Association for Information Systems

AIS Electronic Library (AISeL)

2012 Proceedings SIGED: IAIM Conference

2012

Teaching Theories Underlying Agile Systems

Development

Adarsh Kumar Kakar
Alabama State University, akakar@alasu.edu

Joanne Hale
University of Alabama, jhale@cba.ua.edu

David Hale
University of Alabama, dhale@cba.ua.edu

Follow this and additional works at: http://aisel.aisnet.org/siged2012

Recommended Citation

Kakar, Adarsh Kumar; Hale, Joanne; and Hale, David, "Teaching Theories Underlying Agile Systems Development" (2012). 2012
Proceedings. 6.
http://aisel.aisnet.org/siged2012/6

This material is brought to you by the SIGED: IAIM Conference at AIS Electronic Library (AISeL). It has been accepted for inclusion in 2012

Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.


http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsiged2012%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/siged2012?utm_source=aisel.aisnet.org%2Fsiged2012%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/siged?utm_source=aisel.aisnet.org%2Fsiged2012%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/siged2012?utm_source=aisel.aisnet.org%2Fsiged2012%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/siged2012/6?utm_source=aisel.aisnet.org%2Fsiged2012%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Kakar, Hale, Hale Teaching Theories

TEACHING THEORIES UNDERLYING AGILE SYSTEMS DEVELOPMENT

Adarsh Kumar Kakar

Computer Information Systems Department
Alabama State University
akakar@alasu.edu

Joanne Hale
Management Information Systems Department
University of Alabama

jhale@cba.ua.edu

David Hale

Management Information Systems Department
University of Alabama

dhale@cba.ua.edu

Abstract:

Presently Agile methods courses taught in universities focus primarily on providing hands-on experience of the
process of development but ignore the evolution of, and theories behind, the Agile practices. “Without theory we are
just groping in chaos” (Deming, 1986). Knowing the ‘why” in addition to the “how” of Agile methods will help develop
reflective skills and give students an edge as they transition to the rapidly evolving real world of IS. In this article a set
of relevant theories that can be included as a module in an Agile method course is outlined. An exposure to theories
underlying Agile methods help students appreciate the relevance of the principles and practices of the Agile approach
and develop authentic problem solving skills.

Keywords: Agile Methods, Theory and Paradigms, Course Module

[. INTRODUCTION

Both theoretical and experiential knowledge are necessary preconditions for successful performance of
one’s job. Theory and practice support each other in a way that includes an understanding of the rationale
according to which tasks should be carried out and an understanding of the boundary conditions of the
given job. Thus, knowledge that is useful at work includes the dimensions of both practical knowledge
and theoretical understanding. Recent accounts on the development of expertise have emphasized that a
combination of these dimensions is of fundamental importance (e.g. Leinhardt et al., 1995).

This is because work-based learning is not a unified phenomenon but varies in different contexts and
between actors. Unless the students develop reflective skills they will not be able to apply the knowledge
and skills developed in the classroom to the real world. Only providing hands-on experiential knowledge
of the process of development is not enough to develop the self-regulative knowledge including
metacognitive and reflective skills. Formal or theoretical knowledge is also essential.

But this is easier said than done. In the absence of academic work in the area the domain of Agile
methods has remained largely atheoretical. There are no theories or models to provide guidance only a
set of principles and practices. As a result Agile method courses focus only on the narrow process/
practice perspective and fail to prepare students with the depth needed to solve real world problems.

To fill the gap, this article traces the evolution of Agile methods and identifies the relevant theories that
should be taught as a module in an Agile methods course. In the authors’ own experience, this provides
student with a structural framework that allows them to make sense of their hands-on experience.
Theories develop reflective thinking and serves as a benchmark against which the learnings from an agile
development method course can be measured against to determine what they are doing right and where

Proceedings of the AIS SIG-ED IAIM 2012 Conference 1



they are going wrong. Students are then better equipped to apply learning at the work-place under
various circumstances in the real world.

II. APPROACH

Agile methods represent a major departure from traditional, plan-based approaches to software
engineering (Dyba and Dingsoyr, 2009). The issue of how software development should be organized in
order to deliver faster, better, and cheaper solutions has been discussed in software engineering circles
for decades. Many remedies for improvement have been suggested, from the standardization and
measurement of the software process to a multitude of concrete tools, techniques, and practices.
Recently, many of the suggestions for improvement have come from experienced practitioners, who have
labeled their methods agile software development. This movement has had a huge impact on how
software is developed worldwide (Dyba and Dingsoyr,, 2009). The increasing popularity of agile methods
makes it imperative that agile software development should be taught at university level (Hazzan and
Dubinsky, 2007).

