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Introduction

The term ‘architecture’ is frequently used in the context of computers and information systems. This

paper contributes to the discussion on the validity of this interpretation; it further proposes a new

framework for software architecture, integrating concepts from the Unified Process Model,

information systems development frameworks and information management frameworks.

Being aware that a transfer of concepts should be based on correspondences as well as differences, the

paper starts by revisiting some fundamental notions in architecture; these notions are taken from

classical texts in the field of traditional architecture. The switch to the information systems

development point of view is made in the next paragraph, where we present and partially adapt/extend

the Unified Process Model (Jacobson et al., 1999), a major standard in software development. The

adaptation and extension are made in view of the current emphasis on re-use in software practices. It is

concluded that the UPM, even in its adapted form, only deals with one of the three basic notions of

architecture.

Next, the two remaining notions emerging from the discussion of architecture are briefly discussed in

the context of software architecture. It is concluded that they are only partially covered. One of these

notions can be tackled by bringing in ideas taken from a generic framework for information

management as developed by Maes (Maes, 1999). The resulting temptative framework for software

architecture is proposed in paragraph 5 and evaluated in the concluding paragraph.

1. The view of architects on architecture

In many organizations, information systems have a questionnable reputation. Often, information

systems are the critical, if not lacking factor in transforming business processes. They evolve into

legacy software, which is increasingly difficult to maintain. To ensure that future systems avoid this

disastrous evolution pattern, is an ongoing challenge for methodologies for information systems

development.

Various authors argue that the growing complexity is a major factor in explaining this behaviour of

information systems. Systems development should learn how to handle complexity, and – whenever

possible – reduce complexity. Since the complexity of a system is lower bound by the complexity of

the reality that it is supposed to handle, the emphasis is clearly on handling complexity of real world

objects in the first place. This is, historically, precisely where architecture is entering the discussion.
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Architecture was defined by Marcus Vitruvius Pollio as a way to deal with the complexity of the

process of building, and more in particular building in such a way that value is added to the space-time

in which the building is conceptualized and ultimately constructed. Vitruvius defines architecture by

discussing three dimensions: “firmitas”, “utilitas” and “venustas” (taken from Vitruve, 1979).

Firmitas refers to the notion of structural construction aspects, expressed in an architectural ‘form’.

Rendering structure in a building process is indeed an important instrument in dealing with

complexity.

Utilitas indicates the functionality that must be realised. Modern architectural practices try to handle

functionality by using abstraction levels. Abstractions should not be confused with levels of detail

(Alexander, 1965). Appropriate abstraction levels can result in rendering intelligent zooming in

architectural drawings. Instead of presenting more pixels while zooming, a next level of abstraction

shows different concepts, which cannot be represented at a higher level of abstraction (Neuckermans,

1992). The following schema shows a fragment of a framework for architecture, that became the basis

for a CAAD-tool that incorporates both abstraction levels and structural aspects (Neuckermans, 1992).

A leading principle behind this framework is the harmony between function and form in architecture.

Mismatch between constructional aspects and functional aspects is avoided by aligning them.
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Venustas is the third dimension in architecture, which encapsulates the esthetic notions of beauty and

satisfaction. It seems needless to emphasize that Venustas and its relationship to both other aspects

have extensively been subject of discussion in the literature on architecture; this concern was, e.g.,

eloquently expressed by the famous architect Eiffel, in his response in the newspaper Le Temps to a

petition by members of the artistic establishment in Paris, protesting his project in 1887:

“Must it be assumed that because we are engineers, beauty is not our concern, and that while we make

our constructions robust and durable we do not also strive to make them elegant?

Is it not true that the genuine conditions of strength always comply with the secret conditions of

harmony ?

The first principle of architectural esthetics is that the essential lines of a monument must be

determined by a perfect adaptation to its purpose”

From this discussion, it becomes clear that architecture is the art as well as the science of ordering

spaces, in particular building spaces, while applying and combining these three fundamental concepts.

Some additional statements from architects illustrate and compliment this point of view very well:

•  Architecture is the thoughtfull making of spaces (Louis Kahn, mentioned in Van de Ven, 1978)

•  L’architecture est le jeu savant et magnifique des formes rassemblées sous la lumière (Le

Corbusier, 1958)

•  Architecture is a system with elements which are mutually related and determined by their context

(Alexander, 1963)

2. The Unified Process Model: a critical discussion

Building software is the process resulting in a particular version/release of workable software for a

business organisation. Over the past decades, many software process models have been proposed, with

the “waterfall model” as probably the best known yet most controversial one.

