
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1985 Proceedings International Conference on Information Systems
(ICIS)

1985

Expertise in Debugging Computer Programs:
Situation-Based versus Model-Based Problem
Solving
Iris Vessey
University of Queensland

Follow this and additional works at: http://aisel.aisnet.org/icis1985

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1985 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Vessey, Iris, "Expertise in Debugging Computer Programs: Situation-Based versus Model-Based Problem Solving" (1985). ICIS 1985
Proceedings. 18.
http://aisel.aisnet.org/icis1985/18

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1985%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985/18?utm_source=aisel.aisnet.org%2Ficis1985%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Expertise in Debugging Computer Programs:
Situation-Based versus Model-Based Problem Solving

Iris Vessey
University of Queensland

Acknowledgment: The author is indebted to Ron Weber
for his assistance throughout this research.

ABSTRACT
This paper reports the results of an exploratory study that investigated expert and novice de-
bugging processes with the aim of assessing the relevance of situation-dependent problem
solving to debugging expertise. The method used was verbal protocol analysis. Data was col-
lected from sixteen subjects employed by the same organization. The study first controlled
for the variability in individual problem solving by incorporating certain aspects of program-
mers' debugging processes into the debugging model. The criterion of expertise was the sub-
jects' ability to effectively chunk the program they were required to debug. This method
proved effective in explaining much of the variability in debugging performance and provided
the basis for the expert-novice classification used in subsequent analysis of the protocol data.
Further analysis focused on situational factors in debugging. lt took two forms: (1) a static
or content analysis of subjects' problem solving behavior that aggregated data across a proto-
col: and (2) a dynamic or process analysis of subjects' debugging processes that examined
data as closely as possible to its natural state. The results support the notion that experts
respond to the data in the task while novices are constrained by preconceived ideas or early
hypotheses about the source of error.

KEYWORDS: Debugging; programmer skills; situation-dependency; debugging processes;
protocol analysis

Introduction and Stalnaker, 1968 Brooks, 1980; Sheil, 1981; Penning-
ton, 1982). Hence, this study sou'ght to identify problem

This study examined the debugging processes of expert solving characteristics that accounted for much of that
and novice programmers with the aim of identifying variation in performance. Once identified, these aspects
those characteristics that lead to expertise. The character- of programmers' problem solving performance were
istic of expertise addressed primarily in this research was controlled by means of the expert-novice programmer
the extent to which problem solvers rely on formal classification. Removing some of the variability in
models in solving problems as opposed to relying on data programmers' processes then permitted the effect of
derived from the task. This characteristic of expertise is situation-dependency to be tested more effectively.
termed situation-dependency. Using the process tracing
technique of recoding verbal protocol (Newell and The paper proceeds as follows. The next section
Simon. 1972; Ericsson and Simon, 1980,1984), the re- describes the conceptual approach followed in this study.
search examined both the content of expert-nov ice prob- A detailed task analysis based on literature in computer
lem solving and the processes experts and novices use. science and cognitve psychology and on information

derived from pilot study protocols formed the basis for
Previous programming studies have reported high vari- analysis for subject protocols. The methodology section
ability in programmer performance that frequently describes the task materials, subjects, and the perfor-
masked the effects of the manipulated variables (Mayer mance measures used in this study; it also addresses the

288



question of how we determine which programmers are bugging activities are behaviors known to be present in
experts and which are novices, a distinction that plays a debugging and are not related to a model of the debugging,
cuntral role in this analysis of debugging processes; the process. They are, therefore, situation-dependent. Both

section concludes with a brief description of the protocol the debugging functions and the debugging activities
analysis methodology used and associated reliability were structured hierarchically to permit differing degrees
measurement undertaken. The following section presents of sensitivity in the analysis. Partitioning also has meth-

the results of both the content and process analyses. Fi- odological implications in that certain function or activity

nally, the paper disucsses the results and examines the categories might contain too few or too many responses;

implications of the results for the concept of situation- the appropriate level can thus be chosen for further inves-

dependency. tigation. Propositions were derived for the effect of ex-
pertise on each of the debugging functions and debugging
activities. The propositions reflected the expectation that

Conceptual Framework differences in expert-novice behavior would become-
more apparent with more complex tasks.

