Association for Information Systems

AIS Electronic Library (AISeL)

International Conference on Information Systems

ICIS 1983 Proceedings (ICI1S)

1983

Computer-Aided Process Organization In Software

Deslgn

Jahangir Karimi

University of Cincinnati

Benn R. Konsynski

University of Arizona

Follow this and additional works at: http://aisel.aisnet.org/icis 1983

Recommended Citation

Karimi, Jahangir and Konsynski, Benn R., "Computer-Aided Process Organization In Software Deslgn" (1983). ICIS 1983 Proceedings.
17.
http://aisel.aisnet.org/icis1983/17

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1983 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact

elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1983%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1983?utm_source=aisel.aisnet.org%2Ficis1983%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1983%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1983%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1983?utm_source=aisel.aisnet.org%2Ficis1983%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1983/17?utm_source=aisel.aisnet.org%2Ficis1983%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ddhputer—ﬂidé&-ﬁrocess‘Ofghnizétidh

In Software Design

Jahangir Karimi
University of Cincinnati

Benn R. Konsynski
University of Arizona

ABSTRACT
As the complexity of systems increase, the need for
computer~aided techniques in software system definition,
design, 'and construction becomes apparent. It is the ulti-
mate task of software engineering to develop tools and
procedures which reduce the effort involved in production of
of fective software. Effective software must possess charac-
teristics of correctness, reliability, efficiency,
documentation, and flexibility. This paper deals with the
‘development of a computer-aid for one portion of the soft-

ware system design problem,

namely,

the determination of

process organization in program module specification.

INTRODUCTION

The purpose of computer—-aids in design
is to reduce manpower and time invest-
ments while improving the quality of
design by evaluating more alternatives
and accommodating the complexity that
humans cannot. Secondary benefits 1n-
clude: improved operation of the
design process, documentation of both
the system requirements and design de-
cisions, and ease of modification and
determination of the impact due to
change.

This paper deals with the development
of a computer-ald for one portion of
the information system design problem
-- the determination of program modu-
les in design of the software. While
the discussion will focus on program
module design for information systems,
the theory and principles are directly
applicable to basic design of 1large
application programs.

Whether the development model 1s a
"11fe cycle" model or a "prototyping"

817

model, the determination of an -ef-
fective modularization of the process-
ing activities 1s an important ele~
ment. The focus of this current re-
search in the PLEXSYS (Konsynski and
Nunamaker, 1981} effort is the identi-
fication and specification of program
modules.

PROGRAM MODULE DESIGN

A system 1s composed of interacting
parts that operate together to achieve
some objective or purpose. Information
system requirements can therefore be
described in terms of characteristics
of the system components and the rela-
tionship between those components.
From the standpoint of program module
determination, the focus is on the in-
formation system as a system of inter-
acting processes which act to trans-
port and modify data. The term "proc-
ess™ can thus be used to describe the
activities of the system. Processes
and their interrelationships neces~
sarily exhibit a high degree of com-

plexity in 1large-scale 1{information
systems. The purpose of this paper is
to present a general model &or analy-
sis and organization of a complex
system of processes in determination
of effective modularization.

A process is a logical unit of compu-
tation or manipulation of data. Under
this definition, a process could be a
simple primitive operation, such as an
addition, or a system 1tself being a
process. If the scope 1s too small,
the complexity of the problem is con-
siderable and the benefits of exten-
sfve analysis are not fincreased ap-
preciably. If the scope is too large
most of the benefit of the analysis 1is
Tost.

Modularization is a factoring of the
system 1into interacting modules such
that the modules together perform as
the system. In terms of a system of
processes, modularization 1s the
determination of subsets of the set of
processes that satisfy some evaluation
criteria such as reducing the inter-
module finterface. The subsets may be
hierarchical and may overlap. For our
present discussion, we will consider
modularizations that form a cover for
the set of processes and constitute a
partitioning, .

We can make several observations con-
cerning modularization and present
practices tn obtaining them:

e There exist many meanfngful modular-
1izations - The number of alternative
feasible modularizations 1{s very
large and different designs are more
favorable for alternative design
criterfa. The number of alternative
designs is a function of the number
of processes and, more importantly,
the number of logical inter-process
1inks, A significant number of these
feasible designs could each be the
choice . for. 1logical . organization
based on differing criteria with
differing significance.

88

® The use of a single criteria in mod-
utarization would give a distorted
view of process interrelationships.
Processes possess many different at-
tributes and there exist many dff-
ferent types. of process relations.
If one or a small subset of attrib-
utes or relations 1is emphasized
above all others, through the ana-
lyst's bias, the result could be
disasterous in terms of the neg-
lected or weakly weighted criteria.

e A hierarchical approach 1imits suc-
ceeding organizations - A top-down
approach is a convenient means of
arriving at a <clear logical
statement of requirements, but we
should not give it complete author-
Tty. :

¢ The same modularization may be de-
rived in different ways - Even under
our manual procedures of modulariza-
tion, an output decomposition ap-
proach may yield "an organization
identical to one derived through a
functional decomposition approach.

¢ The complexity of operating environ-
ments suggests use of computer~afded
techniques 1in determination of ef-
fective modularizations.

CURRENT APPROACHES

This design phase 1s frequently per-
formed by professional staff who are
experts in the application area that
the software will serve. Several ap-
proaches have been proposed to support
the activities at this stage. Much
effort has been devoted to the attain-
ment of modules that have three spe-
cific properties, expressed by White
and Booth (1976) as properties they
"would 1ike to see a design possess":
(1) components are relatively indepen-
dent, (2) existing dependencies can be
eastly understood, and (3) there are
no hidden or unforseen interactions
between components.

Myers (1975) and Constantinre (Yourdon,
1979) have proposed a series of quali-
tative rules and guidelines for ob-
taining software modules meeting these
properties. In particular they intro-
duced the terms internal._ module
Strength or cohesign which refers to
level of association between component
elements of a module, and module cou-
pling referring to a measure of the

strength of interconnection between
modules,
Myers (Myers, Stevens, and Constan-

tine, 1974) recognized seven levels of
cohesion. They state, "“these levels
have been distinguished over the years
through experiment, theoretical argu-
ment, and the practical experience of
many designers."™ The seven levels are,
in order of increasing strength or
cohesion: Coincidental, Logical, Tem-
poral, Procedural, Communicational.
Sequential, and Functional.

Dunsmore (1979) found no relationships
between the perceived difficulty of
understanding a computer program (Psy-
chological Program Complexity) to the
number of modules in a program. Both
Dunsmore (1979) and Gelperin (1979)
did find a perceived complexity rela-
tionship between the amount and nature
of inter-module communication and the
single-function nature of the module.
In particular, Gelperin (1979} found
data that partially confims Yourdon's
hypothesized effects of module cou-
pitng: information content, type of
conrection, and type of communication.