The Unified Process Model, UPM (Jacobson et al., 1999) has been developed in conjunction with the

Unified Modeling Language, UML (Booch et al., 1999), a notation standard for systems development

schemas and drawings. The following shows the components originally proposed in the Unified

Process Model.
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The phases correspond to the major milestones in the development of a software system. The Unified

Process Model stresses that for each new version/release of the software, the process must be re-

iterated. The phases coincide remarkably well with the information/knowledge handling process as

proposed by Choo (Choo, 1998). The phases aim at the following milestones:

•  Inception: the identification of the needs for the information system, also including the business

case for the system and the partitioning of the system in clusters.

•  Elaboration: the identification and choice of the required systems components.

•  Realisation: the building and testing of the individual systems components, as well as the overall

relationships between the system components.

•  Transition: handing over the system in the hands of the business professionals that will use it.

In each phase, iterations represent time boxes which should result in concrete deliverables in the

software process. A typical time box in the Unified Process Model, e.g., could correspond to one, or a

few “Use Cases” in the Unified Modeling Language.

The core tasks, on the other hand, represent the major types of activities that, to a larger or smaller

extent, must be executed in each phase. The tasks are the following:

•  Requirements: the identification of the requirements for the system.

•  Analysis: the exploration of the problem domain for the system.
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•  Design: the exploration of the solution domain, involving the development of alternative solutions

for the problems identified during the analysis core task.

•  Implementation: the building of system components, including their documentation.

•  Test: the testing of the components and the overall system.

These generic phases and tasks of the Unified Process Model raise a number of questions. First of all,

the difference between inception and requirements is unclear, even in recent publications on the

Unified Process Model. Another element that is completely missing is the activity that tries to make

software components (more) re-usable. Re-using software components is economically very

interesting in software development, and has been proposed explicitly by various authors (e.g. Meyer,

1997) as an additional task in systems development. Finally, testing is only one way to verify the

integrity and consistency of system components. Modern software engineering disciplines, including

strong typing in object-orientation, allow the verification of software components very early in the

definition of these components. Consequently, the following enhancements are proposed to the

Unified Process Model:

•  Drop the requirements task (all requirement aspects are covered in the activities of the inception

phase)

•  Expand the test task into a verification task

•  Add a generalisation task (dealing with software re-use)

These recommendations will be taken into account when we integrate, in paragraph 5, basic ideas from

the adapted Unified Process Model in an architecture-based framework for software architecture. The

reason why we fall back to this model is rather straightforward: the UPM phases and generic tasks give

a precise definition of the constructional aspects of software. Hence they incorporate guidelines for

defining the Firmitas dimension of software architecture.

Remark further that the degree of people involvement in the combination of the generic tasks and the

phases of this adapted Unified Process Model is not equally distributed; a global graphical

representation of it is as follows:
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This picture illustrates, among other things, that modern software engineering processes use more

energy for the verification than for the realisation of systems components, in particular when they

reuse existing software components.

The UPM is not the first (and will not be the last!) systems development model presented in the

literature. A very famous and influential one was the one developed and further elaborated on by John

Zachman (Zachman, 1987). It should be clear that all the explicit questions taken into account by

Zachman (such as “why ?”, “what ?”, “how ?”, “where ?”, and so on) can be addressed by the

constructional aspects of the enhanced Unified Process Model and hence by the Firmitas dimension of

architecture.

3. Dealing with Venustas and Utilitas

A full framework for software architecture should equally well address the other two dimensions of

architecture: Venustas and Utilitas. Venustas by and large corresponds with quality criteria for

software systems, a shortlist of which can be found in the MATURE concept (Maes & Dedene, 1996):
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•    Maintainability A software system is maintainable if the opportunity costs for

running the system can be kept minimal. This occurs, for example, if

error corrections and implementation changes can be executed without

introducing further errors in the system.

•  Adaptability It should be easy to add functionality to a system.

•  Transparency A system can be transferred smoothly between developers.

•  User-Friendliness Users should recognise the systems functionality in a

 spontaneous fashion.

•  Reliability A system should continuously perform as expected.

•  Efficiency Minimal critical resources should be used for the systems

performance.

Methodologies for systems development can indeed be evaluated against these criteria to determine

how much Venustas they establish for both the developers as well as the professional users of the

system.

Utilitas, the functionality of a software system, is traditionally treated in systems development

methodologies without making any distinction in terms of abstraction levels. A typical example is the

handling of requirements: methodologies tend to treat requirements as a global set of systems

requirements (as also emphasized in the original Unified Process Model). The discussion of

architecture given in paragraph 1 indicates that functionality can best be tackled by the use of levels of

abstraction.

