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Abstract 

Advances in computer technologies in the past couple of decades has enabled data and computer 
scientists to employ deep neural networks to detect and analyze complex patterns in large and 
varied data repositories from a wide variety of application domains. Given the interest in big 
data and analytics coursework in most information systems departments, this paper provides 
a step-by-step tutorial on the design and implementation of deep neural networks using an 
open-source, low-code, intuitive analytics platform. This platform (KNIME) suits well for both 
technical and non-technical users. Although this tutorial focuses on an image processing 
(classification) project in the popular context of healthcare, we believe the provided guidelines, 
with slight modifications, can be applied to the design and implementation of various deep 
learning architectures built to analyze a wide variety of data types. 

Keywords: Deep Learning, Improving classroom teaching, Tutorial, Artificial Intelligence 

Introduction 

Today, deep learning is increasingly becoming integral to many widely used software services and 
applications. The primary focus areas of deep learning include speech and audio processing, language 
modeling, and natural language processing, information retrieval, object recognition and computer vision, 
and multi-modal and multitask learning (Deng and Yu 2014; Esteva et al. 2019).  

KNIME analytics platform (https://knime.org) is a java-based, open-source platform for implementing a 
wide variety of data mining and machine learning algorithms in a user-friendly, drag-and-drop 
environment. It provides data analysts with a lot of functionalities to perform almost every operation 
required in a data analysis project, ranging from data preprocessing and visualization to building and 
deploying advanced models by creating node and branch workflows1. KNIME is currently the first analytics 
platform of its kind that has integrated with deep learning frameworks and has provided its users with the 
ability to implement resource-intensive deep learning models using GPUs.  

Our purpose in this tutorial is illustrating how the technology can be used for analyzing real medical data. 
We make use of KNIME, as an easy-to-learn and easy-to-use platform that suits well for technical and 
nontechnical users alike, particularly due to its drag-&-drop structure, which eliminates the need for 

                                                             

1. We assume that the reader has some basic knowledge of working with the KNIME analytics platform. If 
you are not familiar with KNIME, you may begin by reviewing a quick tutorial provided by the tool’s 
developer: https://www.knime.com/knime   

mailto:davazdab@uww.edu
mailto:hmajidizolbanin1@udayton.edu
mailto:dursun.delen@okstate.edu
https://knime.org/
https://www.knime.com/knime
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knowledge of computer programming. Additionally, because deep learning is popular for its computer 
vision applications, and given the abundance of medical image data available to medical decision makers, 
we choose medical image classification as the application area in our demonstrations. Specifically, we 
employ deep learning technology to develop a medical decision support system to help physicians diagnose 
pneumonia using chest x-ray images. 

Convolutional Neural Networks 

Convolutional Neural Networks (LeCun et al. 1989), also known as CNNs, are among the most popular 
types of deep learning architectures. CNNs are, essentially, a variation of the Multi-Layer Perceptron (MLP) 
architecture designed to recognize visual patterns directly from pixel images with minimal preprocessing 
(LeCun and Bengio 1998); however, they are also applicable to non-image data sets. The main characteristic 
of the convolutional networks is having at least one layer involving a convolution weight function, instead 
of the general matrix multiplication. 

Convolution is a linear operation whose purpose is extracting simple patterns from sophisticated patterns 
observed in input data. For instance, in processing an image containing several objects and colors, 
convolution functions can extract simple patterns such as the existence of horizontal or vertical lines or 
edges in different parts of the picture. A layer containing a convolution function in a CNN is called a 
convolution layer.  

In a convolution layer, a set of weights, referred to as convolution kernel or filter, are shared between inputs. 
This kernel, which is commonly represented by a small matrix of size Wr×c, moves around the input matrix 
to produce the outputs (Cornelisse 2018). For a given input matrix V, the convolution function can be 
expressed as: 

𝑧𝑖,𝑗 = ∑ ∑ 𝑤𝑘,𝑙𝑣𝑖+𝑘−1,𝑗+𝑙−1

𝑐

𝑙=1

𝑟

𝑘=1

 

As an example, suppose the input matrix to a layer (V) and the convolution kernel (W) are given as follows:  

𝑉 = [
1 0 1
1 1 0
1 1 0

   
0 1 1
1 1 1
0 0 1

]           𝑊 = [
0 1
1 1

] 

Figure 1 illustrates how the convolution function computes the output. As shown, each element of the output 
matrix is obtained by adding the one-by-one point multiplications of the kernel elements by the 
corresponding r×c subset of the input matrix elements (in this example, r = c = 2 because the kernel is 2×2). 
For instance, Z12 (the second element in the first row of the output matrix) equals 0(0) + 1(1) + 1(1) + 1(0) 
= 2.  

