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Abstract 

A Data Warehouse (DW) is the infrastructural data foundation for Business Intelligence (BI) systems. This 
study proposes a methodology for designing a database (DB) schema for a DW. The core of the proposed 
methodology is a source-to-target schema conversion solution, based on directed-graph representation of 
a relational DB schema. It converts the graph representation of a source DB (e.g., one that supports 
operational information system) to a schema that would better fit DW requirements (a.k.a, "Star Schema"). 
The methodology does not aim at fully-automated conversion, but rather permits expert-user intervention 
for handling schema-design decisions that would require in-depth understanding of business context and 
interpretation. This manuscript presents the methodology foundations - graph-representation of a 
relational DB schema, and the schema conversion process. It also describes a prototype implementation of 
the proposed methodology, and discusses direction for future research progress. 
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Introduction and Background 

This study, which is still progressing, aims at developing a methodology for designing a database (DB) 
schema for a Data Warehouse (DW), an infrastructural data foundation for Business Intelligence (BI) 
systems. The methodology proposes a source-to-target schema conversion solution, based on directed-
graph representation of relational schemas. It converts the graph representation of a source DB (e.g., one 
that supports operational information system) to a schema that would better fit DW requirements (a.k.a, 
"Star Schema"). The methodology does not aim at fully-automated conversion, but rather permits expert-
user intervention for handling schema-design decisions that would require in-depth understanding of 
business context and interpretation. 

BI systems offer infrastructure, tools and techniques for data visualization and analysis, toward data-driven 
decision support. BI systems have become an essential asset, as organizations growingly rely on data 
resources to remain competitive in highly uncertain environments. A DW, the data-infrastructure for BI 
systems, commonly integrates and restructures data from multiple sources, toward supporting business 
analysis and managerial decision support. The need to restructure data stems from the different nature of 
data use. Operational use typically mandates access to specific data records, while maintaining "One version 
to the truth", by avoiding unnecessary value duplications. Conversely, analytical use more often mandates 
aggregative view of a large number of data records, toward detecting possible correlations and effects.  

The study addresses scenarios where both the data source and the DW are based on a relational DB schema 
with multiple interlinked tables. However, the different nature of data use mandates different approach 
toward schema design. Operational use is commonly supported by a normalized DB schema (Figure 1.a) - 
multiple tables, each with multiple attributes that functionally dependent on the table's primary key (PK's), 
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and some are linked by a foreign key (FK) to other tables. On the other hand, analytical use commonly relies 
on a "flat" DB structure (Figure 1.c), that stores all attributes in a single relation without necessarily 
enforcing functional dependencies. Flat structures may underlay various BI applications – reports, digital 
dashboards, interactive data inquiry (ROLAP – Relational On-Line Analytical Processing), data mining, 
and possibly others. 

 (a) 

 

(b) 

 

(c) 

 

Figure 1. Database Schema Examples - (a) "Normalized", (b) "Star", and (c), "Flat"  

(PK – Primary Kay, FK – Foreign Key) 

Basing analytical data use on a normalized database schema might suffer from slow retrieval performance, 
as it may rely on multiple computationally-expensive JOIN operations. The semi-normalized "Star" schema 
(Figure 1.b) is a common DW solution to these kinds of performance issues. The Star-schema is based on a 
single fact table, containing numeric attributes (a.k.a., fact variables attributes) that reflect measurements 
of business activities and performance, and can be aggregated. The fact table is linked by foreign keys to 
multiple dimension tables, containing mostly-categorical characteristics of relevant subjects that can be 
associated with business activities and may influence performance (a.k.a., dimension variables or 
attributes). A well-designed "Star" schema is a convenient baseline for generating flat structures along 
various dimension/fact variable combinations. The generation would typically be much faster, vs. a 
normalized DB schema, as it would require less JOIN operations.  

The design of a normalized DB is guided by well-grounded methodologies and supported by helpful tools 
(e.g., the ERD - Entity-Relationship Diagram), the Star-schema concept has not been introduced together 
with methodological conversion method; hence, commonly guided by a set of good practices and "rules of 
thumb" that have evolved over the years. A few studies have looked into defining methodologies that would 
support DB design in DW environments. Lechtenbörger and Vossen (2003) proposed formal definition of 
multidimensional normal forms that would guide DW design. Moody and Kortnick (2000) offer a few 
approaches for mapping source schema components into a DW. Phipps and Davis (2002) propose an 
algorithmic method for automated conversion; however, note that a successful application of such 
algorithm would require in-depth business understanding. Song at al. (2007) explore a semi-automated 
method that would guide the conversion not only by analysis of structure, but also by attribute semantics; 
however, they recognize the need for end-user intervention, in cased where the proposed analysis of 
semantics might fail to detect the correct business interpretation.  