Although not explicitly identified or stated, Agile methods are an amalgamation of many theories and
concepts. The module introducing theories underlying the agile methods could begin with comparison of
how the evolution of Systems Development Methods (SDMs) mirror those of other manufacturing
paradigms. This will provide a context and a fresh perspective to students that will affirm their knowledge
of SDMs and Agile methods by comparison. Students will learn to appreciate how a popular theory or
system is wholly upended (Kuhn 1962) giving rise to new theories and paradigms. Additionally they will
learn to appreciate how concepts emerge and will help them to actively (re)construct concepts on their
own.

Building on this foundation the instructor can then explore the theories underlying the Agile manifesto

and its 12 principles. The relevant concepts and theories that in the author’s experience are useful to the
students are the Job design theory, the marketing concept, socio-technical system perspective, process
control theory, the theory of emergence and approach-avoidance theory. The descriptions of the evolution
of SDMs and the theories underling Agile methods provided in this article are illustrative and not
exhaustive and are meant to provide the reader with an idea of what the suggested theory module of an
Agile methods course should contain.

IIl. EVOLUTION OF AGILE METHODS
Craftsmanship and Code-and-fix

In the 1950s, people working with computers had much in common with artists, artisans and craftsmen
before the industrial revolution (Hannemyr,1999). There was room for creativity and independence.
Management methods of control were not yet developed. There was no clear division of labor. Skilled
programmers, like all good craftsmen, had intimate knowledge and understanding of the systems they
worked with. Programmers were able to get by with this type of development for two reasons. First, no
better way had been developed, and second, software was not that complex. This did not last. As
software grew more complicated and organizations relied on computers for more of their operations,
including finances and even human lives, this laissez faire approach to programming gave way to more
disciplined methods. By the mid-sixties, management wanted to bring computer work in line with other
industrial activities, which essentially meant that they wanted programming to be part of a managed and
controlled process.

Taylorism and Waterfall

To accomplish this, software developers turned to a more than fifty year old paradigm, called "Scientific
Management" (Taylor, 1911). Scientific Management was invented by the engineer Frederick Winslow
Taylor, and aimed at taking away from workers the control of the actual mode of execution of every work
activity, from the simplest to the most complicated. Taylor's argument was that only by doing this could



Teaching Theories underlying Agile Systems Development

management have the desired control over productivity and quality.

The methods advocated by Taylor were to increase standardization and specialization of work. In the
computer field, this implied, among other things, the introduction of programming standards, code
reviews, structured walkthroughs and miscellaneous programming productivity metrics. The taylorist
methods such as the waterfall model and its variants promote strong conformance to a plan through
upfront requirements gathering and upfront systems design. They also encourage strict Tayloristic
division of labor and the use of role based teams of business analysts, system architects, programmers
and testers (Maurer and Melink, 2005).

Although this model of development was a substantial improvement over the former model of “code-
andfix” methods, the software developed was both late and did not fundamentally address the customer’s
real needs. Under conditions of rapidly evolving customer needs the approach of full requirements
definition, followed by a long gap before those requirements are delivered is no longer appropriate. With
problem complexity, changing scope and requirements, and technologies evolving during the project,
developers, over time, came to understand that the “dreaded system integration phase” would not go as
well as planned.

Agile and Lean Production

Agile software development began, in the early 1990s, as countermovement to the Taylorist software
development processes like the Waterfall Model or the V-Model. Taylorist approaches are based on the
principle that the first step in a product/ system solution is to comprehensively capture the set of user
requirements to address the business problem. This is followed by architectural and detailed design.
Coding or construction is commenced only after confirmation of requirement specification by the
customer and completion and approval of architecture/ design. The customer is typically involved at the
stage of requirements gathering and the final stage of product acceptance. As a result the validation of
the product happens only at requirement gathering stage and at the end of the long development cycle.

On the other hand agile projects work on minimum critical specification (Nerur and Balijepally, 2007).
Agile projects start with the smallest set of requirements to initiate the project. They work on the principle
of developing working products in multiple iterations. Users review actual working product at
demonstrations instead of paper reviews or review of prototypes in plan-driven methods. These working
products become the basis for further discussions and the team works towards delivering the business
solution using the latest input from customers, users, and other stakeholders. As the solution emerges
through working products, the application design, architecture, and business priorities are continuously
evaluated and refactored. The Agile methods such as Extreme programming, Scrum, Crystal
methodologies, Dynamic Software development method (DSDM), Feature Driven Development (FDD)
and Lean Software Development Method (LSDM) are based on the Agile principles (Table 1). Many of the
Agile software development principles introduce in 2000s have their origins in the Lean and Agile
manufacturing paradigms introduced in the 1980s and 1990s respectively.