According to Dreyfus (1982), novices use a model-based
approach to solving a problem, while experts draw on The process analysis used uncoded data so the data was

not constrained to meet the requirements of a model. In
their experience of familiar situations. The use of an this way, the researcher is able to take into account
internal model implies the application of formal rules.

characteristics of the data as they arise. Hence, from the
Hence, this approach is necessarily independent of the
particular situation, i.e., it is context-free (model-driven viewpoint of testing whether novices are situation-inde-

problem solving). With experience, this understanding is pendent problem solvers while experts are situation-

transformed into a superior type of understanding, one
dependent problem solvers, the process analysis permits

that is situation-dependent or data-driven. Experts are
situation-dependent characteristics to be examined better
than does the content analysis. The process analysis

those who conceive of the problem in context. They do
sought to determine differences in the ways expert and

not work through a set of formal rules derived from a pre- novice programmers accomplished the problem solving
specified model. Rather, the solution emerges from their

. task, approached the problem solving process, and pin-
characterization of the problem in terms of their previous pointed the program error. A further outcome of the
experience with similar kinds of problems. process analysis was a characterization of the debugging

Situation-dependent of data-driven problem solving is strategies used by expert and novice programmers.

manifested in high-level problem solving (Heller and
Greene, 1978). Problem solvers who engage in situation-
dependent problem solving tend to spend more time in
understanding and formulating a problem than do novices

Research Methodology
(Reitman, 1965). Novices, instead, need to convince
themselves that they are making progress. They therefore The research methodology used in this study was verbal
close the constraints on the problem as soon as possible protocol analysis. Subjects were given an incorrect pro-

and attempt to force a solution even to the extent of not gram listing, a copy of some input data, the correct out-

acknowledging disconfirming evidence (Rouwman, put, and the corresponding incorrect output, and were
1978). asked to debug the program, speaking aloud as they did

so. They debugged by means of desk checking, i.e., they

The study examines both the types of behavior (content did not have automated aids available to them.
of debugging) and the processes programmers engage in
while debugging. Both the content and process analyses
address the importance of situation-dependency in prob- DEBUGGING TASKS
lem solving. The content analysis does so, formally, by
developing two content descriptions, one for a model- The debugging environment was the maintenance section

based approach, and the other for a situation-dependent of a commercial data processing department. Hence sub-
approach. The first content description, referred to as de- jects debugged programs they had not previously seen.

bugging functions, was based on a procedural (flowchart) The program used was a fully structured, straightforward

model of debugging that was converted to a static func- COBOL sales reporting program with control breaks on

tion model for analysis (Figure 1). The second content branch number, salesperson number, and customer num-

description, referred to as debugging activities, derives ber (see Appendix A.5 of Vessey, 1984). A simple appli-
from literature in computer science on debugging and in cation domain was used so that differences in application
cognitive psychology on problem solving, supplemented domain knowledge hopefully would not affect the results,
with activities present in pilot study protocols. Figure 2 thus permitting the investigation of debugging processes
shows the structure of the debugging activities. De- alone.

289



Debug
Program

Ern, U

Find Generate Error
Problem Hypothesis Repair

Evaluate Confirm
Hypothesis Error

------ -----

\,L V k.
RIP'"'Int
(041. R*acl

Code

Locallze
Code

----- ---

Figure 1

Model of Debugging Functions

290



PLANNING ACTIVITY

Pro edure

Sets a goal Chooses {initiates) a procedure
Evaluates a goal
Cancels a goal
Satisfies a goal
Indicates a goal not
satisfied ,

KNOWLEDGE BUILDING ACTIVITY

Information Gathering Know ge Stating

Gathers information . Recalls language knowledge
from comments
Gathers information
fron data
Gathers information
from satements
Gathers information in a
functional sense
Gathers information from
processing
Evaluates information from
Understands task
information

BUG-RELATED ACTIVITY

Clue Hypothesis rror

Finds a clue Generates hypothesis Repairs error
Makes state- Evaluates hypothesis Makes error
ment about Makes state-
clue ment about

error

Figure 2

Structure of Debugging Activities

291



PROGRAM BUGS careers at the S.G.C.C. One person had spent two years
at another government institution and at the time of the