 

Figure 1- Convolution of a 2×2 kernel by a 3×6 input matrix 

In the above example, the magnitude of each element in the output matrix depends directly on the extent 
to which the kernel matches with the 2×2 subset of the input matrix. For example, Z14 is the result of 
convoluting the kernel by the part of the input matrix that is the same as the kernel (see Figure 2). Hence, 
the convolution operation indeed converts the input matrix to an output in which those elements that have 
a particular, desired characteristic (as reflected by the kernel) are amplified.  
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Figure 2- Output of convolution operation is maximized if kernel matches the input submatrix 

This feature of convolution functions is especially very useful in practical image processing applications. 
For instance, if the input matrix represents pixels of an image, a kernel representing a particular shape (e.g., 
a diagonal line) may be convoluted into that image to extract parts of it that include the desired shape. 
Figure 3 depicts the result of applying a 3×3 horizontal line kernel to a 15×15 image of a square. 

 

Figure 3- Using convolution for extracting features from images (horizontal lines in this example) 

Convolution layers are often followed by a pooling (a.k.a. subsampling) layer. Pooling layers are in charge 
of consolidating large tensors (i.e., multidimensional vectors) to one with a smaller size, and reducing the 
number of model parameters while keeping their important features (Sharda et al. 2019). 

Pooling can be thought of as an operation that summarizes large inputs - whose features are already 
extracted by the convolution layer - and shows us just the important parts (i.e., desired features) in each 
small neighborhood in the input space. For instance, in the case of the example shown in Figure 3, if we use 
a 3×3 consolidation window to place a max-pooling layer after the convolution layer, the output will be 
similar to what is shown in Figure 4. As it can be seen, the already convoluted 15×15 image is consolidated 
in a 5×5 image, while the main features (i.e., horizontal lines) are preserved. 

 

Figure 4- Example of applying max pooling on an image to reduce its size 

Pooling is occasionally used just to modify the size of matrices coming from the previous layer so that it 
conforms to the requirements of the following layer in the network. The choice of proper pooling operation, 
as well as the decision to include a pooling layer in the network at all, depends highly on the context and 
properties of the problem that the network is trying to solve. There are some guidelines in the literature to 
help in making such decisions by the network designers (Boureau et al. 2010, 2011; Scherer et al. 2010). 
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Image Classification using CNNs 

An image, in terms of data type, is nothing but a tensor of numbers each representing the color intensity of 
its corresponding pixel. For a grayscale image, each pixel can be represented by a number between 0 and 
255 indicating the intensity of the black color. Therefore, grayscale images are single-channel, which means 
each pixel in them can be represented by a single number. For colored images, on the other hand, each pixel 
should be represented with three distinct numbers, indicating intensities of the three primary colors Red, 
Green, and Blue (RGB) for reproducing the color of that particular pixel. Hence, with color images we deal 
with three channels. 

Any image processing task, then treats each image as a two- (grayscale) or three-dimensional (color) tensor. 
Given that, even a relatively small image would involve thousands of numbers each representing a pixel of 
that. While ach of those numbers can be treated as an input to an MLP deep network, that would require 
assigning a unique weight parameter to each input which leads to increasing the time required for 
optimizing the network in an exponential manner. For instance, a small image of size 150x150 pixels would 
require 22,500 weight parameters to be assigned to the inputs per each neuron they go into throughout the 
network, each of which needs to be updated several times during the network training. 

To avoid this issue CNNs use a set of convolution kernels (a.k.a. filters) as shared weight parameters 
between inputs. Each kernel moves around the image matrix/tensor to produce the output matrix. By 
convolving a kernel into a matrix, we actually are converting the input matrix to an output in which the 
parts that have a particular feature (reflected by the kernel) are bolded. This characteristic is especially 
useful in practical image processing applications, where each kernel can represent a particular pattern or 
shape (e.g. edges, roundness, horizontal lines, etc.) and convolving that into a given image leads to bolding 
parts of the image including that specific pattern or shape (see the example provided in Figure 3). 