The limitations of previously-proposed approaches have motivated a different direction taken by this study 
– representation of a relational DB schema as a directed-graph, and a conversion that would permit expert-
user intervention. This study suggests that some typical DW schema-design decisions cannot be directed 
by structure and data-type analysis alone, but rather require in-depth understanding business contexts and 
meaning; hence, likely to mandate expert-user intervention – e.g., adding calculated attributes and 
aggregations, tracking attribute-value transitions over time (a.k.a., the "slowly changing dimensions" 
issue), and attribution of fact-variable values. This paper describes the progress so far – it lays the 
foundation for the proposed methodology, demonstrates its preliminary prototype application, and 
discusses future research directions. 

CUSTOMERS
• Customer PK
• Customer
• Marital St.
• Children
• Category FK

ITEMS
• Sale FK
• Product FK
• Units
• Discount

SALES
• Sale PK
• Customer FK
• Store FK
• Sale Date
• Shipment

CATEGORIES
• Category PK
• Education 
• Income level

PRODUCTS
• Product PK
• Product
• Brand
• Unit Price

STORES
• Store PK
• Store
• Region
• VAT %

FACT
• Transaction PK
• Customer FK
• Store FK
• Product FK
• Sale Date
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• VAT Amount
• Shipment 
• Discount
• Total Charge
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• Income level



 Graph-Based Methodology for Data Warehouse Schema Design 
  

2019 Pre-ICIS SIGDSA Symposium on Inspiring mindset for Innovation with Business Analytics and Data Science, 
Munich 2019 3 

Relational Schema Conversion 

The proposed methodology addresses conversion of a relational source DB schema to a relational DW 
schema, where the former is assumed to be 3rd-form normalized while the latter adheres to a semi-
normalized Star schema.  

Directed-Graph Representation: Extending Radev's representation (2013), a relational DB schema is 

represented as a directed graph 𝐺 = (𝑇, 𝐹), where 𝑇 = {𝑇1,𝑇2,𝑇3, … } is the set of all schema tables and 𝐹 =

{𝐹1,𝐹2,𝐹3, … } is the set of all schema foreign keys (FKs). Each table 𝑇𝑖  is considered as a graph node and 

defined by its set of attributes {𝑃𝑖1, 𝑃𝑖2 , … , 𝐴𝑖1, 𝐴𝑖2, … }, where {P} denote a primary key (PK) attribute, and 
{A} denote attributes that have not been assigned as PKs. Each FK is considered as a directed edge and 
defined by 𝐹𝑖 = (𝑇𝑎 {𝐴𝑎1, 𝐴𝑎2, … }, 𝑇𝑏  ), where 𝑇𝑎  {𝐴𝑎1, 𝐴𝑎2, … } denotes the referring table and attributes and 
𝑇𝑏  denotes the referenced table. FK directs at the PK of the referenced table; hence, a referring attribute 
may participate in one FK at the most. The set of referring attributes may include PK attributes, and must 
match the referenced table PK in terms of number of attributes, their order and their data types. Two tables 
may be linked by multiple FKs; where is defined by a different set of referring attributes.  

Source Node and Sink Node Tables: The set of tables that refer to table Ta with foreign keys are 
denoted 𝐼𝑁𝑎  = {𝑇𝑖} , where ∃ 𝐹 = (𝑇𝑖{𝐴𝑖1, 𝐴𝑖2, … }, 𝑇𝑎 , ). Similarly, the set of tables that table Ta refers to by 
foreign keys is denoted 𝑂𝑈𝑇𝑎  = {𝑇𝑖} , where ∃ 𝐹 = (𝑇𝑎{… }, 𝑇𝑖 , ). The number of tables in INa and OUTa are 
denoted NIN

a and NOUT
a, respectively. A table Ta is defined as a source node if not being referenced by any 

FK (i.e., NINa = 0).  A table Ta is defined as a sink node if has no referencing foreign keys associated with 
its attributes (i.e., NOUTa = 0).  

Directed Walk and Connected Subgraph: A directed walk exists from table Ta to table Tb if and only 
if there is a sequence of one or more directed FK edges that links the former to the latter. For each source 
node table Ta the connected subgraph Ga is combines the table Ta, all other tables {Ti} that can be reached 
from Ta by any directed walk, and all the foreign keys {Fi} that form those directed walks. A directed-graph 
representation of a relational DB schema may therefor contain several connected subgraphs {Gi}, one for 
each source node table {Ti}. The connected subgraphs may overlap, as some tables can be reached by 
directed walks multiple source node tables.  

Figure 2 shows an example of a relational DB schema and its directed-graph representation. Table T1 is the 
source node for that schema, as not being referred by other FK's. T3 is a sink for that schema, as not referring 
other tables, and T2 is neither a source nor a sink. This schema has a single connected subgraph G1, with T1 
as its source node table, T2 and T3 that can be reached from T1 by directed walks, and {F1, F2, F3}, as the set 
of FK edges that form those walks. 