The error introduced into the program was a logic error, study had been employed by the Center for fifteen
a type commonly found in practice (Youngs, 1974; months. Thus, the subjects had homogeneous back-
Gould and Drongowski, 1974; Gould, 1975; Sheppard et grounds.
al,, 1979). No syntactic errors were present. As a basis
for determining whether the task was sufficiently difficult
to differentiate between experts and novices, the "same" PERFORMANCE MEASURES
bug was introduced at different locations in the program.
Research by Atwood and Ramsey (1978) suggests that Two types of performance criteria were established:
debugging complexity increases when the same bug is effectiveness and efficiency criteria. They are as follows:
both lower in the sentence structure and lower in the pro-
gram structure. Accordingly, this research used two
program versions, one with the bug higher in both the Effectiveness
sentence structure and the program structure, and the
other with the bug lower in both structures. The correct Debug time, adjusted for verbalization rate
program logic is as follows: Number of mistakes made

0295 1F BRANCH-CHANGE EQUALS "YES"
0296 MOVE BRANCH-NO-INPUT TO Efficiency

BRANCH-NO-REPORT
0297 MOVE SALESMAN-NO-INPUT TO Number of changes in debugging functions

SALESMAN-NO-REPORT Number of reversals to the Debug Program function
0298 MOVE CUSTOMER-NO-INPUT TO Number of changes in program location

CUSTOMER-NO-REPORT
0299 MOVE 'NO' TO BRANCH-CHANGE The effectiveness criteria were used to identify which of
0300 ELSE the expert-novice programmer classifications tested best
0301 IF SALESMAN-CHANGE EQUALS captured programmer expertise. The efficiency criteria

'YES' "described" the ease with which programmers ap-
0302 MOVE SALESMAN-NO-INPUT TO proached the task and thus provided the basis for a classi-

SALESMAN-NO-REPORT fication of programmers. The first two efficiency factors
0303 MOVE CUSTOMER-NO-INPUT TO derived directly from the function analysis. Program

CUSTOMER-NO-REPORT locations were those units of task material regarded as
0304 MOVE 'NO' TO chunks for the purposes of this research; they were the

SALESMAN-CHANGE DATA DIVISION, modules of the PROCEDURE DIVI-
0305 ELSE SION, the input, and the correct and incorrect outputs.
0306 IF CUSTOMER-CHANGE EQUALS It was expected that novices would exhibit more of all

'YES' (five) types of performance behavior than novices.
0307 MOVE CUSTOMER-NO-INPUT TO

CUSTOMER-NO-REPORT
0308 MOVE 'NO' TO CUSTOMER- ASSESSING DEBUGGING

CHANGE. EXPERTISE

The high-level bug was introduced into the program by In an attempt to better understand the nature of program-
removing line 299, which resets the branch-change flag; mer expertise, two measures of expertise were investi-

, and the low-level bug by removing line 308, which resets gated: an er ante method-the expert opinion of manag-
the customer-change flag, and placing the period at the ers at the S.G.C.C. (Reilly et al., 1975)-and an ex post
end of line 307. method derived from the protocol data collected in this

study. The latter method relied on programmers' chunk-
ing skills to differentiate experts from novices. It used the

SUBJECTS three efficiency measures as indicators of chunking abil-
ity. These variables reflect the ability of programmers to

The sixteen programmers who participated in this re- chunk the program by assessing the extent to which prob-
search were practicing programmers from the State Gov- lem solving is a smooth-flowing procedure as opposed to
ernment Computer Center (S.G.C.C.), Brisbane, Aus- an erratic or disorganized one. Greater chunking ability,
tralia. This sample size is large for a methodology that is a property of experts, is manifested in fewer changes in
both tediojls and time-consuming. With one exception, the three efficiency measures. The analysis for program
all the programmers had spent their entire programming location changes controlled for bug level since bug level

292



significantly influenced the extent to which programmers PERFORMANCE ANALYSIS
examined different parts of the listings. Table 1 shows
those subjects classified as expert and novice program- The first step in analyzing the protocol data was to deter-
mers by each of the programmer classifications. Only 10 mine whether (a) a change in bug location resulted in
of the 16 subjects were assigned to the same class by both tasks that challenged programmers to different extents,
methods. Hence, the correspondence between the classi- and (b) which programmer classification best differen-
fications was low. The two classifications were first tiated programmer performance. These analyses were
assessed on the basis of the debugging effectiveness mea- carried out to ensure that both the task and the expert-
sures, time and accuracy; next, the classification that novice classification permitted capturing characteristics
produced the best time and accuracy figures was used to of expertise.
further investigate problem solving behavior.