In a typical image processing task using CNNs hundreds of kernels of a given size (normally 2x2 or 3x3) 
will be produced randomly and applied sequentially to each image to extract various features (i.e., patterns) 
involved in that. Each kernel will then be updated (i.e., trained) throughout the network training process 
such that the extracted features become more relevant and distinctive in determining the specific class to 
which the image belongs.  The general process for an image classification task using CNN networks is shown 
in Figure 5 and described below. 

 

Figure 5- The general process of image classification using CNN deep networks 

 

KNIME Keras Deep Learning Integration 

In its recent versions, KNIME has released a new extension called Keras deep learning integration2 that 
facilitates implementation of deep learning models without any coding requirements. Using Keras deep 
learning integration in KNIME one can design, train, and deploy various kinds of deep neural networks (not 
limited to CNNs) just by a few drags and drops. Various types of deep neural network layers are 
encapsulated in the form of nodes in KNIME’s node and branch context, and a user can simply create a 
network by dropping the required type of layers (e.g., input, convolution, pooling, etc.) in a workflow area 
and connecting them using arrows in the sequential order specified in the design stage. 

                                                             

2 Installation guides for the Keras extension are available at: https://www.knime.com/deeplearning/keras  

https://www.knime.com/deeplearning/keras
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Each node in KNIME has a configuration window, where the users can determine corresponding 
parameters. In the context of Keras nodes, users can specify, through the nodes’ configuration window, such 
parameters as input shape, number of kernels, kernel shape, number of epochs, batch size, and optimization 
method without any coding effort. 

In the next section, we use a real dataset to demonstrate how a deep learning image classification project 
can be implemented in KNIME by the means of the Keras integration. 

Step-by-Step Image Classification in KNIME 

Problem 

One of the major applications of image processing is within the healthcare industry. Medical images for a 
long time have been invaluable sources of information for the physicians in their diagnoses. While in most 
cases physicians are readily able to make the right diagnosis through visual assessment of medical images, 
yet they are not mistake-proof. Clinical Decision Support Systems (CDSSs) are computer information 
systems designed to aid clinicians in doing a more scrutinized assessment of the patients’ situations from 
various aspects and make optimal decisions, which ultimately lead to saving more lives and money.  

Processing medical images using deep learning techniques has recently been subject to a lot of interest as a 
cutting-edge CDSS solution to help reducing the chances of mistakes in physicians’ diagnoses based on 
these sources of information (Deserno 2011; Eklund et al. 2013). Specifically, in these solutions, huge 
repositories of historical expert-annotated medical images are being used to train complex deep networks 
for classifying medical images of a given organ as evidence for various conditions relevant to that area in 
the human body. 

In this tutorial, for demonstration purposes, we use a relatively small sample of expert-annotated chest X-
Ray images taken from a larger set of annotated images provided by Wang et al. (Wang et al. 2017). While 
the original dataset includes multiple labels for each image, indicating the conditions shown by that, we 
limited our dataset to only 5,856 images, from which 4,273 (73%) indicating the existence of Pneumonia, 
whereas the rest (1,583; %27) are related to the normal patients (i.e., no condition). Therefore, the problem 
to be addressed by the image processing task, explained next, is to train a CNN deep network aiming at 
automatically classifying images in the dataset into either Pneumonia or Normal classes.   

Importing images into KNIME and creating labels 

Clearly, the first step in each data processing task is to read the dataset from an external environment. In 
KNIME, there are multiple nodes designed for inserting and reading various data types from either local 
hard disks or even clouds. Since in this case we need to insert around 6,000 image files into KNIME, we 
first need to create a list of files along with their location URL (either on the web or on local storage), so 
that KNIME can refer to those locations and read the images. This task can be easily done using a “List 
Files” node in KNIME. 