The origins of lean thinking can be found on the shop-floors of Japanese manufacturers and, in particular,
innovations at Toyota Motor Corporation (Shingo, 1981, 1988; Monden, 1983; Ohno, 1988). These
innovations, resulting from a scarcity of resources and intense domestic competition in the Japanese
market for automobiles, included the just-in-time (JIT) production system, the kanban method of pull
production, respect for employees and high levels of employee problem-solving/automated mistake
proofing. This lean operations management design approach focused on the elimination of waste and
excess from the tactical product flows at Toyota (the Toyota “seven wastes”) and represented an
alternative model to that of capital-intense mass production (with its large batch sizes, dedicated assets
and “hidden wastes”).

Agile manufacturing is seen as the next step or extension in the evolution of production methodology
following Lean manufacturing. The term agile manufacturing can be traced back to the publication of the
report 21st Century Manufacturing Enterprise Strategy (lacocca Institute, 1991). The origins of the “agility
movement” stems from US government concerns that domestic defence manufacturing capability would

Proceedings of the AIS SIG-ED IAIM 2012 Conference 3



be diminished following the end of cold war in 1989. While the proposed definition of leanness is “the
maximisation of simplicity, quality and economy” agile manufacturing added flexibility and
responsiveness to the definition. It seeks to achieve competitiveness through rapid response and mass
customization. Whereas lean methods offer consumers good quality products at low price by removing
inventory and waste from manufacturing agile manufacturing is a strategy for entering niche markets
rapidly and being able to cater for specific needs of ever more demanding customers on an individual
basis.

IV. THEORIES
Process Control Theory

Industrial process control theory specifies two types of process control systems: defined processes and
empirical processes (Schwaber, 1995). Defined processes are those which, given a certain set of inputs,
and applying a certain set of controls, always attain a specified outcome and are repeatable. They are
referred to as whitebox systems, as the processes are well defined and understood.

Empirical processes, on the other hand, are referred to as black-box systems. These processes are
generally complex in nature, not well understood and have no defined set of controls that can be applied
to repeatedly generate the desired outcome. Such processes have unpredictable outcomes, and can only
achieve desired outcomes empirically. In other words, one applies a certain degree of control, measures
the output, adjusts the controls and repeatedly do this until the desired outcome is finally reached - like a
missile homing in on a target.

Software is considered to be such a complex system, as there is no way in which one set of controls can
be put in place in order to provide a predictable or repeatable desired outcome. Some of the reasons for
this lack of predictability are in large part due to the high degree of uncertainty surrounding the
technology, and business requirements. Even with highly detailed upfront user interface designs,
specifications and plans, the software produced often turns out different from its original intent. This can
be attributed to the fact that once end users see the software and use it, they realizes there are often
different and improved ways of doing things.

Therefore applying defined process methodologies to intrinsically unpredictable and unrepeatable
systems does not always work. Waterfall methodologies, which most software teams are currently using,
are a form of defined process, as all the unknowns are expected to be solved up-front. Waterfall
methodologies assume that software development is a defined process, i.e. a well understood process.
However this is often not true. Consequently, in Agile approaches, any detailed up-front effort to fully
understand the problem domain is considered wasteful. If one borrows from Lean thinking, excessive
upfront planning can be thought of as inventory on the shop floor, which is a liability rather than an asset.
Uncertainty is not something that you can just plan away with up-front research and design. Processes
have to be more fluid to deal with them.

Emergence

When faced with changing requirements and technologies, agile methodologists do not believe that a
software application can be fully specified up-front. Instead, the true requirements lead towards the
development of a system a customer actually wants (as opposed to what they initially thought they
wanted) should be allowed to emerge over time. This is the rationale behind agile methodologies
welcoming changing requirements, even late in the development cycle. The short iterations and customer
inspection of working software from each iteration provide the mechanism to allow requirements to
emerge. The goal of this flexibility is to deliver what the customer really wants even in the face of constant
change and turbulence.



Teaching Theories underlying Agile Systems Development

Job Design Theory

A methodology is a systematic way of performing a task or doing work. Therefore it is logical to look at
SDMs from the perspective of job design. It opens up avenues to vast existing literature on job design
and makes them available to the newer discipline of software engineering.

The literature on job design contrasts “Taylorist” jobs to the “Enriched” jobs. Fredrick Taylor (1947)
viewed job design as a scientific optimization problem, where industrial engineers study the production
process and devise the most efficient way to break that process into individual, precisely defined tasks.
Typically, a Taylorist job is highly specialized, and workers are not encouraged to experiment, innovate,
or otherwise vary the way that tasks are performed.