Evaluation of Bug Complexity
VERBAL PROTOCOL CODING

Bug level was a significant determinant of debug time for
Subjects in the debugging study were directed simply to both the manager and the expost classifications (p = .042
speak aloud as they debugged one of the two program and .001, respectively). As expected, the low-level bug

versions and the verbal protocol was tape recorded. This required more time to detect and correct than the high-
data was then converted to a form suitable for the content level bug. In addition, the result for the expost classifica-
analysis by coding it according to a coding scheme based tion showed a significant interaction effect manifested
on the debugging functions and debugging activities. particularly in the behavior of novices with low bugs;
Tables 2(a) and (b) show the coding scheme variables and they took significantly more time to complete the task
the expected direction of the results of testing the empiri- than experts with low bugs and novices with high bugs.
cal propositions. Table 3 shows similar information for Hence, these results demonstrate that the program with
the performance measures. the low-level bug was harder to repair than that with the

high-level bug and that subjects were challenged by the
Two independent coders who were naive to the psycho- debugging problem chosen as the task in this study. Sub-
logical constructs under investigation scored the verbal jects should, therefore, have manifested expertise in this
protocols. Several reliabilty measures were calculated task environment.
(see Tables 4.7 (a)-(e): Vessey, 1984). The reliabilities
for all levels of all parts of the coding scheme were
assessed as satisfactory compared with other studies. Evaluation of the Two Programmer
Multidimensional scaling (Young and Lewyckyj, 1979) Classifications
showed that both coders scored in an essentially similar
manner so that either coder's scoring was suitable for The manager classification (together with bug level)
further analysis. accounted for 36.1 percent ofthe variation in debug time,

while the er post classification accounted for 73.7 per-
cent of the variation. Further, the ex post method outper-

Data Analysis formed the manager classification in classifying all (5)
programmers who made mistakes as novices, compared

Table l shows basic subject and task information. Note with 4 out of 5 for the manager classification. On these
that the subject who both accomplished the task in the grounds, the ex post classification method, was deemed
shortest time and spoke at the fastest rate had only two to be more suitable for further analysis.
weeks' experience as a practicing programmer and was
rated as a novice by managers. The data was analyzed
using univariate analysis of variance (ANOVA). In all CONTENT ANALYSIS
cases there were two factors: the programmer skill level
derived from the particular classification used and the The dependent variable tested in the content analysis
level of the program bug. For analyses involving debug (using 2-factor ANOVA) was the proportion of a partic-
time, analysis of covariance (ANCOVA) was used, the ular behavior appearing in the protocol. Proportions
covariate being verbalization rate. The analysis con- were used since the number of phrases in the responses
trolled for verbalization rate since speaking aloud slows varied among subjects. Table 4 shows the significant
mental processes (Ericsson and Simon, 1980). The results of testing the function and activity variables for
Newman-Keuls test was used to investigate further the the effects of the ex post programmer classification. Al-
effect ofany interactions revealed by the ANOVA and/or though there are a number of significant results, few
ANCOVA models (Winer, 1971). hypotheses are supported due to the requirement that the

293



Table 1

Basic Subject Information

Ex ante Ex post
Experience Classi- Classi- Bug Time Rate

Subject 1 Months fication fication Level Mins:Secs Words Words/Sees

EHt 22.0 Expert Expert High 11:00 891 1.35
EH2 12.0 Novice Expert High 17:47 837 0.78
EH3 11.0 Expert Expert High 14:43 1209 1.37
EH4 2.0 Novice Expert High 15:40 1230 1.31

NHi 2.5 Novice Novice High 20:50 2170 1.73
NH2 10.0 Expen Novice High 19:33 1447 1.23
NH3 24.0 Expert Novice High 21:40 1458 1.12
NH4 05. Novice Novice High 17:20 1107 1.06