Before bringing images into KNIME, we have already copied all the images in a single folder on our local 
hard disk. In addition, for simplicity, we have renamed the image files and added their labels (Normal or 
Pneumonia) to the beginning of their names. After adding the List Files node to the KNIME workflow, we 
can simply right-click on that and open the Configurations window for that node. All we need to do at this 
stage is to browse the folder including the images on our local disk. The node also provides us with multiple 
options to specify which files (based on their extension, naming patterns, etc.) from the corresponding 
folder should be listed. However, we do not need any filters to be applied in this particular example. Once 
you confirm the configurations and execute the List Files node, the node’s output should look like Figure 6, 
where a URL has been created for each image file located in the folder. 
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Figure 6- The output of List File node with image URLs 

After creating the file list, we need to add an additional column to that to specify the class label of each 
image file. Since we have already added labels to the beginning of file names, and the files are sorted in 
alphabetical order in the file list, we can simply use the Row Indices to create class labels. That is, the first 
1,583 image files in the list are assigned a “Normal” label and the rest of the list get a “Pneumonia” label. A 
Rule Engine node in KNIME can be used to apply this simple rule (or any other if-then type of rule) to our 
existing file list and create the class column. To this end, we need to connect the output terminal of the List 
Files node to the input terminal of Rule Engine and use the following self-explaining syntax in the 
Expression section of the Rule Engine configurations dialog, shown in Figure 7. 

 

 

Figure 7- Adding a “Class” column for image labels using Rule Engine node 

Pre-processing images 

After creating a list of image file URLs along with their corresponding labels, we can use an Image Reader 
(Table) node to read the image files from the provided URLs. The images used in this study are all in the 
PNG format, however the Image Reader node supports a wide variety of other image formats (i.e., all the 
file formats supported by the Bio-Formats library) as well. More information about the supported formats 
in this library is provided in the following website: http://loci.wisc.edu/bio-formats/formats . The Image 
Reader function in KNIME basically reads the provided images and converts and imports them to the 
KNIME internal image format, compatible with the KNIME’s image processing nodes. 

http://loci.wisc.edu/bio-formats/formats
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To configure the Image Reader (Table) node, we first need to specify which column of the file list table (i.e., 
output of the Rule Engine node) provides the path to the image files (i.e., Location in this example). In 
addition, we have to specify two other important elements in this section, namely Image Factory, and Pixel 
Type. The former determines the way we would like our images to be converted to arrays of numbers in 
KNIME. The Array Image Factory method converts each image (with all its channels) to a single array, 
whereas Planar Image Factory stores each channel in a separate array and Cell Image Factory creates 
multiple arrays of the same size for storing each image. The main difference among these options is different 
speed in accessing the resulted stored images (Array Image Factory is the fastest) as well as limitations in 
the number of pixels (Array Image Factory is the most limited). For this study, since the images are all 
reasonably small, we have set this option on Array Image Factory.  

The Pixel Type option asks for the numeric type of pixel values (i.e., integer, binary, float, long, etc.). If you 
are not sure about your images’ pixel types, it is always safe to choose the <Automatic> option and let 
KNIME to identify the right pixel type for us. After making and confirming these changes (leave the other 
options unchanged), we may execute the node to import the images (see Figure 8). Next, the imported 
images need to be processed before we can use them to train the deep networks.  

 

Figure 8- Output of the Image Reader node 

Each image channel is considered as a matrix of real numbers in the range of [0, 255], where each number 
indicating the intensity of the color corresponding to that channel in that pixel. These pixels’ color 
intensities need to be normalized to a small range, typically [0, 1], in order to avoid any biases in training 
the classification models. This can be done using the Image Calculator node in KNIME. For normalization, 
the mathematical operation we need to apply to the pixels is simply dividing them by 255. We have also set 
this node to replace the original images by the normalized ones, and to use FLOATTYPE pixels for creating 
its output. It is important to choose the pixel types as either FLOATTYPE or DOUBLETYPE to precisely 
keep the original variety in their color intensity. 

The next adjustment we need to perform on the images is to unify their sizes. Images in a dataset might 
have various sizes. In a given CNN, every input tensor must be of the same size. For this purpose, we may 
employ the KNIME node called Image Resizer. The choice of resizing strategy is particularly critical when 
at least some images need to be resized to a size larger than their original dimension. However, for reducing 
dimensions (which is the case in this project) typically all the interpolation strategies would work equally 
well. For this study, we chose a manual resizing mode, where the absolute size of both X and Y dimensions 
of the images are set to be resized to 150px. 