In the 1970’s, academics such as Richard Hackman, Edward Lawler and Greg Oldham started to argue
that Taylorist job design is sub-optimal (Hackman and Qldham, 1976; Hackman and Lawler, 1971;
Lawler, 1973; Porter, Lawler and Hackman, 1975). Enriched jobs, by encouraging workers to learn and
innovate at work, increase the motivating potential of work. Motivated workers perform tasks more
accurately and are more likely to find productivity innovations that engineers overlook. In the 1980’s,
firms put the theory into practice by redesigning jobs, adopting self-managed teams and work groups, and
creating employee participation programs like quality circles.

The Hackman and Oldham (1976) Job Characteristics Model (Figure 1) is one of the most elaborate and
widely accepted theories of job design (Kiggundu, 1981), and can be used to explain the emerging trends
and empirical observations in the domain of SDMs.

CORE JOB A Psvg:mg::-cu PERSONAL AND
DIMENSIONS STATES WORK OUTCOMES
Skill Variety -
Experienced High Internal
Task Identity Meaningfulness Work Motivation
of the Work
Tosk Significonce
High Quality
) Work Performance
Experienced
Autonomy ;Responnbilny P
for Outcomes High Satisfaction
of the Work With the Work,
Knowledge of the
Feedback »Actual Results of Low Absenteeism
the Work Acfivities I and Turnover

EMPLOYEE GROWTH
NEED STRENGTH

Figure 1. The Job Control Theory (JCT)

Proceedings of the AIS SIG-ED IAIM 2012 Conference 5



HIGH

AGILE METHOD >
TAYLORIST METHOD >

LOW

Skill Task Task Autonomy Feedback
Variety Identity Significance

Figure 2. A comparison of Agile and Taylorist methods

Taylorist software development methods deploy specialized role based teams, with individual team
members requiring less skill variety to accomplish jobs. Detailed planning is done of entire software
development lifecycle activities including requirements gathering, design, construction, testing and project
coordination and management activities and specialized people handle each of these tasks. The
allocation of work specifies “not only what is to be done but how it is to be done and the time allowed for
doing it" (Chau, Maurer, and Melnik, 2003). This reduces the autonomy of employees and shifts the
focus from individuals and their creative abilities to the processes themselves.

On the other hand agile methods emphasize and value individuals and interactions over processes. Agile
methods are people-centric, recognizing the value competent people and their relationships bring to
software development (Nerur, Mahapatra, and Mangalaraj, 2005). People issues are at the heart of the
agile movement (Boehm and Turner, 2005). The agile team works by placing people physically closer,
replacing documents with talking in person and at whiteboards, improving the team’s amicability and its
sense of community (Cockburn and Highsmith, 2001). Tasks are not specialized to the degree of plan-
driven methods. All team members are involved in coding, designing and testing thus increasing the skill
variety needed to complete a task.

Agile methods move away from a deterministic/ mechanistic view of problem solving to a dynamic
process characterized by iterative cycles and the active involvement of all stakeholders. Unlike the
Taylorist methods, where the cycle time between requirements gathering and product release is typically
very long, the gaps between customer requirements and implementation into the product in agile projects
are narrowed in rapid cycles. The focus on developing working products rather than paper artifacts and
components enhances task identity and task significance. Big upfront design plans and extensive
documentation are of little value to practitioners of agile methods (Nerur and Balijepally, 2007). Important
features of this approach include evolutionary delivery through short iterative cycles — of planning, action,
reflection — intense collaboration, self-organizing teams, and a high degree of developer discretion,
providing the team members autonomy as well as quick feedback on the work accomplished. The agile
paradigm empowers individuals through a focus on developing working products, ownership and shorter
feedback cycles (Boehm and Turner, 2005), satisfying the three psychological states of the job
characteristics model, the need for meaningful work, the need to be responsible for work outcomes, and
the need for performance feedback. This increases the motivating potential of work, as measured by the
Motivating Potential Score (MPS), calculated by using the formula (Hackman and Oldham, 1976):



Teaching Theories underlying Agile Systems Development

Skill , Task |~ Task
Vot " o
MPS§ = Letiety  Iden l:;y Significance Autonomy x Job Feedback

resulting in higher team member morale, satisfaction and productivity.