ELI 24.0 Expert Expert Inw 19:23 1259 1.08
EL2 24.0 Expert Expert Low 25:29 1910 1.25
EL3 .05 Novice Expert Low 8.40 1047 2.01
ELA 40.0 Expert Expert Low 12:40 956 1.26

NLl 33.0 Expert Novice Low 38:44 2583 1.11

NL2 10.0 Novice Novice Low 31.38 2139 1.13
NL3 36.0 Novice Novice Low 36:46 2854 1.29
NIA 0.5 Novice Novice Low 37:54 3568 1.57

1Subjects are henceforth identified by codes. The first character identifies the subject as
either an expert or a novice according to the ex post classification. The second character
identifies the program bug as either a high-level or a low-level bug. Subjects are further
identified, within theses classes, with a numeric character.

294



Table 2(a)

Debugging Function Hypotheses

Level Code Function Hypothesis Directiont

A DB Debug Program HF8 N > E for L
PF Find Problem HF9 E > N for L
HF Formulate Hypothesis HF20 E > N for L
EA Amend Error HF 11 N > E for L
CR Represent Code HF12 N > E for L

B HFG Generate Hypothesis HFt E > N for L
HFE Evaluate Hypothesis HF2 E > N for L
EAR Repair Error HF3 N > E for L
EAC Confirm Error HF4 N > E for L
CRR Read Code HF5 N > E for L
CRL Localize Code HF6 N > E for L
CRP Process Code HF7 E > N for L

'For ease of interpretation, the expected direction is recorded throughout as
"A > B".

E = Expert
N = Novice
L = Low-level (more complex) bug

295



Table 2(b)

Debugging Activity Hypotheses

L.Evel Code Activity Hypothesis Direction

A P Planning HAP8 E > N for L
K Knowledge building HAK10 N > E for L
B Bug-related HAB 11 N > E for L

B GO Goal HAP6 E > N for L
PR Procedure HAP7 E > N for L
IG Information gathering HAK8 N > E for L
KS Knowledge stating HAK9 N > E for L
CL Clue HAB8 N > E for L
HY Hypothesis HAB9 N > E for L
ER Error HAB10 N > E for L

C GOX Sets a goal HAPt E > N for L
GOE Evaluates a goal HAP2 N > E for L
GOC Cancels a goal HAP3 N > E for L
GOS Satisfies a' goal HAP4 N > E for L
GON Indicates goal not satisfied NAP5 N > E for L
IGC Gathers information from comments HAKt E > N for L
IGD Gathers information from data HAK2 E > N for L
IGS Gathers information from statements HAK3 N > E for L
IGF Gathers information in a functional sense HAK4 E > N for L
IGP Gathers information from processing HAK5 E > N for L
IGE Evaluates information HAK6 E > N for L
IGK Understands task information HAK7 E > N for L
CLF Finds a clue HABl E > N for L
CLS Makes a statement about a clue HAB2 N > E for L
HYG Generates hypothesis HAB3 E > N for L
HYE Evaluates hypothesis HAB4 E > N for L
ERR Repairs error HAB5 N > E for L
ERM Makes error HAB6 N > E for L
ERS Makes statement about error HAB7 N > E for L

effect be manifested to a greater extent through the more Planning Activities
difficult, low-level bug. The results were as follows.

The low frequency of occurrence of the significant vari-
ables, goal evaluating activity (GOE) and unsatisfied goal

Debugging Functions activity (GON), calls into question the stability of the
results.

Novices spent more time in the Debug Program function
(DB); experts spent more time in the Find Problem func-
tion (PF); and novices spent more time in the Error Re- Knowledge Building Activities
pair function (EAR). All results were in the expected
direction but since the effects were not manifested to a The er post skill classification significantly affected two
greater extent through the harder, low-level bug, the knowledge building activities. First, experts exhibited
relevant hypotheses HF8, HF9, and HF3 were not sup- more information evaluating activity (IGE) than novices;
ported. the result was in the direction postulated in hypRthesis

296



HAK6, but the level of activity did not increase for the solving (method variables), and specific solution-related
low-level bug and the hypothesis was not supported. factors (solution variables). Both qualitative and quanti-
Second, there were two significant interaction effects for tative variables were examined.
information gathering from program statements activity
(IGS). (a) Novices displayed more of the activity than ex- Four binary variables resulting from this analysis served
perts for high bugs. Hypothesis HAP3 predicted that as input to a macro-analysis that identified strategic
novice activity would exceed that of experts for the low decisions the subjects made in debugging. These four
bug. Apparently, experts required much less information decisions represent significant choices subjects faced,
search to find the high bug than did novices, while the dif- either explicitly or implicitly, in debugging a program.
ferences for the low bug were not as marked. (b) Experts The binary decisions, in the sequence in which subjects
displayed more of the activity for low bugs than for high considered them, are:
bugs.