 

 (a) 

 

(b)   G = (T, F)   

T = {T1, T2, T3}  

T1 = {P1,1, A1,1, A1,2, A1,3, A1,4, …) 

T2 = {P2,1, P2,2, A2,1, A2,2, …) 

T3 = {P3,1, A3,1, A3,2, …) 

F = {F1, F2, F3} 

F1 = {T1{A1,1 , A1,2}, T2) 

F2 = {T1{A1,3}, T3} 

F3 = {T2 (P2,1}, T3} 

Figure 2. (a) A relational DB schema, and (b) Its directed-graph representation  

 

T1

• P1,1

• A1,1

• A1,2

• A1,3

• A1,4

• …

T2

• P2,1

• P2,2

• A2,1

• A2,2

• …

T3

• P3,1

• A3,1

• A3,2

• … F1

F3

F2
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Star Schema as a Connected Subgraph: A relational DW is commonly formed by multiple Star-
schema structures. A typical star schema has a fact table that contains fact variables - numeric 
measurements that reflect business activities and performance. The fact table is linked by FK's to multiple 
dimension tables, reflecting business subjects that may influence performance (e.g., "Customers", 
"Products", "Locations"). Each dimension table contains dimension variables – mostly-categorical 
dimension characteristics that are potentially relevant for performance analysis. A dimension table can be 
linked to another dimension table, to reflect dimensional hierarchy (a.k.a., "Snowflake Schema") – e.g., 
"Customers" linked to the "Categories" dimension in Figure 1.b, to reflect hierarchical product 
categorization by brands. Dimension tables are often shared by multiple Star-schemas, reflecting subjects 
that affect multiple business activities and perspectives. 

Figure 3 shows a directed-graph representation of a DW, where each star schema forms a connected 
subgraph, with a fact table as a source node and the associated dimensions, linked to the fact table by 
directed-walks. Some dimensions (e.g., DIM1, DIM2 and DIM3 in Figure 3) can be possibly linked to more 
than one fact tables; hence, will be included in multiple subgraphs. 

 

 (a)   

 

(b)    G = {G1, G2, …} 

G1 = (T1, F1) 

T1 = {FACT1, DIM1, DIM2, DIM3}  

F1 = {associated FKs} 

G2 = (T2, F2) 

T2 = {FACT2, DIM2, DIM3, DIM4, 
DIM5, DIM6, DIM7}  

F2 = {associated FKs} 

Figure 3. (a) Relational DW Schema, and (b) Its Directed-Graph Representation 

 

Converting Source Connected Subgraphs to a Star Schema: A proposition that underlies the 
schema conversion methodology is that a connected subgraph at the source DB may become a candidate 
for conversion into a star schema. The source node table would direct the fact table design, and the other 
tables would become candidates for the associated dimensions. However, from analytical use perspective 
some star-schema candidates might be irrelevant; hence, the need for a preliminary assessment of 
connected subgraphs that can be detected in the source DB schema. The following example shows the 
conversion of the DB schema is Figure 1.a: 

 

1. Directed graph representation GSource = (T, F), with ITEMS being the source node table: 
 

T = (CUSTOMERS, CATEGORIES, STORES, SALES, PRDOCUTS, ITEMS)   

CUSTOMERS  = {CustomerPK, Customer, Marital., Children, CategorFK} 

  CATEGORIES = {CategoryPK, Education, Income Level} 

  STORES  = {StorePK, Store, Region, VAT %} 

  SALES  = {SalePK, CustomerFK, StoreFK, SaleDate, Shipment} 

  PRODUCTS = {ProductPK, Product, Brand, UnitPrice} 

  ITEMS  = {SaleFK, ProductFK, Units, Discount} 

 F = (F1, F2, F3, F4, F5) The associated foreign keys 

FACT1

DIM2

DIM3

DIM4

DIM5

DIM6

DIM1

FACT2

DIM7 Star 
Schema 1

Star 
Schema 2
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2. Directed-walks analysis, where each ITEMS transaction reflects a product included in a sale. 
 

ITEMS  SALES:   SALES reflect transactions with "one-to-many" relationship 
with ITEMS; hence, can be de-normalized. 

     Derived: TransactionPK, a surrogate PK 

     Derived: Shipment, attributed along associated items. 