In spite of the difficulty in gather-
ing controlled experimental data, re-

suTts are now available concerning
perceived inter-module complexity.
Gelperin (1979) has partially con~

firmed Yourdon's hypothesized effects
of 1intelligent module design on pro-
gram understanding. Another study
(Wi111s and Jensen 1979) extended the
application of structured design prin-
ciples as published by Myers, et al.
(1974), to military embedded software

89

systems. It was found that the princi-
ples of structured design, if applied
correctly, can result in lower cost,
more reliable software systems,

While principles of coheston and cou-
pling can be useful guides in evalu-
ating the structure of a program, they
do not provide an unambiguous methodo-
logy for attaining programs with high
levels of cohesion or coupling.

SYSTEMATIC PROGRAM MODULE DESIGN

A major difference between a good and
poor design structure is the associ-
ated complexity. Complexity can be re-
duced by: 1) partitioning the system
into parts having identifiable and un-
derstandable boundaries, 2) represent-
ing the system as a hierarchy, and 3)
maximizing the independence among the
parts of the system.

Although partitioning afds in the com~
prehension of the system, arbitrary
partitioning can actually increase the
complexity by having parts of the
system perform many unrelated func-
tions. Another result may be an in-
crease in inter-part connection com-
plexity. Hierarchy in turn helps in
both understanding and constructing a
system. However, the hierarchy by
itself 1s often not an effective solu-
tion for other design criteria. What
is needed are methods for decomposi-
tion of a system into a hierarchy such
that each part (module) is as indepen-
dent from all modules as possible. A
measure of independence 1is module
strength (cohesion) which classifies
internal retationships of a module and
module coupling which defines the
direct inter-module relationships
among all modules.

Although there exist several design
methodologies few have been exten-
sively tested. Three types of methodo-
logies (Yourdon 1979) which have been
frequently wused are: 1) functional

design 2) data flow design, and 3)

data structure design method.

Eunctional decomposition, often called

stepwise refinement method, is a top-
down approach to problem solving.
Under this apprcoach, the problem fis
divided into functional activities. By
resxpressing each function as properly
equivalent connected structures, each
function is divided into subfunctions.
A major problem with functional decom-
position method is the unavailability
of a clean strategy to help the de-~
signer in decomposing the problem. The
question that frequently arises 1is
"decomposition with respect to what?.,"
Different decomposition methods resuilt
in different designs and the number of
potential deompositions is large. The
criteria selected for decomposition
has a major effect on the "goodness"
of the resulting design.

Data flow design method is reported in
Yourdon (1979) and Myers (1978). This
approach has also been called Trans-
form Centered Design and Composite
Design. The initial activity in this
strategy is to draw the correct data
flow diagram which represents the flow
of data in the system. Next, the pro-
gram structure chart is derived which
rapresents the input, process, output
transforms corresponding to steps in
the data flow diagram.

One major problem with the data flow
design 1s the lack of correspondence
between the structure of the design
and the structure of the problem. A

hierarchy i1s 1imposed on the design
structure by appropriate scheduling
and/or linking of parts that has

1ittle to do with modeling the problem
in hierarchical fashion. Frequently, a
module is artificfally created to con-
trol the function of the subsequent
modules. This may or may not result in
a structure that models the problem
environment accurately. There 1s a
similarity between the methods of
function decomposition and data flow

90

design. Where the modules in functio-
nal decomposition tend to be attached
by a "uses"™ relatfonship, the steps in
a data flow diagram could be labelled
"becomes, "

The data structure design method was
developed in slightly different forms

by Jackson (1975) and Warnier (1974).
The strategy can be summarized under
three basic steps. First, the struc-
tures for the data that are to be
processed are defined. Second, the
program structure which corresponds to
the data structure is derived. Fi-
nally, elementary operations are de- .
fined in order to perform each spe-
cified task. For small problems with
well defined problem specification
this approach would result in similar
designs when applied - by different
peopte. The utility of this approach
is befng studied by Konsynski (1982)
and Martin (1983).

A major shortcoming in application of
current techniques to design of large-
scale systems 1s that they are not
suftable for designing software mod-
ules as they are for designing within
program modules, As Myers (1978)
points out:

"If the product being developed is
a system, rather than a single
program, there is another design
process that must occur between
the external design process and

the use of "composite design."
This process, called system
design, 1s the decomposition of

the system into a set of individ-
ual subsystems or individual pro-
grams. Although some of the 1ideas
of composite design are appro-
priate here, and some people have
claimed to have used composite
design for this process, composite
design does not appear to be di-
rectly applicable to system
design. Therefore, when designing
a system, as opposed to an indi-
vidual program, the designer must

first partition the system into
distinct subsystems or programs.
Then the methodology of composite
design can be used to produce the
structure of these individual
pleces." - '

There is a growing need for a design
tool that can be applied to the de-
tailed design process whether the pro-
duct being developed is a program or a
system. The function of the tool need
not be to suppress the designer, but
rather to support his activities and
to provide explicit design guidelines.
Furthermore, the tool should provide a
unified approach to design process re-
gardiess of the size of the problem.
The tool should also provide a quanti-
tative measure of "goodness" for a
design 1in order to facilitate the
design evaluation by the analyst.

In addition to the structure of the
individual module, the collective
structure assumed by those modules
must also be considered. Structural
design guidelines (Yourdon, 1979),
imply that a "good" structure is one
in which modules are structured in
"hierarchy," where the modules on a
given lower level may or may not be
shared by the modules on the higher
level. In addition to the extent of
sharing, there are restrictions on the
number of levels relative to total
size of the system, and the number of
intermediate subordinates for a given
module at each level. Although, these
are characteristics of a "good"
design, there is no clear methodology
for the designer to follow during the
design process.

As Constantine and Yourdon (1979)
state, "... these heuristics can be
extremely valuable if properly used,
but actually can lead to poor design
if interpreoted too 1iterally ... re-
sults often have been catastrophic

91

PROPERTIES OF SYSTEMS

In order to determine an objective for
design .we must first explore the prop-=
erties of systems relevant to design.
Generally, we accept the basic quali-
tative nature of those overiapping
properties. The set of properties
might include:

Understandability (documented. logi-
cal organization)

Fiexibility (portability and adapta-
bility)

Maintain ability (subject to norma1
evolution) .

Testability {correctness, concise-
ness)
Functionality (usability, capabil-

ity, and operational unity) -

Reliabitfty (security, accuracy.
consistency, completeness, reco-
verability)

Efficiency (performance, cost-

effective, resource usage)

The 1ist is not 1intended to be de-
finitive, merely representative. It
should be pointed out that no general
agreement on the relative importance
of the various properties 1s expected
to arise. Most may 1nitially agree
with the notion that the properties
are all of equal importance, yet,
experience has shown that in different
situaticns and different organiza-
tions, certain aspects take on more
significance.