Figure 9 shows the nodes described in this section in the KNIME workflow area. 
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Figure 9- The image pre-processing nodes in the KNIME workflow 

Designing network architecture 

The network design stage in deep learning applications involves specifying several key elements, including 
number and type of layers, number of units of each layer, transfer function of each layer, and several other 
parameters specific to each layer type. The first layer in every typical deep network architecture is the Input 
Layer, which specifies the shape, data type, and data format of the input tensors. An input layer can be 
defined in the network architecture in KNIME using the Keras Input Layer node. In our example, the input 
tensors (images) are basically two-dimensional matrices of size 150×150. Because our images in this case 
are all grayscale, we have only 1 channel, which should be specified in the input shape. Therefore, the input 
shape that should be specified in the node configuration is either 150×150×1 or 1×150×150.  

The input should then pass through one or multiple convolution layers to be processed. Each convolution 
layer has a limited capability in extracting features from a given input; therefore, depending on the 
complexity of the classification task and the variety of images, we might need to add more convolution 
layers in a sequential manner, so that the feature extraction load gets distributed on them. In the case of 
our example, since our images are highly similar (i.e., all are from the same organ in the same position), we 
chose to include only three convolution layers. The KNIME node designed for adding a single convolution 
layer to the network architecture for image classification is the Keras Convolution 2D Layer node. In the 
configuration dialog of a given convolution layer node we need to specify the number of filters (i.e., feature 
maps resulted from that layer), kernel size (i.e., size of the convolution window), stride (i.e., the kernel 
movement size), padding strategy (i.e. whether to pad the output feature map to make to the same size as 
the input image (same) vs. no padding (valid)), the dilation rate (i.e., number of pixels to be skipped during 
convolution), and the activation function. 

As a rule of thumb, it is recommended that in case of using multiple convolution layers, we begin with a 
small number of filters in the first layers and gradually increase that in the following layers. In this project 
we decided to consider only 32 feature maps (filters) for the first layer. The second layer was also given 32 
filters, however we increased that to 64 for the third convolution layer. 

We have specified a stride size of (1, 1) for this example, which means the convolution window should move 
around each image with a step size of 1 pixel in horizontal as well as vertical directions. Using a (1, 1) stride 
size, always the pooled image will have the same size as the image coming into the pooling layer. 

Each of the convolution layers in the network architecture is followed by a Keras Max Pooling 2D layer. As 
mentioned earlier, a pooling layer is generally meant to consolidate the elements of a convoluted image, 
while keeping its most important features. The pool size parameter is in fact the dimensions of the 
consolidation window. Like the convolution operation, for pooling we also need to specify a stride factor for 
moving of the pooling window around the images. 

After including a sufficient number of convolution and pooling layers in a sequential manner, the processed 
images need to pass through one or more dense layers to be classified. However, dense layers only expect 
arrays as input and are not compatible with matrix representation of images. To address this issue, we need 
to pass the images through a Keras Flatten Layer before sending them into any dense layer. What happens 
in a flatten layer is that it simply stacks the rows of any given matrix after each other and converts it to an 
array. The flattened feature maps then should pass through one or more dense layers for the ultimate 
classification task to be accomplished. The output layer in a typical CNN classification network is a dense 
layer with only 1 unit. Depending on the number of feasible states of the output, the output dense layer 
should have either a single neuron with a Sigmoid activation function (for binary target variables) or m 
neurons with a Softmax activation function (for a multinomial target variable with m levels). 
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Additionally, and as an option, in many cases network designers consider one or more Dropout Layers in 
between two consecutive layers of each kind in the network architecture. A Dropout layer randomly sets a 
given fraction of input units of its following layer to zero at each update during the training (Hinton et al., 
2012; Srivastava et al., 2014). Even though this leads to losing some information, it is shown to be very 
helpful in avoiding overfitting of the classification model to the training data during the training stage. In 
this project, for demonstration purposes we incorporated only one dropout layer between the two dense 
layers with a 0.5 drop rate. 

Figure 10 demonstrates all the network layers included in the sequential order described above within the 
KNIME workflow.  