JCM is able to explain the relevance of various best practices. For example the benefits of Paired
programming can be explained by the rapid feedback it provides to the developers. The benefits of
developing working products in rapid iterative cycles is due to the enhanced significance of the task
completed and getting early feedback from the users of the product. In addition developing whole,
meaningful and working products makes it easy for developers to identify with the tasks that are fulfilled.
This in turn increases the motivating potential of team members and the resulting work outcomes. This is
in contrast to the work where developers are given a specification for parts of the solutions, and do not
have full picture of the product this is being developed.

Approach-Avoidance Theory

Motivation to continue or pull out from a project can be viewed as an approach avoidance conflict. In
approach avoidance theory, when driving forces that encourage persistence outweigh restraining
forces that encourage abandonment (Brockner and Rubin, 1985) people will be motivated to continue
and complete the project. When restraining forces prevail over the driving forces people will withdraw.
These competing forces create a conflict over whether to continue or withdraw (Mann, 1966) impacting
motivation of individuals and teams.

Derived from approach avoidance theory, the completion effect, a driving force, reflects the notion
that the "motivation to achieve a goal increases as an individual gets closer to that goal" (Conlon
and Garland, 1993). The completion effect is consistent with psychological research suggesting that the
desire to achieve task closure, or completion, can have a significant influence on behavior (Katz and
Kahn, 1966). Results from a series of experiments provide support for the completion effect (Conlon, and
Garland, 1993; Garland and Conlon, 1998). Specific evidence that the motive to complete a task gets
stronger as one gets closer to completion can be found in work by Lewin (1935) whose hypothesis was
supported in later empirical work (Krech, 1935; Krech, Crutchfield and Liuson, 1969; Miller, 1944; Brown,
1948). These studies demonstrated that motivational intensity increased as the subjects moved closer to
a desirable goal object.

If individuals are motivated to complete what they start and if this motive gets stronger as one gets closer
to completion, then project completion may be a driving force behind individuals’ continuing to invest
efforts in projects that are already well under way. It overcomes the costs of persistence, resulting in
motivated individuals and teams working towards task closure, resulting in greater probability of
successful project outcomes and user satisfaction.

When the goal seems distant, and there is little visibility into project progress, uncertainty about project
outcomes builds up. The restraining force of cost of persistence then dominates resulting in demotivated
individuals and teams, project delays and user dissatisfaction. In a classic case, The London Stock
Exchange scrapped an electronic share-transfer system known as TAURUS, despite work spanning a
decade and investments estimated to be as high as 400 million pounds (Drummond, 1996; Duffy, 1993).
TAURUS was originally scheduled to be operational in 1989, but was abandoned in 1993, when it
became clear that the system was still several years from completion. A major factor in the decision to
abandon the project was the state of project incompletion (Drummond, 1996).

Agile projects work on minimum critical specification (Nerur and Balijepally, 2007). Agile projects start with
the smallest set of requirements to initiate the project. They work on the principle of developing working
products in multiple iterations. Users review actual working product at demonstrations instead of paper
reviews or review of prototypes in plan-driven methods. These working products become the basis for
further discussions and the team works towards delivering the business solution using the latest input
from customers, users, and other stakeholders. As the solution emerges through working products, the
application design, architecture, and business priorities are continuously evaluated and refactored.

Proceedings of the AIS SIG-ED IAIM 2012 Conference 7



Iteration by iteration, everyone involved can see whether or not they will get what they want. As a result
project progress is visible and the ability to decide what is to be done next is more complete, thus
reducing uncertainty and giving stakeholders more confidence in the state of completion of the project. As
the project moves progressively towards completion, the motivation of team members, and users who
form part of an extended team in Agile projects, keeps increasing. The team members and users rapidly
hit their stride with increasing motivation, impelling them to continue to invest their efforts and
accelerating them towards successful project completion.

Marketing Concept

Agile development approach brings the marketing concept into software engineering by emphasizing the
primacy of addressing evolving customer requirements. Keith's (1990) article, on the marketing concept is
one of the earliest and most popular. It is a descriptive article illustrating the adoption of the marketing
concept in an applied setting. The intuitive appeal of the concept and its successful application in practice
played an important role in its acceptance. In the article, Keith describes the Pillsbury Company's
evolution through three managerial phases, finally reaching what he calls a marketing control phase. His
description suggests that movement from the production through the sales and later through the
marketing phase has been an evolutionary process which left the organization a stronger entity. The
implication for the business is that this evolutionary process is the correct one for all organizations.
Customer focus is a core element of the marketing concept (Rosen, Schroeder and Purinton,1998).
Theodore Levittt's (1983) seminal statement of the marketing concept argued that customer needs must
be the central focus of the firm’s definition of its business purpose.

