweet dataset 

Variable minimum value Maximum value Mean SD 

Forwarding volume 1 167240 323.43 3037.138 

hashtag 0 16 0.97 1.470 

URL 0 1 0.446 0.68 

follower 0 999495 12991.2

8 

66577.75

3  

4. FINDINGS  

 

4.1 Joy messages spread widely  

In order to study the relationship between an emotional microblog and its amount of spreading, this paper 

calculates the average forwarding amount for tweets in each emotional category. The study found that when the 

average number of tweets forwarded by each emotional category was counted, the number of tweets forwarded 

by joy emotional micro-blog was larger, just like other negative emotional micro-blogs. In this study, 

considering the curiosity of researchers in this project, some of the tweets with joy emotional micro-blog ranked 

first were selected and found that some of them were humorous as shown in Table 5. Nahon and Hemsley
[23]

 

believed that the information dissemination content of social media has the following categories: humor, novelty, 

production quality, emotional influence, resonance and interest, while Bakshy and Hofman
[24]

 et al. also found 

that more interesting content is more likely to be disseminated. Therefore, according to the research results, 

humor can also be used as one of the elements to promote the dissemination of information content. 
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Table 5. Some of the top-ranked tweets on joy's emotional forwarding volume 

Tweet Senti

ment 

Numberof 

Retweets Buying iPhone X in Europe? why not add a free weekend trip to NYC . joy 38869 

We have Thick Rihanna, Thick Beyonce and now Thickye West. 2017 is 

officially the year of getting thick . 
joy 35045 

Thats scrappy doo, scoobs nephew you uncultured swine. joy 33925 

TRUMP: Sorry about that, here's a corporate tax cut ，I still have no house. joy 26579 

Hurricane Irma, you're doing amazing sweetie. joy 24368 

4.2 Life cycle division 

As shown in figure 3, the hot degree of the event is mainly maintained from September 10, 2017 to September 

20, 2017, the data of Hurricane lrma from September 6, 2017 to September 9, 2017 are very small, so the Alma 

hurricane event is divided into six stages: initial stage (September 11 -September 10), the outbreak stage 

(September 12), the first recession stage (September 13 to September 14), the second growth stage (September. 

15), a second recession stage(September 16), the recovery stage (September 17 to September 20). 

 
Figure 3. Average number of retweets of --Time Series Diagram 

 

4.3 Emotion, time and Retweet Behavior 

This paper first uses the negative binomial regression to study the relationship between emotional 

microblog and the amount of communication, and the regression equation is (1). Since the negative binomial 

regression is used, the coefficient of the explanatory variable is needed to be exponentially transformed. Table 6 

shows the results of the analysis, the values of β and e
β
 in the table are used to measure the impact of 

explanatory variables on the interpreted variables, and e
β
 is an index for estimating the impact of explanatory 

variables on the interpreted variables, which means that when all other explanatory variables are controlled 

unchanged, adding each unit to explanatory variables is expected to cause e
β
 times transfer. Since R

2 
increases 

with the number of variables or observations, R
2
 cannot fully represent the goodness of fit of the regression 

equation. The regression coefficient indicates that anger, sadness, fear and disgust all increase the number of the 

transfer of tweets, among which fear is the most frequent (β=0.330, p< 0.01), anger (β=0.150, p< 0.01), disgust 

(β=0.149, p<0,01) are consistent with the previous results, and sadness (0.061, 0.05) is the weakest. In addition, 

fear regression coefficient shows that the amount of transfer of tweet with fear emotion is 39.1% higher than 

that of joy emotion, and the effect of URL is similar to that of other emotions, which indicates that negative 

emotions are the main driving factors of text transmission.  

Secondly, this paper also uses negative binomial regression to study the relationship between life cycle and 

propagation quantity, such as equation (2). The influence of different explanatory variables on the transfer 
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amount of tweets is shown in table 6. According to the analysis results, the effect of the initial stage (β=0.280，

p<0.01) and the explosive stage on the transfer amount of tweets is more significant than that of the other four 

stages (β=0.294，p<0.01), and the results are consistent with 4.2. In addition, the regression coefficient in the 

outbreak stage indicates that the transfer amount in this stage are 34.2% higher than those in the recovery stage. 

Looking at other control variables, it can be found that URL (β=0.266,p<0.01),hashtag (β=0.069, p<0.01) and 

logfollower (β=0.690, p<0.01)all significantly affect the forwarding amount, especially logfollower. 

Table 6 . Negative binomial regression results for Number of retweets 

Dependent variable Number of retweets（y） 

 （1）                    （2） 

Independent variables Coeff

.β 

SE eβ Coef

f. β 

SE eβ 

URL 0.329

*** 

0.