ITEMS    PRODUCTS: Relevant dimension 

     Derived: Items Amount = Units * Unit Price 

ITEMS    STORES:   Relevant dimension 

     Derived: VAT Amount = Units * Unit Price * VAT % 

     Derived: Total Charge =  

Items Amount + VAT + Shipment -Discount 

 ITEMS  SALES  CUSTOMERS:     Relevant dimension 

 ITEMS  SALES  CUSTOMERS  CATEGORIERS:  Relevant hierarchy  

 

3. Directed graph representation GTarget = (T, F), of the outcome Star Schema 

 

T = (FACT, CUSTOMERS, CATEGORIES, STORES, PRDOCUTS)   

FACT = {TransactionPK, CustomerFK, StoreFK,  ProductFK,  SaleDate, 

Units, ItemsAmount, VATAmount, Shipment, Discount, TotalCharge} 

CUSTOMERS, CATEGORIES, STORES, PRODUCTS     Same as above (step 1).  

 F = (F1, F2, F3, F4, F5)  The associated foreign keys 

 

Prototype Implementation of the Schema Conversion Process  

A preliminary prototype of a design-support system for expert users (Figure 4) implements the proposed 
schema conversion methodology. The prototype was developed for research-support purposes, and will be 
used for further development and evaluation. It was programmed with Visual Studio, using C# for 
programming. It is connected to relational DB's installed on Microsoft's SQL-Server, and utilizes graph-
related libraries, programmed in R language.  

The prototype implementation embeds a schema conversion process, which is based on the proposed 
directed-graph representation and consists of several steps: 

1. Source schema extraction: The metadata that describes the source DB structure is extracted from 
the associated system tables, including table names, attributes and data types, primary and foreign 
keys. The source schema is then converted to the directed graph representation.  

2. Star-schema candidates' detection: For each detected source node table, the associated directed 
walks are analyzed to form connected subgraphs - candidates for conversion into DW star schemas. 
Notably, the source DB schema can be potentially converted to multiple star-schema structures, 
possibly with shared dimensions. However, the user may decide at this point which connected 
subgraphs are relevant for the target DW and may choose to ignore the others.  

3. Schema analysis: Each relevant star-schema candidate is then presented to the user for furthers 
analysis. After reviewing a preliminary full-scale conversion, the user may apply various schema 
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manipulations and adjustments, based on business need and the expected forms of data usage; e.g.,  
(a) Removing attributes or even entire tables from the schema, if appear to be irrelevant, (b) 
Deciding whether certain attributes will act as fact or as dimension variables, (c) adding calculated 
attributes, based on other existing attributes, (d) Setting dimension hierarchies, by merging linked 
dimension tables. Other forms of adjustments are currently under development and will be offered 
to users in later releases of the prototype. 

4. Target schema loading: Each directed graph that represents a star schema is translated back to a 
relational table structure, using metadata format that matches the target system tables.  

 

 

Figure 4. Conversion Support Tool – Prototype Implementation 

 

The prototype served as a proof-of-concept for the feasibility and the potential contribution of the proposed 
methodology. It has been tested successfully so far with a few schema conversion scenarios. After enhancing 
the methodology to support a fuller range of DW design challenges, the prototype will be enhanced 
accordingly and tested more comprehensively with expert-users.  

Conclusions 

With the growing reliance on data resources for business analysis and decision support – careful design of 
a DW, as a data foundation for BI system, becomes a critical task. This study aims at developing a 
comprehensive methodology for DW design, based on directed graph representation of a relational DB 
schema. This manuscript presented the foundations for the proposed methodology and described the 
research efforts so far. However, full-scale design of a DW must address many other challenges. The study 
is currently developing solutions for other common DW design challenges that are based on the proposed 
directed-graph representation. For example: 

 Surrogate keys: Replacing source table PK's with surrogate keys – e.g., for simplifying too-
complex key structures, or for merging dimensional values from multiple sources. 

 Dimension hierarchies: Representing hierarchies by multiple interlink tables (a "snowflake"), 
versus de-normalizing hierarchy representation to a single dimension table. 

 Slowly-changing dimensions: Tracking transitions in dimension variable values and linking 
them correctly to fact table records. 

 Date/time dimensions: Adding dimension tables that reflect hierarchical structure of date 
(year, month, quarter, etc.) and/or time (shift, hour, minute, etc.) variables. 

 Derived variables and fact granularity: adding calculations based on other existing variables, 
possibly by reducing granularity (summation) or extending it (attribution). 

 Schema integration: Merging multiple star structures along shared dimensions. 
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A major challenge currently addressed is the design of DW schema under multi-tenancy – the use of the 
same baseline schema for multiple IS instantiations, where each may assign different meaning and 
interpretation to a certain attribute. Multi-tenancy has become common with the growing popularity of 
cloud-based Platform as a Service (PaaS) solutions for information systems (IS) implementation. Multi-
tenancy implies that multiple PaaS customers (“tenants”) enjoy a highly configurable application, while 
multiple applications are assigned to the same database instance. From PaaS providers' viewpoint, multi-
tenancy permits increased utilization of hardware resources lowers overall costs. The conversion of a 
normalized DB schema to a Star schema has so far assumed single-tenancy; hence, the motivation to extend 
this study to address multi-tenancy.  
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