Although the plan-driven approaches such as the waterfall model do emphasize that user requirements
should be gathered before the design and development stage, it is not well suited to accommodate
requirement changes during its development cycle which may sometimes take a few years. This
approach is appropriate when requirements are stable. However in today’s faced paced business context,
the needs of customers evolve continuously in response to changes in environment in which they
operate. Software developers with customer focus aim to provide competitive advantage to their
customers (one of the Agile principles) by acquiring the ability to address these customer demands
rapidly by developing working products in quick iterations and with minimal waste. Therefore the agile
methods have more comprehensively embraced the market concept which is as relevant in today’s
business as it was in the 1990s.

Socio-Technical Systems Perspective

From a socio-technical systems perspective, research on self-organizing teams dates back to the
Tavistock group's study of English coal miners as autonomous groups in the 1950s (Trist, 1981).
Autonomous groups were described as learning systems that expand their decision space in response to
every day learning. The success of these autonomous groups was largely attributed to the supporting
organizational environment, an informal structure with a decentralized, participative, and democratic
system of control, called concertive control (Lewin, 1948). Concertive control was argued to be an
alternative to the bureaucratic control marked by an hierarchical system with rational-legal rules rewarding
compliance (Baker, 1993). Self-managing teams were proposed as an exemplar of concertive control and
were suggested to increase the organization's ability to respond to changing business conditions (Lewin,
1948).

Self-managing teams were described as teams made up of 10 to 15 people taking on the responsibilities
of their former supervisors; whose every day activities were guided by the senior management's
corporate vision; who were cross-trained individuals setting their own work schedules; who displayed
increased commitment to the company; and who co-ordinated with other areas of the company (Lewin,
1948). Selfmanaging teams in a concertive organization were said to be motivated by peer-pressure as
opposed to legal rules in a bureaucratic organization. The distinct synergy between the description of
these self- managing teams and the theoretical concept of a self-organizing team proposed in Agile
software development is inescapable (Highsmith, 2004).



Teaching Theories underlying Agile Systems Development

Agile methodologies give the entire (extended) development team the autonomy to self organize

in order to determine the best way to get the job done. Team members are not constrained by
predetermined roles or required to execute obsolete task plans. Managers of agile teams place a great
deal of trust and confidence in the entire team. In self organization, the emphasis is on face-to-face
conversations, rather than on communicating through formal (or informal) documents. Software
developers talk with software developers, business people talk with software developers, customers talk
directly with either business people or software developers. Agile methodologies also advocate the use of
post-mortem meetings in which team member reflect on how to become more effective. The team then

tunes and adjusts its behavior accordingly.

The theories and paradigms that form the basis of agile principles can be summarized in Table 1 below:

Table 1. Agile principles and Theories underlying Agile principles

Agile Principles

Theories and Paradigms

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Agile Manufacturing (Responsiveness), JCT (Task
Significance - valuable software), Marketing
concept (Customer satisfaction)

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Agile manufacturing (Flexibility — welcome change),
Marketing concept (Respond to changing customer
requirements)

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Agile  manufacturing  (Speed), JCT (User
Feedback), Working Software (Completion Effect)

Business people and developers must work
together daily throughout the project.

Marketing concept (Understand customer needs)

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

JCT (Autonomy), Socio-Technical

(Autonomy)

perspective

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of

Lean Manufacturing (Make only what is pulled by

progress. the customer, JCT (Task identity), Working
software (Completion Effect)

Agile processes promote sustainable development.

The sponsors, developers, and users should be

able to maintain a constant pace indefinitely.

Continuous attention to technical excellence | Quality (Lean manufacturing)

and good design enhances agility.

Simplicity--the art of maximizing the amount | Simplicity (Lean Manufacturing)

of work not done--is essential.

The best architectures, requirements, and designs | JCT (Autonomy), Socio-Technical perspective

emerge from self-organizing teams. (Self-Organizing teams)

At regular intervals, the team reflects on how | JCT (Job feedback)

to become more effective, then tunes and adjusts

its behavior accordingly.

Proceedings of the AIS SIG-ED IAIM 2012 Conference 9




V. CONTRIBUTION AND CONCLUSION

It is a well-known fact that the process of software development is a complicated task, composed of many
aspects, such as cognitive, social, and technical ones (Hamlet and Maybee, 2001; Tomayko and Hazzan,
2004). Accordingly, the academia has a significant and non-trivial role in the education of future software
developers toward this multifaceted challenge. This work makes a call for augmenting the theoretical
knowledge of SDMs. In the author’'s experience with teaching agile software development methods, it
makes a big difference in the depth of understanding that students acquire when the theoretical aspects
of agile are emphasized than when they are not. With theoretical insight students begin to understand
why agile practices work and under what context. Accordingly an outline of the theoretical component is
suggested which should become an integral part of any agile system development course.