024 

1.39

0 

0.26

6*** 

0.02

4 

1.30

5 
hashtag 0.052

*** 

0.

008 

1.05

3 

0.06

9*** 

0.00

8 

1.07

1 logfollower 0.481

*** 

0.

029 

1.61

8 

0.69

0*** 

0.04

1 

1.99

4 anger 0.150

*** 

0.

035 

1.16

2 

   

disgust 0.149

*** 

0.

037 

1.16

1 

   

fear 0.330

*** 

0.

033 

1.39

1 

   

sadness 0.061

** 

0.

029 

1.06

3 

   

Initial stage    0.28

0*** 

0.03

3 

1.32

3 Outbreak stage    0.29

4*** 

0.04

8 

1.34

2 The first recession stage    0.07

1*** 

0.04

5 

1.07

4 The second growth stage 

sssssssstagestagestage 

   0.11

5*** 

0.04

9 

1.12

2 The second recession stage    0.04

6*** 

0.05

1 

1.04

7 Constant 1.720

***  

0.

004  

 1.59

0***  

0.00

4 

 

Pseudo R2 0.024  0.03

4 

 

Observations 183148 

*** Significant at 1% level;  ** significant at 5% level;  * significant at 10% level 

 

5. DISSCUSSION 

Several insights emerge from the results of this study. First, we found that the affective dimensions (anger, 

sadness, fear, disgust) of political hurricane messages are indeed significantly associated with retweet behavior 

in terms of retweet quantity, in the way that negative emotionally charged tweets are more likely to be 

disseminated compared to joy ones, for example, fear tweets were retweeted 39.1% more often than joy tweets. 

To some extent, it conforms to the theory of cognitive deviation
[19]

. More specifically, sentiment (fear, anger) in 

social media content might also induce arousal-related effects (e.g., attention and physiological arousal) that 

affect sharing behavior in social media communication. Meanwhile, sadness will trigger a low level of 

physiological arousal, consistent with previous results
[17-18]

.However, our results also show that the effects of joy 

in a tweet on its virality are weak. This contradicts the results with Berger and Milkman. A possible cause of the 

difference between our study and previous studies might be the context environment of the subject audience. 

Our study revealed a interesting finding. Some tweets with high forwarding amount of joy emotion and found 

that these contents are humorous.Positive news with optimism and humour is more communicable in disaster. 

Second, our results show that the effect of the initial stage and the explosive stage on the amount of transfer of 

tweets is more significant than that of the other four stages. Therefore, it is important for relevant government 

departments to timely deal with tweets of negative emotions in emergencies, especially at the beginning and 

outbreak stages of the life cycle.  
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According to the research results of this paper, in the process of public opinion management of catastrophic 

emergencies, relevant government departments should first timely channel negative emotions, especially fear, 

anger, disgust and disgust, which have a great impact on microblogs, to effectively guide the sound development 

of public opinions and avoid the occurrence of mass incidents. Secondly, starting from the communication 

subject, when microblog public opinions enter the initial and outbreak stages. At the same time, microblog 

public opinion can quickly enter the stage of positive emotion accumulation, and then strengthen the overall 

grasp of public opinion by creating a large number of positive messages to create a harmonious and upward 

public opinion environment.  

Of course, there are still some limitations in this paper. For example, with the increase of cultural 

communication, network information of multiple languages influences and integrates with each other, the 

existing work mainly focuses on a single language, so the corpus resources and results collected in the 

emotional analysis of a single language cannot be directly used in a multi-language environment. In addition, 

when different media and different forms of emotional information are "fused" together, "qualitative change" 

will occur. Therefore, in the follow-up study, relevant data from multiple channels should be collected and 

integrated for specific events, so as to more comprehensively reflect the trend of public emotions and better 

serve the early warning and emergency management of emergencies.  

 

6.CONCLUSION 

In this study, hurricane lrma is taken as an example to explore the factors influencing the information 

dissemination of emergencies in the social media environment. We investigated the relation between the 

sentiment of a tweet and life cycle and its virality in terms of dissemination volume. We used the number of 

retweets as measures of tweet virality. The results showed that negative emotion tweets spread more widely 

than positive emotion tweets, and that the dissemination volume of fear tweets was 39.1% higher than that 

of joy tweets. We also conducted life cycle analysis of tweet dissemination and discovered that in the initial 

stage and the outbreak stage of an emergency, the effect on the transfer amount of tweets is more prominent than 

that of the other four stages. Moreover, the regression coefficient in the outbreak stage indicates that the transfer 

amount in this stage are 34.2% higher than those in the recovery stage. 
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