1. Whether subjects examined the program or the
output first.

Bug-Related Activities
2. Whether subjects engaged in active or passive

There were three significant main effects for bug-retated examination of the problem
activities, but no interaction effects, so none of the hy-
potheses was supported. First, experts displayed more 3. Whether subjects were constrained by the hypoth-
clue finding activity (CLF) than novices. Second, experts eses they stated.
also displayed more clue activity (CL) than novices. It
was expected that experts would exhibit more clue find- 4. Whether subjects developed a model of the pro-
ing activity than novices but that the frequency of clue gram structure and deduced a causal representation
stating activity (CLS) would outweigh clue finding activ- of the error in terms of that model.
ity and that novices would, therefore, exhibit more
aggregate clue activity than experts. Third, as expected, Subjects were then characterized according to the strate-
novices displayed more error making activity (ERM) gic decisions they made. Figure 3 shows a decision tree
than experts. representation of the strategy paths followed by the sub-

jects. With 4 binary decisions, there are a total of 16 pos-
sible paths. The number of subjects choosing each path

PROCESS ANALYSIS is shown on the diagram. Subjects followed 6 of the 16
paths, The expert and novice programmers according to

The basis for examining problem solving processes was the ex post classification were then compared with the
the episode: a group of task assertions related to the same groups of programmers following certain strategic paths
goal or objective (Newell and Simon, 1972, p. 84). A derived from the process analysis. This comparison per-
subject's protocol comprises a sequence of such epi- mitted the debugging strategies used by those program-
sodes, each associated with the fulfillment of a specific mers classified as experts and those classified as novices
goal. Hence, the representation of a subject's protocol in in this study to be identified. Experts and novices each
episode form captures the goal-oriented behavior of the followed 3 paths (strategies 2, 4, and 6, and 1, 3, and 5,
subject and the sequence in which it occurs. It can be respectively).
used, therefore, as the backbone for the representation of
the problem solving process. Table 5 shows a decision table representation of the deci-

sion tree presented in Figure 3. Note that two factors
Episodes can be aggregated into larger groups of related determined expert behavior in this diagnostic task: the
behaviors, known here as phases. All subjects' protocols ability to pursue a breadth-first search for the error (Nils-
could be characterized in terms of a limited number of son, 1980; Feltovich, 1981) and the ability to think in
such phases. Those phases found to be present in de- systems terms (Johnson, Hassebrock, Duran, and Mol-
bugging protocols were problem determination, gaining ler, 1982). Programmers who were constrained by the
familiarity with progra8 function and structure, explor- hypotheses they generated were novices. Moreover, pro-
ing program execution and/or program control, and grammers who engaged in breadth-first search for the
repairing (and confirming) the error. error but who did not formulate a model of the program

structure and conceive of the error within that context
Information derived from the analysis of episodes and were likely to make mistakes. They were therefore re-
phases formed part of a larger analysis that characterized garded as novices. Whether subjects initially examined
subjects' protocols in terms of overall task accomplish- the output of the program had no effect on problem solv-
ment (outcome variables), approaches to problem ing, neither did reading modules versus mentally execut-

297



Table 3

Debugging Performance Measures

Measurement
Variable Direction

Debugging Effectiveness

Debug time adjusted for
verbalization rate N > E for L

Number of mistakes made N > E for L

Debugging Emciency

Number of changes in
debugging functions N > E for L

Number of reversals to the
Debug Program function N > E for L

Number of changes in
program location N > E for L

298



Table 4

Summary of the Significant Results for Hypotheses Testing the Effects of the ex post
Classification on Debugging Function and Debugging Activity Variables