VI. REFERENCES

Baker, J. (1993) “Tightening the iron cage: Concertive control in self-managing teams”, Administrative
Science Quarterly, (3)38, pp. 408-437.

Boehm, B. and R. Turner (2005) “Management challenges to implementing agile processes in traditional
development organizations”, IEEE Software, (5) 22, pp. 30-39.

Brockner, J. (1992) “The Escalation of Commitment to a Failing Course of Action: Toward Theoretical
Progress”, Academy of Management Review, (1)17, pp. 39-61.

Brockner, J. and J. Z. Rubin (1985) “The social psychology of entrapment in escalating conflicts”, New
York: Springer-Verlag.

Brown, J. S. (1948) “Gradients of approach and avoidance responses and their relation to motivation”,
Journal of Comparative and Physiological Psychology, 41, pp. 450-465.

Bunsen, C., Feldmann, R. L. and J. Dorr (2004) “Agile methods in software engineering education”, In 5th
International Conference on Extreme Programming and Agile Processes in Software Engineering,
XP2004 (Vol. 3092 Lecture Notes in Computer Science), pp. 284-293,

Chau, T., Maurer, F. and G. Melnik (2003) “Knowledge Sharing: Agile Methods vs. Tayloristic Methods”,
IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’03), Linz, Austria, pp. 302-308.

Cockburn, A. and J. Highsmith (2001) “Agile Software Development: The People Factor”, Computer, pp.
131-133.

Conlon, D. E., Garland, H. (1993) “The role of project completion information in resource allocation
decisions”, Academy of Management Journal, 36, pp. 402—413.

Conboy, K. and B. Fitzgerald (2004) “Toward a conceptual framework of agile methods: a study of agility
in different disciplines”, in: Proceedings of XP/Agile Universe, Springer Verlag.

Drummond, H. (1996) “Escalation in decision making: The tragedy of TAURUS.”, Oxford, UK: Oxford
University Press.

Duffy, M. (1993) “London’s embarrassing mistake”, Wall Street and Technology, 10, pp. 38-43.

Dyba, T. and T. Dingsoyr. (2008) “Empirical Studies of Agile Software Development: A Systematic
Review”, Information and Software Technology, (9-10)50, pp. 833-859.

Dyba, T. and T. Dingsgyr (2009) “What Do We Know About Agile Software Development”, IEEE
Software.

Garland, H. and D. E. Conlon (1998) “Too close to quit: The role of project completion in maintaining
commitment”. Journal of Applied Social Psychology, 28, pp. 2025-2048.

Hackman, J.R. and E. E. Lawler (1971) “Employee reactions to job characteristics”, Journal of Applied
Psychology Monograph, 55, pp. 259-286.

Hackman J.R. and G. R. Oldham (1974) “The Job Diagnostic Survey: An instrument for the diagnosis of
jobs and the evaluation of job redesign projects”, JSAS Catalog of Selected Documents in
Psychology (Ms. No. 810), 4, pp. 148.

Hackman, J.R, and G. R. Qldham (1976) “Motivation Through the Design of Work: Test of a Theory”,
Organizational Behavior and Human Resources, (2)16, pp. 250-279.

Hamlet, D. and J. Maybee (2001) The Engineering of Software, Addison Wesley, Boston, MA.

10



Teaching Theories underlying Agile Systems Development

Hannemyr, G. (1999) “Technology and Pleasure: Considering Hacking Constructive”, First Monday, 4, pp.
2.

Hazzan, O. and Y. Dubinsky (2007) “Why Software Engineering Programs should teach Agile Software
Development”, SIGSOFT Softw. Eng. Notes, (2)32, pp. 1-3.

Highsmith, J. (2004) “Agile Project Management: Creating Innovative Products”, Addison-Weasley, USA.

lacocca Institute. 21 st Century manufacturing strategy, Lehigh University, Bethlehem, PA.

Katz, D. and R. L. Kahn (1966) “The social psychology of organizations”, New York: Wiley.

Keith, R. J. (1960), "The Marketing Revolution" Journal o f Marketing, (January)/24, pp. 35-38.

Kiggundu, M. N. (1981) “Task interdependence and the theory of job design”, Academy of Management
Review, 6, pp. 499 —508.

Krech, D. (1935) “Measurement of Tension. Paper read at Symposium on Topological Psychology”, Bryn
Mawr College.

Krech, D., Crutchfield, R. S., and N. Livson (1969) “Elements of psychology (2nd ed.)”, New York, NY:
Alfred A. Knopf.