 

Figure 10- The CNN sequential network architecture 

Network Training 

Once the network architecture is determined, we can start feeding the pre-processed data into the designed 
network and train network weights. Obtaining a large enough set of labeled medical images, however, is 
challenging in most of the practical cases as even in case of having access to a large pool of images, labeling 
them requires so much time and expertise. Fortunately, we can trick a neural network by providing it with 
multiple modified (rotated, zoomed, cropped, flipped, etc.) versions of the same image and improve its 
learning by such artificially augmented datasets. This trick is known as data augmentation and several 
different approaches have been proposed in the literature for this purpose (Lee et al. 2015; Perez and Wang 
2017; Taylor and Nitschke 2017). Figure 11 demonstrates an example of data augmentation taken from (Liu 
et al. 2017) , in which 16 different modifications (right) of a given image are created just by a random 
combination of rotating (randomly between -20 and 20 degrees), shrinking (by a factor randomly chosen 
between 1 and 1.33), and cropping (to a 64x64 pixel image around a randomly chosen center) of the original 
image (left). Hence, before training our network we may perform some additional preprocessing and 
augmentation on the training data in KNIME.  

In the preprocessing stage, we created a categorical target variable (i.e., Normal vs. Pneumonia); however, 
neural networks expect only numeric variables for both predictors and target. Hence, after partitioning we 
used a Category to Number node in KNIME to convert those string variables to numeric values (0 vs. 1).  

The training dataset is now ready for data augmentation. One of the key features of the KNIME analytics 
platform is the flexibility it provides to the users by being integrable to several popular programming 
languages including Python, R, and Java. Since by the time of writing this paper there is no standard node 
in KNIME to perform data augmentation for image processing, we simply used a Python Script (1=>1) node 
to write a small code in Python for data augmentation. This is a standard KNIME node designed for 
inserting a piece of customized Python code in a workflow to process data. The (1 =>1) part of the node 
name indicates that it has only one input and one output port, which means it can receive input from a 
single node in the workflow and deliver its output to a single node as well. There are other varieties of the 
Python Script node available as well, in case one needs to combine data coming from multiple nodes or to 
send out multiple outputs to different nodes. 
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Figure 11- An example of image augmentation, a method to artificially increase the sample 
size in image processing problems 

The following Python script was used to augment the training image dataset. First, we should import the 
required Python libraries as follows. 

import os 

os.environ["KERAS_BACKEND"] = "tensorflow" 

 

from keras.preprocessing.image import ImageDataGenerator 

import numpy as np 

import pandas as pd 

from pandas import DataFrame 

from KNIPImage import KNIPImage 

from scipy import ndimage 

import keras 

 

Next, we need to prepare our input data. That is, to read images from the previous node and convert them 
to python arrays as well as to read the Class associated with each image. The parts of the code that may be 
modified when you process your own datasets have been highlighted. In this case, the highlighted elements 
are the names of target and image variables from the input table as well as the number of categories of the 
target variable. 

y_train = keras.utils.to_categorical(input_table['Class'], 

num_classes=2) 

 

x_train = [] 

for img in input_table['Image']: 

   x_train.append(img.array) 

 

The converted image python list (i.e., x-train) will have a shape of (50, 150, 150), where 50 indicates the 
default batch size of the Python Script node (does not matter for this operation), and 150, 150 indicates the 
dimensions of each image. However, in the following steps of the code, python expects an array of rank 4 in 
the form of (batch size, dimension1, dimension2, channel) for image augmentation. The problem is that 
with single channel (i.e., grayscale) images, python considers each image as a 2-dimensional tensor when 
it reads them from the input table. We should fix this problem before proceeding by adding an extra 
dimension to x_train using numpy reshape function and then transposing the result so that the dimensions 
become compatible with the expected format mentioned. Finally, we may convert the python list x_train, 
to a python array format for the augmentation operation. Note that the first line of the following code is not 
needed when colored images are analyzed as python automatically identifies the number of channels when 
reading images. 

x_train=np.reshape(x_train,(1,)+np.shape(x_train)) 

x_train=x_train.transpose(1,2,3,0) 
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x_train = np.asarray(x_train) 

   
Now we have the data ready for augmentation. The following loop can be used for generating modified 
versions of the training images. What happens is that it first defines an Image Data Generator function, 
which in this case allows random shearing transformation (shearing angles in counter-clockwise direction), 
random zoom into images, and random horizontal flip of them. There are several other options for creating 
a data generator which you may read about in Keras documentation for image preprocessing 
(https://keras.io/preprocessing/image/). Next, it takes each of the 4,000 images within the training data 
set and using a loop creates 20 randomly modified versions of that (i.e., x_out). It also assigns the same 

class as the original image to all its variations (i.e., y_out). Therefore, the output table would include 