As the defined properties are basi-
cally qualitative, we lack any gener-
ally accepted measure of the system
quality. We can, however, examine the
design decisions that must be made and
arrive at a set of design criteria
which are, to some degree, measurable.
We then must study the influence of
those criteria on the various sytem
quality properties.

DESIGN CRITERIA

Foliowing examination of the design

decisions that must be made with re-
spect to the earlier discussed design
factors, we arrive at a partfal list
of software design criteria:

Data Utilization - an analysis of data
transport. Has significant impact on
processing time which is a nonde~
creasing function of the transport
volume,

Reference Distribution - an analysis
of the relative location of data

references or locality of reference.-

This analysis takes on special sig-

nificance when a hierarchical memory :

organizations are involved.

Information Distribution - deals with
the distribution of design knowledge
among the modules. By "hiding"
design information the complexity of
development and change can be re-
duced considerably.

Control Transfer -~ analysis of the
probability . of in-1ine control
transfer between processes. Mini-
mization of control transfers can
‘have significant impact on both
process and data organization.

Operational - Invocation - an analysis
of the periodicity of processing and
invocation analysis.

Parallelism - through analysis of in-
vocation procedures and data usage
we can determine precedence rela-
tions and assess potential savings
from paraliel f{nvocation of proc-
esses, This criteria takes on spe-
cial importance when mixed or multi-
ple processors and/or pipelining are
invol ved.

Next, we will discuss several of the
design criteria in more detail.

92

‘Data Utilization

Data wutilization or transport volume
refers to the vclume of data that is
invclved 1in processing each module.
The volumes deal with the logical data
organizations that may or may not be
realized in the resulting physical
design. The higher the volume of data
transported between modules, the
higher will be the associated process-
ing time of executing module. We can
design a system with lower transport
volume by grouping processes into pro-
gram modules 1in order to eliminate
multiple passes and unnecessary cre-
ation of the intermediate files. and
databases.

Transport volume can be used as a
measure of comparison between candi-
date designs. It should not be taken
as the only measure for the design as
lower transport volume does not influ-
ence logical consistency of each
module or the structure of the system
as a whole.

Reference Distribution

In programming environments, reference
distribution 1s defined (Ferrari,
1976) as the pattern of references by
statements to data and statements to
each other. The concept is especially
important 1in virtual memory environ-
ments, in which analysis of the pro-
gram reference string will show how,
under the given paging algorithm, the
behavior of program could be improved
by changing 1its reference distribu-
tion,

In the case of a system of modules,
the reference behavicor 1is far more

predictable than that of program
statements. In a modular system, ref-
erence distribution depends on ths

structure of the system and the extent
of sharing of lower level modules by
higher level modules. lLocality of ref-
erence s insured 1f sharing is 1im

ited. This would be more possible {1f

the structure lends 1itself more to

"pure" tree structure than hierarchy
structure.

Informafion Distribution

The concept of information distribu-
tfon is described by Parnas (1972)
into subsystems, As Parnas describes,
in decomposing a system into subsys-
tems, attention has to be given to
design 1interfaces or ‘"connections"
which are any sort of interrelation-
ships or interdependencies between
subsystems. This {ncludes the dis-
tribution of 1information within the
system and includes the flow of con-
trol, passed parameters, and shared
data structures. Parnas points out
that 1n decomposing a system, each
design interface or "connection"
should contain as 11ttle information
as possible to correctly specify it
and each subsystem should "hide" as-
sumptions about the solution that are
1ikely to change. Elements that are
1ikely to change finclude the data
structure along with its format codes,
1inkage access storage, the transforms
and their sequence in each subsystem.
Parnas states that by "hiding" this
information, the complexity of devel-
opment and change 1s reduced con-
siderably through the reduction in in-
terdependencies of the subsystems.

Parnas does not offer a procedure to

arrive at a "good" structure nor does
he explain how to translate the sub-
systems and their connections into
sets of interconnected modules. Infor-
mation Distributfon guidelines can be
used after the completion of an over-
all structured design as a design re-
finement procedure in order to further
optimize the design by reducing the
interdependencies between modules.

A sat of measurements based on. the
flow of information connecting system

components have been defined by Henry
(1979). The measurements are said to
be useful in "evaluation of the com-
plexities of the procedures and mod-
ules within the system, and the com-
plexities of the {interfaces between
the various components of the system."
The measures are useful in detection
of difficulties in the areas of poor
functional decomposition of procedures
and modules, improper modularization,
poorly designed data structure, and
modifiability.

Control Transfer

In a paged memory, multiprogramming
multi-processed, pipelined or over-
layed environment, software legic is
frequently required to be segmented
into discrete portions. The control
transfer model {(Lowe, 1969} analyzes
the probability of the online control
transfer between segments of exe-
cutable code. The objective 1s to seg-
ment programs in a manner that reduces
the frequency of the inter-segment
control transfers within cyclic pro-
gram structures.

Elements of the control transfer model
include control units, passive units,
and transfer penalties. Control unit
refers to program segment, module, or
set of operations based on the scope
of the design. Each control unit (in
the course of system operation) refer-

_ences other control units and/or pas-

sive units. Passive units are the
files or collectifons of data needed
for the execution of the control

units. There are penalties associated
with the transfer of control between
the control units. A penalty has a
corresponding cost which may be fixed
or varfable, depending on which boun-
dary has been transgressed. Boundaries
that separate the set of control units
{modules) are imposed by physical con-
straints or 1imitations.

THE MODULE DESIGN PROCESS

The program moduie specification proc-
ess consists of analysis of the proc-
ess characteristics and {interprocess
relationships in determination of a
partitioning of the set of processes
‘into modules maximizing satisfaction
of the software properties discussed
earlier.

To automate the process organization:

phase of design, a framework is needed
for a computer-aided methodology to
tncorporate the properties of a good
design at design time. The objective
of our approach is a system of modules
with the following properties wefghted
highly:

a) high level of cohesion
b) Tow level of coupling
c) low Tevel of reference distribution

d) Tow Tevel of information distribu-
tion

COMPUTER-AIDED PROCESS
ORGANIZATION (CAPO)

In order to systematize this phase of
the design process, a process struc-
turing workbench has been developed to
organize the activities in the de-
tailed design stage of software life
cycle. Information on process attrib-
utes and inter-process relations are
made available from earlier design
stages (Konsynski, 1981) or from fin-
verse translation of source libraries.
Graphs are derived representing the
network of processes within the
system. Each node represents a separ-
ate transformation on data, decisions
have to be made with regard to group-
ing of these processes to form separ-
ate modules.

The level of cohesion of each module
depends on the processes which consti-

94

tute that module. A module that con-
sists of several 1logically related
processes would be more cohesive than
a module that consists of fragments of
several processes. Depending on the
size of the module and the size of the
processes that constitute the module,
alternative process groupings will
result in different levels of cohe~
siveness. A critical element in the
structure of a system is the connec-
tion between the modules and the con-
nections of elements within a module.