Dependent Main Effects Interaction Efects
Variable Significance Direction Significance Direction

Debugging Functions
HF8: Debug Program (DB) .008** N>E
HF9: Find Problem (PF) .015* E>N

HF 1: Generate Hypothesis (HFG) .046*1

HF3: Repair Error (EAR) .025* N>E

Planning Activities
HAP2: Evaluates a goal (GOE) .029* N>E
HAP5: Indicates goal not satisfied

(GON) .043* N>E

Knowledge Building Activities
HAK3: Gathers information from

statement (IGS) .028* N>E for L
L >H for E

HAK6: Evaluates information (IGE) .030* E>N

Bug-Related Activities
HAB8: Clue (CL) .040* E>N
HABl: Finds a clue (CLF) .004** E>N
HAB6: Makes error (ERM) .003** N>E

'The significant interaction effect for the Generate Hypothesis function (HFG) did not
show significant treatments using the Newman-Keuls test.

299



Y
System (01
Thinking?

NH 1(4)
NL 2(1)-NL3

(4) N L 4
Depth·first
search for (4) E l i 1

error? N Y E H 4(2)
(3) EL4Systemthinking? {1)(8)

N
Active (5)
module N

. NH3 (3 3

examination?
Depth-first
search for Y

Y error? (0)
(13)  EH2

5) EH3(4)
N N82Search fo YSystem

clues first? tltinking? (3)
(3) (2)

N N
NH4, ·
Nll' '

Active
module
examination? Y

(0)
-

(3)
N Y

tl12(6)
Depth-first
search for (31 Y EL 3error? N .(3)

System
thinking? (0)

N
--

Figure 3

Strategy Paths Followed by Programming Subjects

*The numbers in brackets on the branches represent the number of subjects following that strategy.

1The alternative to searching first for clues to the problem is to examine the program structure and function and
then to search for clues.

2Active module examination is distinguished by:
(a) initially following the execution path of the program rather than the lexical sequence;

or
(b) actively searching for the error rather than first understanding the program.

3All subjects who were not recorded as being constrained by their hypotheses were regarded as engaging in
breadth-first search for the error.

300



ing modules. The decision table, based on only two ments activity (IGS) showed significant effects, while no
binary conditions, classified 15 of the 16 programmer significant effects were observed for the relevant tune-
subjects in the same way as the erpost skill classification, tions (CR, CRR, CRL, and CRP). The level of descrip-
which was based on the chunking ability of the subjects. tion in the model-based approach was apparently too

global to detect the more subtle differences in informa-
tion gathering behavior. The significant result for infor-

Discussion and Conclusions mation evaluating activity (IGE), on the other hand,
could not have been captured by the model-based ap-

Two principal aspects of this study addressed the issue of proach as there was no "evaluate" function. Further-

what constitutes skill in debugging computer programs. more, the fact that experts spent more time than novices

The first aspect, from the viewpoint of the conduct of the in the Find Problem function (see Table 4) is evidence of

study, was the nature of the classification used to derive greater situation-dependency on the part of experts.

groups of expert and novice subjects for the study. The
er post classification more effectively described perfor- The process analysis illustrated clearly that novices did

mance than the ex ante or manager classification. Hence, not respond to the situation as it revealed itself. This was

these results support the concept on which the ex post
particularly evident in the four criteria used to conduct

classification was based, viz., that subjects' problem the analysis of subjects' debugging strategies: the se-

solving processes result in significant variability in per- quence of examining the program and the problem, the

formance that is difficult to capture except by explicit
extent of active involvement in determining program

recognition of those processes. Hence, the classification
functioning and/or the module in error, the attachment to

itself provided information on certain differences in ex- stated hypotheses, and the ability to create a model of
pert and novice debugging processes. Expert debuggers normal program functioning. The first three factors illus-

in this study were those who could more effectively ti·ated directly that expert debuggers approached the

chunk programs. They therefore exhibited disciplined problem in a more relaxed manner than novices, i.e.,

approaches to problem solving, pursing similar types of they responded to the task environment rather than to an

behavior rather than frequently changing mode of behav- internal model of the debugging process. The only (3)
subjects who examined the program before the outputior, checking on the clues to the problem, and changing listings were experts. Experts tended to read through the