Kuhn, T. (1962) “The Structure of Scientific Revolutions”, University of Chicago Press.

Lawler, E. E. (1973) Motivation in work organizations. Monterey, Calif.: Brooks/Cole.

Leinhardt, G., McCarthy, Y K. and J. Merriman (1995) “Intergrating professional knowledge: The theory of
practice and the practice of theory”, Learning and Instruction, 5, pp. 401-408.

Levitt, Theodore (1983), “The Marketing Imagination”. New York: The Free Press.

Lewin, K. (1935) “A dynamic theory of personality”. New York, NY: McGraw-Hill.

Lewin, K. (1948) “Resolving Social Conflicts: Selected Papers on Group Dynamics”. Harper and Row,
New York.

Mann, J. (1966) “The Role of Project Escalation in Explaining Runaway Information Systems
Development Projects: A Field Study”, Unpublished Ph.D. Dissertation, Georgia State University.

Maurer,F. and G. Melnik (2005) “What you always wanted to know about agile methods but did not dare
to ask”, in: ICSE '05: Proceedings of the 27th International Conference on Software Engineering,
ACM Press, New York, NY, USA, pp. 731-732.

Miller, N. E. (1944) “Experimental studies of conflict”, In J. Hunt (Ed.), Personality and the behavior
disorders, 1, 421-465). New York, NY: Ronald Press.

Monden, Y. (1983) “The Toyota Production System”, Productivity Press, Portland, OR.

Nerur, S., Mahapatra, R. and G. Mangalaraj (2005) “Challenges of migrating to agile methodologies”,
Communications of the ACM, pp. 72-78.

Nerur, S. and V. Balijepally (2007) “Theoretical reflections on agile development methodologies: the
traditional goal of optimization and control is making way for learning and innovation”,
Communications of the ACM, (3)50, pp. 79-83.

Ohno, T. (1988) “The Toyota Production System: Beyond Large-Scale Production”, Productivity Press,

Portland, OR.

Porter, L. W., Lawler, E. E. and J. R. Hackman (1975) “Behavior in organizations”.. New York: McGraw-
Hill.

Porter, L. W., Lawler, E. E. and J.R. Hackman (1975) “Behavior in organizations”. New York: McGraw-
Hill.

Rosen, D.E., Schroeder, J.E. and E. F. Purinton. (1998) “Marketing High Tech Products: Lessons in
Customer Focus from the Marketplace”, Academy of Market Science Review, 98(6).

Schwaber, K. (1995) “Scrum Development Process”, presented at OOPSLA'95 Workshop on Business
Object Design and Implementation.

Shingo, S. (1981), Study of the Toyota Production Systems, Japan Management Association, Tokyo.

Taylor, F. W. (1947) “Shop management”. (published as part of Scientific management). New
York:Harper.

Taylor, F. W. (1911) “The principles of scientific management”, New York: Harper and Bros.

Taylor, F. W. (1947) “Shop management (published as part of Scientific management)”. New
York:Harper. (Originally published, 1903).

Tomayko J. and O. Hazzan (2004) “Human Aspects of Software Engineering”, Hingham, MA: Charles
River Media.

Proceedings of the AIS SIG-ED IAIM 2012 Conference 11



Trist, E. (1981) “The evolution of socio-technical systems”. Occasional paper.

VII. ABOUT THE AUTHORS

Adarsh K. Kakar is Assistant Professor at Alabama State University. He has over two
decades of experience in the Indian software industry and international consulting. His
research interests include software development methods and software product
management.

Dr. Joanne Hale is a Professor of Management Information Systems at University of
Alabama. Her research interests include Information systems development and delivery
methodologies, information systems process and quality metrics programs, |.S. project
management, context aware computing for disaster response (supported through NSF).
She is a winner of The University of Alabama’s National Alumni Association
Outstanding Commitment to Teaching Award.

Dr. David Hale is Professor and Director of Management Information Systems at
University of Alabama. He is a William White McDonald Family Distinguished Faculty
Fellow and Director of The Aging Infrastructure Systems Center of Excellence. His
areas of interest include crisis mitigation and response, decision support, enterprise
integration, knowledge management, collaborative human-computer problem-solving
systems, economics, risk and reliability, and systems development. He has over 50
scholarly and IS professional publications in journals and conference proceedings

12



	Association for Information Systems
	AIS Electronic Library (AISeL)
	2012

	Teaching Theories Underlying Agile Systems Development
	Adarsh Kumar Kakar
	Joanne Hale
	David Hale
	Recommended Citation


	Microsoft Word - 12.docx