Figure 1 depicts the overall structure
of the Computer-Aided Process Organ-
ization (CAPO) for grouping processes
to form software modules. The system

provides interactive design, relates
to other analyzers (1.e., PSA), and
fits within PLEXSYS methodology
(1981).

After producing a graph representing
the network of processes, five ma-
trices are generated and the relation-
ships between processes .are examined
in order to determine the extent of
interdependencies. From this infor-
mation we generate an 1interdependency
weight which is assigned to the 1ink
Jolning each pair of processes.

In order to assign interdependency
weights to 1inks joining each pair of
processes, a special weighting scheme
was derived. The objective of assign-
ing weights to 1inks joining two proc-
esses 1is to assess the impact 1n
grouping processes in a single module.
Modules are to be desfgned with a high
level of cohesion and low level of
coupling. A high Tevel of cohesion re-
sults when processing elements within
a module have strong data or functio-
nal relationships. This objective is
used in the current CAPQ installation
(1983).

The resulting weighted graph must be
decomposed into a set of non-
overlapping subgraphs according to the
objective criteria. There are a number

56

- — —
—-— —— - -

I MATRIX P MATRIX R MATRIX R' MATRIX G MATRIX T MATRIX

—_—

- ———— s e B e - ————

1
T - DECOMPOSITION 1
— I

W M 1
SIMILARITY IMILARIT G - DECOMPOSITION 2
ALGORITHM MATRIX 5 ?
4 -~ -
LUSTERIFG
b N .*
LGORIT : - DECOMPOSITION

Figure 1. CAPO Overview

METHOD FOR GENERATING
PARTITIONS

TECHENIQUES

APPLICABILITY

GRAPH THEORETIC
APPROACH

MAXTMAL COMPLETE SUBGRAPH CONCEPT

NOT APPLICABLE

CUT SET THEORY

NOT APPLICAELE

HEURISTIC APPROACH

CLUSTER
ANALYSIS

HIERARCHICAL
(AGGLOMERATIVE)

SINGLE LINKAGE

COMPLETE_LINKAGE
AVERAGE LINKAGE

WITHIN NEW GROUP

AVERAGE LINKAGE
BETWEEN MERGED

———

GROUPS
CENTROID
CLUSTERING

MEDIAN METHOD

NOT APPLICABLE

NON-HIERARCHICAL
(PARTITIONING}

LEADER

NOT APPLICABLE

ITERATIVE

NOT APPLICABLE

INTERCHANGE

NOT APPLICABLE

HEURISTIC
GRAPH
DECOMPOSITION

CORE SET CONCEPT IS USED TO
IDENTIFY A SET OF HIGH STRENGTH

SUBGRAPH

NOT APPLICABLE

DIRECTLY, CORE SET
CONCEPT USED TO DEFINE
SIMILARITY MATRIX USED
IN HIERARCHICAL CLUSTER-
ING

Figure 2,

Methods

for Generating Graph Partitions

of different methods available to ac-
complish the organization evaluation.
These techniques are divided into two
main categories: 1) graph theoretic
approach and 2) heuristic approach.
Figure 2 below summarizes the various
methods which are available for gen-
erating graph partitions.

Cluster analysis has been defined as
"grouping similar objects." One major
assumption made in using any cluster-
ing methods deals with the charac-
teristics of the information employed
to define similiarities among objects.
The procedure used to define similar-
1ty depends on the characteristics of
the objects and their attributes. The
objects are considered to be similar
or dissimilar with respect to their
contributions to the objective of the
clustering analysis.

One major difficulty in performing a
cluster analysis 1s.deciding on the
number of clusters of the objects. A
class of clustering techniques, Hier-
archical, gives a -configuration of
every number of clusters from one (the
entire set of objects) to the number
of objects (each cluster has only one
member). Depending on the size of the
cluster, the level of coherence would
also change (f.e., clusters with only
one member have a maximum level of co-
herence). On the other hand, some al-
gorithms begin with a selected number
of clusters and alter this number as
indicated by certain criteria, with
the objective of simultaneously deter-
mining both the number of clusters and
their configurations. Several parame-
ters can be used in order to 1imit the
range of the solution.

A CLUSTER ANALYSIS APPROACH

The method used to generate the simi-
larity matrix for the process-graph
was first suggested by Gotileib (1968)
in the context of clustering 1ndex
terms in library management. The ap-

proach 1s based on the concept of
"core set" which is used in heuristic
graph decomposition techniques to find
"high strength" subgraphs. The core
set of a given node (1} in a graph is
set of all nodes connected to (1) in
the graph 1including (1) itself. The
weighted links, then determine core
set values. The concept is {llustrated
in Figure 3.

The Tlarger the node core set the
stronger is the connection of the node
to any other node in the core set and
the weaker is the connection of the
node to any node not in the core set.
Stronger connection would bring about
higher similarity weights which in

" turn results in higher probablity that

97

the two nodes should be grouped in a
single cluster or module. The proce-
dure in CAPO is to generate the simi-
Tarity matrix for the process-graph
ustng the analysis package. The core
set concept has been used by Huff and
Madnick (1979) to define the similar-
1ty measure between pairs of nodes 1in
a graph in SDM.

A goodness measure 1s needed for as-
sessment of partition subgraph
strength and subgraph coupling. A sep-
arate measure has been developed for
each component of the objective func-
tion. The strength measure should take
into account whether nodes within a
particular subgraph are tightly cou-
pled. The process uses the number of
1inks joining the nodes within the
subgraph and the cardinality of the
subgraph 1itself. A similar approach
has been used to derive the coupling

measure, A coupling measure has been
derived using the number of 1inks
joining nodes 1in two different

subgraphs normalized by the cardinal-
ity of the two subgraphs. The "good-
ness" measure for a partition involves
adding the strength of all the
subgraphs in the partition and sub-
tracting the result from the coupling
associated with all possible.pairs of
subgraphs. Goodness measures for a

86

Core Set
Q(G) = (Gr 50918)

Figure 3.

The Core Set Concept

Q(9)

Core Set
{(9,6,8,12,10)

partition have been
(see for example, Estabrook, 1966;
Hubert, 1974; Andreu, 1978; Huff and
Madnick, 1979).

used previously

Using the CAPO analysis package, the
analyst can ask the system to compute
the goodness measure for each stage of
clustering and for any of the differ-
ent clustering methods which are
available. Success 1in producing de-
signs that result in reliable soft-
ware, even using structured design
techniques, is dependent on the exper-
ience level of the designer. CAPQO pro-
vides a quantitive measure of quality
necessary in order to ease the depen-
dence on the rare avaflability of
expert designers.