reference points within the program. program in lexical rather than execution sequence. Ex-
Support for the use of chunking abilty as a measure of de- perts did not appear to be guided by any hypotheses they

bugging expertise was provided by the analysis of sub- stated, let alone addicted to them as were novices. The

jects' strategy paths. Except for subject NH2, classifica- fourth factor, formulating a model of correct system
tion of subjects according to their high-level problem operation and perceiving the effects of the program error
solving capabilities and their approach to modeling the

in terms of that model, is a consequence ofthe high-level,

system resulted in the same programmer classification as situation-dependent problem solving approach of
that based on chunking abilty. Hence, a micro-analysis of

experts.

debugging activities and a macro-analysis of debugging Evaluation of these four factors in terms of the strategystrategies produced simlar results.
path analysis revealed, however, that only two of these

The major aspect of this study that addressed debugging
factors have significant consequences for problem solv-

expertise was the notion of the importance of situation- ing expertise. Being constrained by the hypotheses they

dependency in problem solving. Both the content and the stated and therefore engaging in a depth-first search for

process analyses assessed the extent to which experts and the error had significant (negative) consequences for ex-

novices responded to factors in the task environment as pertise. So too did the lack of ability to conceptualize the

opposed to following an internal model of the debugging
program and the error in it as a system. Hence, expertise

process. The content analysis demonstrated that the situa- is associated with two data-driven or situation-dependent
characteristics: breadth-first search for the error and thetion-dependent approach (debugging activities) was

capable of eliciting more information than the model- ability to create a model of normal program functioning.

based approach (debugging functions). This was due
partly to the greater level ofdetail in the categories exam- Results obtained by examining debugging expertise lead

ined but also to the nature of a model, which permitted to the following strategic propositions that can be tested
in future research:capture of only certain selected aspects of a process. For

example, the increased error repairing behavior of nov- 1. (a) Experts use breadth-first approaches toices was captured by both functions and activities (EAR
problem solving and, at the same time,and ERM) as was the problem formulating behavior (PF adopt a system view of the problem area.and CLF). However, gathering information from state-

301



Table 5

Decision Table for Determining Expert
and Novice Subjects According to the a post

Programmer Classification

Rules
1 2 3

1. Breadth-first
search for error Y Y N

Conditions
2. System

Thinking YN-

A. Designate
Expert X

Actions
B. Designate

Novice X X

zThis table approaches the designation of experts
and novices from the viewpoint of experts as opposed
to Figure 3, which approached it from the viewpoint
of novices. Figure 3 derived from the analysis in this
chapter which identified constrained problem solving
as a characteristic of novices, while a more positive
approach identifies the characteristics of experts.

(b) Experts are proficient at chunking pro- REFERENCES
grams and hence display smooth-flowing
approaches to problem solving. Atwood, M.E. and Ramsey, H.R., Cognitive Struc-

tures in the Comprehension and Memory of Com-
2. (a) Novices use breadth-first approaches to puter Programs: An Investigation of Computer Pro-

problem solving but are deficient in their gram Debugging", NTIS, AD-A060 522/0, 1978.
abilty to think in system terms. Bouwman, M.J., "Financial Diagnosis: A Cognitive

Model of the Processes Involved", Unpublished
(b) Novices use depth-first approaches to Doctoral Dissertation, Carnegie-Mellon University,

problem solving. 1978.
Brooks, R.E., "Studying Programmer Behavior Experi-

(c) Novices are less proficient at chunking mentally: The Problems of Proper Methodology",
programs and hence display erratic ap- Communications of the ACM, Volume 23, April,
proaches to problem solving. 1980, pp. 207-213.

Dreyfus, S.E., " Formal Models versus Human Situa-
Further investigation will serve to extend and refine the tional Understanding: Inherent Limitations on the
theory and also to set boundaries on the applicability of Modeling of Business Expertise", Ollice: Tech-
the strategic propositions. nology and People, Volume 1, August, 1982, pp.

133-165.

302


	Association for Information Systems
	AIS Electronic Library (AISeL)
	1985

	Expertise in Debugging Computer Programs: Situation-Based versus Model-Based Problem Solving
	Iris Vessey
	Recommended Citation


	tmp.1422242788.pdf.fSB5M