80,000 images (4,000×20) along with their corresponding classes. 

train_datagen = ImageDataGenerator(shear_range=0.2, zoom_range=0.2, 

horizontal_flip=True) 

res = train_datagen.flow(x_train,y_train,batch_size=20) 

i = 0 

x_out = [] 

y_out = [] 

nBatches = 0 

for batch in res: 

 for r in range(np.shape(batch[0])[0]): 

  x_out.append(KNIPImage(batch[0][r])) 

  if (batch[1][r][0] == 1 ): 

   y_out.append(0) 

  else: 

   y_out.append(1) 

 nBatches = nBatches + 1 

 if nBatches >= 4000: 

  break 

 
Finally, we should create an output table with x_out and y_out as the values of its columns. 

output_table = DataFrame(columns=['Img', 'Class']) 

output_table['Img'] = x_out 

output_table['Class'] = y_out 

 
The output images again lack the channel dimension due to being grayscale. To fix that, we can connect the 
output of the Python Script (1=>1) node to a Dimension Extender node in KNIME to add the channel 
dimension to the images. In this case, the dimension extender node converts the image tensor formats from 
(150, 150) to (150, 150, 1), which is expected by Keras for training the network. This format conforms to the 
format we set in the first layer of the deep network (i.e., the input layer). Note that this step may not be 
required if you are working with colored images. The part of workflow used for further preprocessing and 
augmentation of the training dataset are shown in Figure 12. 

 

Figure 12- KNIME nodes for training data processing and augmentation 
 
After this step our training dataset is ready to feed into the designed network to train its parameters. In 
order to train a deep learning network using Keras in KNIME we can use a Keras Network Learner node. 

https://keras.io/preprocessing/image/
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This node requires two main input elements to operate; first it needs to be connected to the designed 
sequential network (i.e., a connection from the last dense layer to it). Also, the training data set (coming 
from the Dimension Extender node) has to be connected to the first data port of the learner node. There is 
also a third (optional) data port for connecting validation dataset to this node. In that case, during training 
we may monitor the accuracy and loss of the model with regard to both training and validation datasets and 
possibly stop the training process whenever we feel the model is going to be overfit to the training data. Due 
to using a relatively small dataset just for demonstrating purposes, we chose not to use this option. 
Nevertheless, it is a very handy option to consider, especially when the model’s performance on the training 
and test datasets differs dramatically (i.e., overfitting). 

The Keras Network Learner node has multiple tabs in its configuration dialog, each of which involve critical 
parameters to be set. In the first tab of this window (i.e., “Input Data” tab), we need to specify in which 
column of the input table our input data (i.e., images) exist. The second tab (Target Data) asks for the 
column in which the target variable exists, as well as the loss function to be used for training the network. 
While Keras provides us with a variety of standard loss functions (e.g., binary cross entropy, categorical 
cross entropy, hinge, mean absolute error, etc.), each of which appropriate for a specific group of problems, 
there is also an option to define a custom loss function in python and use that for training. We used Binary 
Cross Entropy, which is a common standard loss function for binary classification problems. 

The next tab (i.e., Options) is where the main training parameters can be set. In this tab, we should specify 
the number of epochs, batch size, and the optimizer algorithm along with its hyper parameters. The choice 
of batch size usually depends on the nature of the task and data, and can vary between one single example 
to the whole sample in each step of training. In this example, we chose to set the batch size to 50. Also, 
proper number of epochs depends on the complexity of the task, the number of network parameters that 
need to be trained, and the data. Typically, we need to train the model multiple times with different number 
of epochs and observe the model’s performance with regard to both training and test data, and then adjust 
it accordingly. 

Once we set the learner parameters, we can start training the network by executing the Keras Network 
Learner node. Depending on the size of data, batch size, number of epochs, network architecture, and the 
processing capacities of the machine, the training step might take a while to complete. The KNIME’s Keras 
integration provides the users with a very helpful option to monitor the learning process while it is going 
on. They provide real time information with regard to the loss, accuracy, the batch, and epoch being 
processed. In addition, users are provided with a “Stop Learning” button to manually stop the learning 
process whenever they feel the model is about to overfit the training data. 