As mentioned earlier, one property of
a "good" design is lower data tran-
sport volume in the system. Lower
transport volume results in Tlower
processing time and lower data organ-
ization complexity. Using the CAPO
analysis package, the analyst can ask
the system to provide volume of data
transported between processes and de-
termine total transport volume within
the system. This would indicate the
necessity of grouping of any pair of
processes and/or the effect of group-
ing of any number of processes on the
total transport volume of data within
the system.

A CASE STUDY USING A SMALL
APPLICATION SYSTEM

To illustrate the application of the
various techniques discussed in this
paper, including the use of CAPQ anal-
ysis package, a small design problem
is presented below. The problem ad-
dressed is the updating of a master
inventory file. Figure 4 depicts the
graphical representation of this
design problem,

It 1s easy to present examples of
Coincidental and Logical cohesion in

99

this data flow graph. Grouping of two
processes, POR-GET-MASTER-RECS and
PRO~MATCH-TRANS-AND-MAST-RECS results
in Coincidental cohesion: any rela-
tionship among the processing elements
is purely coincidental. On the other
hand, logical cohesion results if two
processes, PRO-VERIFY-ORDER-RECS and
PRO-VERIFY-MASTER-RECS are grouped in
a single module.

As the data flow graph is basically
non-procedural, it is not easy to show
the Temporal and Procedural cohesion.
Grouping of two processes, PRO-GET-
ORDER-RECS and PRO-GET-MASTER-RECS fs
an example of a module involving tem-
poral cohesion.

A Procedural cohesion module results
from grouping processes, PRO-MATCH-
TRANS-AND-MAST-KEYS, PRO-UPDATE-MAS-
TER-RECS and PRO-COMPUTE-AMT-CRDER~
PER-PART. Included in the module with
the looping logic itself are the con-
tinuing portions of computations and
merge logic. Elements of procedural
cohesion 1ike the temporal cohesion
are related in time, procedure, and
sequence-oriented associative princi-
ples.

Communication and Sequential cohesion
are 11lustrated on the data flow graph
with their problem orientation. Proc-
ess PRO~MATCH-TRANS-AND~MAST-KEYS has
a communicational association on the
input side with the two processes,
PRO-VERIFY~ORDER-RECS and PRO-VERIFY-
MASTER-RECS. On the output side, how-
ever, the same process 1s communi=
catfonally retated with the four other
processes. An example for a sequential
cohesion module would be the module
which results from grouping two proc-
esses PRO-GET-MASTER-RECS and PRO-
VERIFY~-MASTER-RECS.

The 1information represented by the
data flow graph are used by CAPQ anal-
ysis package. The information includes
the 1input and output information for
each process, the characteristics of

001

e
O 0 00~ OV U e W A

et et e
Ut i W

bt et
oo~

Figure

FILE-NAME

TRANS~-FILE
ORDER-RECS-FILE
EXCLUDED-ORDER-RECS-FILE
VAL ID-QORDER-RECS~F ILE
EXCEPTION-REPORT~-A-FILE
MASTER~ INVENTORY-F ILE
MASTER~RECS5-FILE

VAL ID-MASTER~RECS-FILE
EXCLUDED~-MASTER-RECS-FILE
EXCEPTION-REPORT-S-FILE
INVALID-PART-RECS-FILE
MATCH~PART-RECS-FILE
INVAL ID~-PART-ORDER~FILE
UPDATED-MASTER-RECS-FILE
UPDATED-MASTER-FILE
PART-ORDER-RECS~FILE
PART-ORDER-FILE
PART—-OUT-OF-ORDER-FILE

O~ O U b WS

et et
WO

NAME

PRO-GET-ORDER-RECS
PRO-VARIETY-ORDER-RECS
PRO-WRITE-EXCEPTION~REPORT-A
PRO~-GET-MASTER-RECS
PRO~-VARIETY-MASTER-RECS
PRO-WRITE-EXCEPT ION-REPORT-S
PRO-MATCH-TRANS-AND-MAST-KEYS
PRO-WRITE-INVALID-PART-RECS
PRO~-UPDATE-MASTER-RECS
PRO-WRITE-UPDATE-MASTER-RECS
PRO-COMPUTE-~AMT-CRDER~PER-PART
PRO-SUMMARIZE-PER-PART-NO
PRO~WRITE-QUT-OF —-ORDER-PARTS

Data flow diagram for a master inventory file updating

design problem

the files and databases (keys, size of
records, number of records, etc.) and
the precedence relationship between
processes, The system provides infor-
mation on each process, the data
set(s) used by the process as input or
output and the processes which are
1inked to each process. A separate
screen
the data sets used by the processes.

Further, it shows the matrix of the
process to data set relationship (in-
cidence graph) and computes the total
transport volume of data within the
system, Figures 5 through 8 depict the
information associated with the proc~
ess for updating master inventory.

CAPO computes the volume of data
transported between processes, the
precedence matrix (process to process
relationships), the reachability
matrix, matrix of partfal reachabil-
ity, matrix of feasible grouping,
matrix of probability of control
transfer between processes (probabil-
ity matrix), and the required invoc-
ation time of each process with re-
spect to the other processes. Using
the above matrices and the weighting
scheme, the interdependency weight
matrix is computed. As a result, the
process~graph 1s transformed to a
weighted down graph, shown in Figure
9.

The interdependency weight matrix is
used to produce a measure of similar-
ity between the nodes. The core set
concept 1s suftable as a similiarity
measure since the "closeness" of a
node (say X) to any other node (y) in
the graph is a function of a) the
number of nodes which are connected to
node (X) and b) the strength of the
connection of node (X) to any other
node in the graph (inciuding Y). The
similiarity matrix is presented 1n
Figure 10.

The derived similarity matrix 1s used
as input to six different hierarchical

shows the characteristics of

101

clustering methods. These are Single
Linkage Clustering, Complete Linkage
Clustering, Median Method of Gower,
Centroid Sorting, Average Linkage
within +the New Group, and Average
Linkage between the Merged Groups.
There is no obvious way of determining
which clustering method would produce
the best partition with respect to the
objective function. A1l of the algo-
rithms are included in the CAPQ analy-
sis workbench package and the analyst
may apply whichever one he chooses, or
all six. Table 1 shows the clustering
results for the example.

After each stage of clustering 1n each
of the above methods, the measure (M)
is computed. This measure quantifies
the extent of coupling and strength
within the clusters in the system Com-
paring the six clustering methods, the
single 1inkage clustering produced the
best overall decomposition, with an
objective function value of M = 5,253,
The objective function values for- the
Complete Linkage Clustering, Average
Linkage within New Group, and Average
Linkage Between the Merged Groups
equal 4,919. The remaining two methods
also produced the similar decomposi-
tion with the objective function value
of 4.450.

The clustering methods provide a col-
lection of partitions ranging from
each process as a cluster to one clus-
ter 1involving all the processes as
members. In order to compare the dif-
ferent partitions and investigate the
sequence 1in which the clusters are
formed, the information generated by
the clustering algorithms are used to
draw hierarchical trees. Trees provide
an effective visual aid of the clus-
tering results which permit the ana-
lyst to grasp the hierarchical rela~
tionships and visualize the membership
of each cluster at any level of ag-
gregation. In order to draw the tree,
the range of the criterion is divided
into 25 equal segments and all merges
whose criterion values fall within a

AU

1 2
1 1 -1
2 0 1 -
3 0 0
4 0 0
5 0 0
6 ¢ 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0
FILE NO.
NUM ACCES

FLSIZE/1000 76.
VOL/1000 76,

FILE NO.
NUM ACCES

FLSIZE/1000 9.
VOL/1000 7.

TOTAL TRANS.

COQOOOOOOO+HFO W

4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 - 0 0 0 0 0 0 0 0 0 0
0 0 0 1 -1 -1 0 0 0 o 0 o 0 0
0 0 0 0 0 1 -1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 -1 -1 0 0 0 0 0
0 0 ¢ 0 0 0 0 1 0o -1 ¢ 0 0 0
0 0 0 0 0 0 0 0 1 0 -1 0 0 0
¢ 0 0 0 0 0 0 0 0 0 1 =1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7
1 2 2 2 1 1 2

[

HOOODODODOOQOOLOO o

8

000 76.000 15.200 60.800 15.200 1210,000 1210.000 1064.800
000 152.000 30,400 121,600 15.200 1210.000 2420.000 2129.600

11 12 13 14 15 16 17

2 4 1 2 1 2 1
800 90.750 9.800 50,750 90.750 72,600 72,600
600 363.000 9.800 18:.500 90.750 145.200 72.600

VOLUME 7110.000

Figure 5. Incidence Graph of Processes

18

1
18.150
18,150

9

24.200
48.400

10

24.200
24.200

WO~ N UL B

O @~ A8 WA

e
W b ke

[. .
WO~ WMo

0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00

CO00OOoOOO0OO0O
CO0O0D0O0O0OWOWO .

L] -* . L] L] L] L] L] L] L] . - -

1 -1 0 0 ¢ -1 -1 -1 -1 -1
-1 1 0 2 0 1 -1 -1 -1 -1
1 -1 0 0 0 2 0 0 ¢ 0
0 0 -1 1 -1 -1 -1 -1 -1 -1
2 0 1 -1 1 1 -1 -1 -1 -1
0 0 -1 1 -1 2 0 0 0 0
1 2 -1 1 2 =1 1 1 -1 1
-1 0 -1 -1 0 1 -1 2 0 2
-1 0o -1 -1 0 1 2 -1 1 2,
-1 0o -1 -1 0 -1 0 1 -1 0
-1 0 -1 -1 0 1 2 2 o -1
-1 0 -1 -1 0o -1 0 0 0 1
-1 0 =1 -1 0 1 2 2 0 2
Figure 6 Matrix of feasible grouping
1,00 0.00 0.00 0,00 0,00 0,00 0,00 0,00 0.00 0.00
0.00 1,00 0,00 0,00 0.00 1.00 0,00 0,00 0.00 0.00
0.00 0.00 0,00 0,00 G.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0,00 1.00 0,00 0,00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1,00 1.00 0.00 0.00 0.0C 0,00
0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0,00 0.00 0.00 0.00 0,00 1,00 1.00 0.00 1.00
0.00 0,00 0.00 0.00 0,00 0,00 0.00 0.00 0.00 0.00
0,00 0,00 0.00 0.00 0,00 0.00 0,00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00
0.00 0.00 0.00 0.00 0,00 0,00 0,00 0.00 0.00 0.00
0.00 0.00 0,00 0.00 0.00 0,00 0.00 0,00 0.00 0.00
0.00 0.00 0,00 0,00 0,00 0.00 0.00 0,00 0.00 0.00
Figure 7 ~ Probability matrix
0,9 0.0 0.3 0.0 0.0 O,0 0.0 0.0 0.0 0.0
0.0 0.9 0.0 0.7. 0.0 0.9 0.0 0.0 0.0 0.0
o, 0.0 0.0 0.0 0,3 0,7 0.0 0.0 0.0 0.0
¢.0 0.0 0.0 0,9 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.9 0.0 0.9 0,9 0.0 0.0 0.0 0.0
0.0 0.3 ¢.0 0.9 0,0 0.7 0.0 0.0 0.0 0.0
6.9 0.7 0.0 0.9 0.7 0.0 0.9 0.9 0.0 0.9
o.0 0.0 0.0 0.0 0,0 0,9 0,0 0,7 0.0 0.7,
o.0 0.0 0.0 0,0 0.0 0,9 0.7 0,0 0.9 0.7
o.0 0.0 0.0 0.0 0,0 0,0 0.0 0.9 0.0 0.0
0.0. 6.0 0,0 0,0 0,0 0,9 0.7 0.7 0.0 0.0
0.0 ©.0 0.0 0.0 0.0 0,0 0.0 0.0 0.3 0.9
o.0 0.0.0,0 0,0 0,0 0.9 0.7 0.7 0.0 0.7
Figure 8 Interdependency weight matrix

103

0.00
0.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00
0.00
0.00

" " ® & ¢ € 8 & 8 & & ® 8 .
COVWODOODOOOO0OOO

CDODO0OOOO0OCOOOO

[| I 1
HOMMEO M

HoNnoo

0.00"
0.00
0.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00

000000000000
» - - . * - [] L] [] L] [] L] L]
OO NO~I~NIWVWOOODOOO0O

o 9

direct precedence link

virtual link

processes

Figure 9.

l
!

\
vy
Yy
'y
11.9

!
I

e ey m—

[Sy
-

\
.7

I
‘ I

l
- / .7

-
¢
1

Resulting Weighted Directed Graph

given segment of the range are treated
as having occurred together.

The task that remains, then, 1s to
study the decomposition, to formulate
a set of specifications for struc-
turing modules required to implement
the design., At the same time, effort
should be concentrated on identifi-
cation :of anomalies,’
results, etc., that might 1indicate
errors {n assessments of 1nterdepen-
dency weights.