Deployment and Evaluation 

Once the network learner node execution is complete (or manually stopped by the user), we may apply the 
trained network weights to the test dataset we had set aside in the data partitioning step. The KNIME node 
designed for this purpose is DL Network Executor. It needs two main input elements to operate. First, it 
should get the trained network from the output of the Keras Network Learner node; and second, we should 
provide it with the test dataset coming from the second output port of the Partitioning node. Additionally, 
in the Outputs section of this dialog, we may add an output and specify the output layer of the network (i.e., 
the sigmoid dense layer in this case). Then we can confirm the changes and execute the node. 

The output of this node is the input test data table plus an additional column indicating the probability of 
each image (record) being related to class 1 (i.e., Pneumonia in this case). These probabilities then need to 
be converted to the class labels to be comparable with the target variable. To this end, we may use a Rule 
Engine node to append a new column to the output table, in which every example with a predicted 
probability less than 0.5 is labeled as “Normal”, and it is labeled “Pneumonia” otherwise. The output of the 
Rule Engine node will have two columns called Class and Prediction, which should be compared and 
contrasted in the next step to evaluate the model’s performance.  

The two main tools in KNIME for evaluating the performance of any binary classification problem are the 
nodes Scorer and ROC Curve. The scorer node compares the predicted categories against the real classes 
across the whole test dataset and returns the confusion matrix along with a table including various accuracy 
statistics (i.e., accuracy, sensitivity, specificity, precision, F-Measure, etc.). Also, ROC Curve node plots 
Receiver Operating Characteristics curve (true positive rate against false positive rate) which gives us a 
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general idea of how powerful the model in is distinguishing positive from negative cases in a binary 
classification problem (i.e., the higher the area under the ROC curve, the more powerful the distinction 
power of the model). 

To plot the ROC curve, we first should specify which column from the input table contains the real class of 
the images (i.e., “Class” column). Then, we should tell KNIME which category among all possible class 
values is the positive class value. This is actually the category in which we are interested in practice. For 
instance, it is more critical to a physician to identify a patient with Pneumonia than a normal patient. 
Finally, we need to specify the column from the input table containing the predicted probabilities of the 
cases belonging to the positive class. This is, in fact, the column created during the network execution 
process on the test dataset. 

Figure 13 demonstrates the accuracy statistics (output of the Scorer node) of the model. As shown, our 
image classification model has worked very well, with a 94% overall accuracy and a 94.3% sensitivity in 
classifying chest X-Ray images (Pneumonia). Also, the area under the ROC curve (0.9795) confirms the 
high ability of the model in distinguishing normal patients from those with Pneumonia.  

 

Figure 13- The performance metrics of the trained network on the test dataset 

Figure 14 shows an overview of the KNIME workflow we used for model building and deployment. The 
nodes included in the network configuration, as well as the Preprocessing blocks in the workflow, were 
compacted into two separate KNIME meta nodes to reduce the clutter and to make the workflow more 
understandable. The raw image dataset, data preprocessing, and model building workflows (.knwf format, 
importable in KNIME) are available at https://bit.ly/3lJmmak or download and practice. As soon as you 
open the workflows provided KNIME automatically will identify required but missing extensions (e.g., 
KNIME image processing extensions) on your installed version and suggests to install them before running 
the workflow. 

 

Figure 14- An overview of the nodes and connections in the KNIME workflow 

 

https://bit.ly/3lJmmak
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Conclusion 

In this paper, we provided a tutorial for performing image classification using Convolution Neural Networks 
(CNNs) in a medical context. This tutorial is particularly helpful for practitioners who do not have a strong 
background in computer programming but are interested in using a low-code environment for data-driven 
decision making. Moreover, this tutorial can also be helpful for educational purposes, specifically to teach 
neural network and deep learning concepts and applications to college students.   

It should be noted that even though in this tutorial we demonstrated the entire process of design and 
training of a deep convolutional network for educational purposes, a common practice (specially for users 
with limited computational resources) is an approach called transfer learning, in which we use a well-
established pre-trained network (e.g., ResNet50 or VGG16, …) and quickly adjust its hyperparameters using 
their training data.  
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