ANALYSIS OF CLUSTERING RESULTS
A1l the clustering routines started by

grouping two process (7) and (1l1) as
their first cluster. The reason being

‘above).

counterintuitive

104

that the two processes have the
highest level of similarity measurs,
.518, (see the simitarity matrix
The high level of the similar-
ity measure is the result of their in-
terdependency weight, the- number of
processes which are connected to them
and their interdependency 1ink welght.
At the next stage of clustering, proc-
esses 9 or 8 are added to the same
cluster. Note that, by adding more
processes to the same modules the
structure of module has changed from
sequential cohesion to a communi-
cational cohesion. Going one step
higher on the hierarchy tree, proc-
esses (13), (2), and (5) are also
added to the same cluster. Based on
method one, the resulting module has
now processes (2, 5, 7, 9, 11, 13).

qo1

W= OO O W N -

1 2 3 y 5 6 7 8 9 10 1 12 13
1.000 0.000 0.000 0.000 0,000 0.000 ©0.000 0.000 0.000 0.000 0,000 0.000 0.000
0.27% 1.000 0,000 0.000 0.000 0,000 0.000 0,000 0.000 0.000 0.000 0.000 0.000
6.128 0.298 1.000 0.000 ©0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000
0.125 ©0.189 ©0.128 1,000 ©0.000 0.000 ©0.000 0.000 0.000 0,000 0,000 0.000 0.000
0.189 0.3%0 0,218 0.271 1.000 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©.000
0.128 0.218 ©0.182 0.128 ©0.298 1,000 ©0.000 ©0.000 0,000 0.000 0,000 0,000 0.000
0.329 0.497 0,418 0.329 0.497 0.418 1.000 0.000 0.000 0.000 0,000 0.000 0.000
0.173 0.263 0.262 ©0.173 0.263 0.202 0.481 1.000 ©.000 0,000 ©0.000 0.000 0,000
0.210 0.300 0.239 0.210 0.300 ©0.239 0.518 0.344 1,000 0.000 0.000 0.000 0.000
0.086 0.177 0.115 0.086 0.177 ©0.115 0.317 0.160 0.279 1.000 0.000 0.000 0.000
0.210 0.300 0.239 0.210 0,300 0.239 0.518 0.344 ©0.381 0.198 1.000 0.000 0.000
0.086 0.177 0.115 ©0.086 ©0.177T 0.115 0.317 0.160 0.198 0,074 ©0.279 1.000 0.000
0.173 0.263 0.202 0.173 0.263 0,202 0.481 0.308 0.344 0.160 0.344 0.160 1.000
Figure 10 Similarity matrix of process
GROUPING PROCESS USING METHOD 1
1 2 3 &% s5 6 T 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

-—--I

P R h¢

---I I

----------- | PR,

----------- I I

------------------- e |

------------------- 1 I

--- Jeemmcecmccemmme—————m = e s mem—————————]

--- I 1

--- I---1

---) S §

___ 1

___ I

1 2 3 4 5 6 1 10 11 12 13 14 15 16 17T 18 1% 20 21 22 23 24 25

Figure 11

Hierachical clustering tree for single linkage clustering method

901

ID NO

ID NO

GROUPING PROCESS USING METHOD 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
L I
-—-1 T TP TR I
--- 1) PRSP O, |
----------------------------------- S | I
----------------------------------- 1 I
--- T Ty, S §
--- I I---I
--- e G S |
--- I 1
------------------- e TS Co e T RN I
----------------------------------- I) (IR IR I
-- R T {) T
___ I

1 2 3 4 5 6 7 8 9 10 ¥1 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 12 Hierachical clustering tree for average
linkage within the merged grouped method
GROUPING PROCESS USING METHOD &

1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
el GUE TP I
! Tommmmmeeeee I
------------------- I)
------------------------------- I I—em—-I
--- I)T

--- I) (TR |

--- 1 ToomeeeoI
--- I) QETRPRRIS |
--- I) CTETR, ¢
--- bi I---I
--- I Ie--I
--- I I
___ T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 13 Hierachical clustering tree for average linkage between the

merged grouped method

Table 1.

Comparison of Clustering Results

of six Decompositions Algorithms

Method

*Single Linkage 5.252 8 (1), (2, 5, 7, 9, 11, 13)
Clustering (3). (3). (4)y. (&), (B},
(10}, (12)

*Complete Linkage 4,919 7 (1y, (2, 5, 7, 8, 9, 11, 13)

*Average Linkage Within {(3). (4, (6), (10}, (12}

New Group

*Average Linkage Between

Merged Groups

*Centroid Clustering 4,450 7 (L, (2, 5y, (3, 6), (4},

*Median Method (7, 8, 9, 11, 13), (10}, (12)
Here, process (7) has a communi- have a very close M value, the design
cational cohesion on the finput side that has lower transport volume would

with processes (2) and (5) and commu-
nfcational cohesion on the output side
with three processes (9), (11), (13),

As mentioned above, all the processes
eventually will be coltapsed 1n a
single cluster. The objective function
of design (low coupling and high
strength} is used to. determine the op-
timum design. The criteria for opti-
mality once again is the measure M.
The higher the M, the higher the
strength and the lower the coupling in
the system. If there is a constraint
with regard to the size of the module,
the constraint is used as a stopping
criteria,

The level of transport volume is also
used as an alternative criteria to aid
the designer 1in selecting from among
alternative designs. Where two designs

" imposes

107

be preferred as the candidate design
for the system.

CONCLUSION

The result of the analysis is an ef-
fective modularization of the system
of processes and a specification of
program modules for elther manual
(programming) or automatic code gen-
eration (Konsynski, 198l), each of
which has significant and differing
influence on weighting the properttes.

The analysis reveals inherent organ-
ization among the set of processes and
organization on borderline
cases. This eliminates the probiems
that often arise from prior knowledge
or bias on the part of the analyst.

Thus, the analyst is afded in objec-
tivity of design.

Extensions of the overviewed tech-
niques and further design applications
are befng developed. These extensions
include applications in query process-
ing, database creation and reorganiza-
tion, code generation, system testing,
project management, storage allo-
cation, retrofit and portability, and
documentation.

REFERENCES -

Andreu, R. "A Systematic Approach to
the Design and Structuring of Com-
plex Software Systems," Ph.D. Dis-
sertation, Sloan School of Man-
agement, M.I.T., Cambridge, Massa-
chusetts, February 1978.

Anderberg, M.R. (Cluster Analysis for

Applicationss Academic Press, New
York, New York, 1973.

Balazer, R.M. "Imprecise Program Spec-
ifications," USC Information Sci-
ence Institute Research Report RR-
75-36, December 1975,

Boehm, B.W. "Software and its Impact:
A Quantatative Assessment," Datama-

‘tion, Volume 14, Number 5, May
1973! ppo 48—590
Boehm, B., et al. "Characteristics of

Software Quality," TRW Technical
Report, TRW=-S5-73-09, 1973,
Boehm, B.W. "Software Engineering-As

It Is," Proceedings of 4th Inter=

national Conference on Sofiware En-
gineering, September 1979, Germany,
IEEE Catalog No. 79CH1479-SC.
Bohem, B.W., et al. "Some Experience
with Automated Aids to the Design
of Large-Scale Reliable Software,"
JEEE Transaction
neering, March 1975, pp. 125-133.
Dijkstra, E.W.

gramming, Prentice-Hall,
New York, 1976.

Dunsmore, H.E. Influence of Program=-
p.]m’ Pho Do

New York,

Dissaertation, Uni-

108

versity of Maryland, 1979,

Estabrock, G.F. "A Mathematical Model
in Graph Theory for Biological
Classification," Journal _of The-
oretical Biology, Number 12, 1966.

Ferrari, D, "Improving Locality by
Critical Working Sets," Communica-
tions of the ACM, Volume 17, Number
11, November 1974,

Ferrari, D. "The Improvement of Pro-
gram Behavior," Computer, November
1976, pp. 39.

Gelperin, D. JTesting Maintainability.
Software Engineering Notes 4: 7-12,
ACM-SIGSOFT, April, 1979.

Gotileib, C. and Kumar, S. "Semantic
Clustering of Index Terms," Journal
of the ACM, Yolume 15, Number 4,
October 1968.

Hartigan, J. Clustering Algorithms,
John-Wiley, New York, New York,
1975.

Henry, S.M. "Information Flow Metrics
for the Evaluation of Operating

Systems! Structure," Ph,D, Disser-
tation, Iowa State University,
1979,

Horning, J. and Randell, B. "Process

Structuring," Computing Surveys,
Volume 5, Number 1, March 1973,
Huff, S.I. "Decomposition of Weighted
Graph Using The Interchange Parti-
tioning Algorithm," Technical
Report No. 8 , Center for Infor-
mation Systems Research, Sloan
School of Management, M.I.T., Cam-
bridge, Massachusetts, March 1979.

Huff, S.L. and Madnick, S.E. "Analysis
Techniques for Use With the Exten-
ded SDM Model," M.I.T. Sloan School
Technical Report Number 9, February
1979, Cambridge, Massachusetts.

Jackson, M.A. Principles of Program
Designs Academic Press, New York,
New York, 1975,

Karimi, J. "Computer-Aided Process Or-
ganization," Ph.D. Dissertation,
University of Arizona, May 1983.

Konsynski, B.R. and Nunamaker, J.F.,
Jr. "A Generalized Model for Com-
puter-Aided Process Organization in
Design of Information Systems,"

Proceedings of the Sixth Pittsburgh

lation, April 1975.

Konsynski, B,R., "A Model of Computer-
Alided Definition and Analysis of
Information System Requirements,"
Ph.D. Dissertation, Purdue Univer-
sity, December 1976.

Konsynski, B.R, "Quantitive Factors in
Software Design," Western American

Institute of Decision Science,
April 1977.
Konsynski, B.R. and Nunamaker, J.F.

"PLEXSYS: A System Development
System," Advanced System Devel-
opment/Feasibility Techniques,

eds., J.D. Couger, M. Coulter, and
R. Knapp, Wiley and Sons, 198L, pp.
399-423.

Konsynski, B.R. "Information Engineer-
ing in Enterprise Analysis," MIS
Technical Report, 1982,

Kottemann, J. and Konsynski, B. "Com-
ptexity Assessment: A Design and
Management Tool for Information
System Development,”™ Information
Systems, Volume 4, 1984, pp. 12.

Lowe, T.C. "Analysis of Boolean Pro-
gram Models for Time Shared Paged
Environments," Communications of
the ACM, Volume 12, Number 4, April
1969,

Lowe, T.C. "Automatic Segmentation of
Cyclic Program Structures Based on
Connectivity and Processor Tim-
ming," Communications of the ACM,
Volume 12, Number 1, January 1970.

Lowe, T. "Analysis of an Information
System Model with Transfer Penal-

ties," -
ers, Yolume C-22, N5, May 1973.
Madnick, S.E. and Huff, S.L. "An Ex~

tended Model for a Systematic Ap-
proach to the Design of Complex
Systems," Technical Report No. 7,
S1can School of Mapagement, M.I.T.
(NTIS NO. A058565), Cambridge, Mas-
sachusetts, July 1978,

Myers, G.J. "Characteristics of Compo-

site Design," Datamation, VYolume
19, September 1973, pp. 100-102.

Myers; G.
s+ Petro-Cell Char-
ter, New York, New York, 1975.

109

Myers, G. "The Need for Software.Engi-

neering," Computer, February 1978.
Nunamaker, J., Nylin, W. and Kon-

synski, B., "Processing Systems Op-
timizatfon Through Automatic Design
and Reorganization of Program Modu-

les," Tou, Information Systems,
Pienum, 1974.
Nunamaker, J. and Konsynski, B. "From

Problem Statement to Automatic Code
Generation," Systemeering 75, Stu-

dent Litteratur, Lund, Sweden,
1975,

Nunamaker, J., Ho, T., Konsynski, B.
and Singer, C. "Computer Aided

Analysis and Design of a Financial
Information System," Communications
of the ACM, 1976.

Parnas, D.L. "On the Criteria to be
Used 1n Decomposing Systems into
Modules," Communication of _ ACM,
Volume 15, Number 12, December
1972, pp. 1053-1058.

Stevens, W.P., Myers, G.I., and Con-
stantine, L.L. "Structured Design,"
IBM _ Systems Journal, Volume 13,

Number 2, May 1974, pp. 115-=139,

Teichroew, D. "Improvements in the
System Life Cycle," Proceedings
IFIPS, 1974,

Teichroew, D. "A Survey of Languages

for Stating Requirements for Com-
puter-based Information Systems,"
Proceedings AFIPS, 1972, FJCC, pp.
1203-~1244.
Warnier, J.D.
of Programs, 3rd ed., Trans. B.M,
Flanagan, Van Nostrand Reinhold,
New York, New York, 1975.
Wasserman, A.I. "On the Meaning of
Discipline in Software Design and
Development" In Tutorial on Soft-
ware Design Techniques, P. Freeman

and A.I. Wasserman, eds., IEEE
Catalog No. 76CH1145-2C,
White, J.R. and Booth, T.L. "Toward an

Engineering Approach to Software
Design," Proceedings Second Inter=
national Conference on Software Fn-

, 1976, IEEE Catalog No.
76CH1125-4C.

Whitiney, D.E. and Milley, M.K.

NCADSYS: A New Approach to

Computer-Afded Design," IEEE Trans— gtewood C11ffs, New Jersey, 1979.
- Willis, R. R. and Jensen, E.P. "Com-

netics, 4-1 January 1974. | puter Aided Desfgn of Software Sys-
Yourdon, E. and Constantine, L.L. tems" Proc¢, 4th, International Con~
Structured Design Fundamentals of a ference on Software Engineering.
September 17-19, 1979, Munich, Ger-

. Discipline of Computer Program and
Systems Design, Prentice-Hall, En- many, IEEE Catalog No. 79CH1479-SC.

110

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1983

	Computer-Aided Process Organization In Software Deslgn
	Jahangir Karimi
	Benn R. Konsynski
	Recommended Citation

	tmp.1422475048.pdf.GbCR1