The next problem is the determination of the appropriate abstraction levels for software architecture.

The influential Zachman framework for Information Systems Architecture (Zachman, 1987), e.g.,

identifies multiple levels of abstraction: Scope – Business – Information – Technology – Details.

However, several questions can be raised about these levels of abstraction (Maes & Dedene, 1996), the

most important of which are the following:

•  Does ‘scope’ really belong to the abstraction levels of architecture, or is it a mere indication of the

boundary conditions for information systems. Is ‘scope’, in other words, not primarily about

making strategic choices concerning the context of (in particular: multiple) information systems?

•  Is ‘details’ a valid abstraction level, or just one of the constructional aspects ?

•  Zachman presents the levels of abstraction as levels of detail, which may not be appropriate in a

contemporary view on architecture, as explained in paragraph 1.
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We conclude that little well-thought attention has been paid to Venustas and Utilitas in developing

architectural frameworks and hence that there is plenty of room for frameworks for software

architecture that take the full spectrum of architectural notions into consideration. In the next

paragraphs, we go looking for a temptative approach to this challenge, where we first look for an

appropriate solution for the levels of abstraction (paragraph 4) and then combine Firmitas and Utilitas

into a more integrative framework (paragraph 5).

4. Looking for the appropriate levels of abstraction

Abstractions, core concepts in Utilitas, are treated in the software literature as unclear and complex

concepts. Therefore, we depart from regular approaches to software development and revert to models

dealing with the ICT-business relationship in general. A reference model there is the one of Strategic

Alignment, as proposed by Henderson and Venkatraman (Henderson & Venkatraman, 1993). An

interesting viewpoint on abstraction is presented in a recent elaboration of this model, the generic

framework for information management as developed by Maes (Maes, 1999). Unlike the Strategic

Alignment and many other frameworks from the nineties, which consider merely “Business” and “IT –

Information Technology” as abstractions, this management framework introduces three fundamental

abstraction levels:

•  Business: the viewpoint of the business professionals, responsible for that part of the business that

must be addressed and supported by the software system.

•  Information/Communication: the viewpoint of the professional users of the systems, in terms of

the inherent information and communication processes and hence of the input/output functionality

of the software system.

•  Technology: the viewpoint of the software engineers, responsible for the implementation and

scheduling alternatives for the operational software system.

When using these abstraction levels, the systems requirements can be refined in business requirements,

information/communication requirements and technology requirements. The expertises involved

correspond with the ones introduced by Choo (Choo, 1998): domain expertise, information expertise

and technology expertise. Complexity, hence, can be broken down in three relatively separate areas,

each treated by the appropriate expert/architect; this reduction of complexity is precisely what

architecture is all about!

The generic framework for information management (Maes, 1999) further considers a second

dimension, adding up to an enneahedron. This second dimension in its way presents a solution for the
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classical discussion on “scope” versus architecture. The elements of this vertical dimension of the

enneahedron correspond with the following (information) management subdisciplines:

•  Strategy: the discipline of making strategic choices, and aligning them across business,

information/communication and technology.

•  Structure:  the discipline of translating the strategic decisions into mutually adjusted business,

information/communication and technology (infra)structures. This discipline represents the

organizational component of management.

•  Operations: the discipline of executing and operating the proposed structures in such a way that

operational excellence is attained. At this level, e.g., all typical ITIL (IT Infrastructure Library)

procedures come into consideration.

Considering this managerial dimension, it is evident that scope is positioned at the strategic level.

Architecture, on the contrary, is precisely the discipline dealing with the structuring of strategic

decisions and translating them ultimately into operations. The following summarizes this discussion,

showing the position of the concepts of architecture and scope in the generic framework for

information management:

BUSINESS INFORMATION/
COMMUNICATION

TECHNOLOGY

STRATEGY

STRUCTURE

OPERATION

Architecture

Scope

5. Outline and application of an integrative framework for

software architecture

The framework for software architecture we propose in this paper, is based on the adapted Unified

Process Model (paragraph 2) and on the generic framework for information management (paragraph

4):
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•  The greatly adjusted core tasks of the UPM

•  The phases of the UPM, in combination with the tasks dealing with Firmitas

•  The abstraction levels of the generic framework for information management, dealing with Utilitas

(function)

The resulting integrative framework for software architecture that is proposed in this paper is

graphically represented in the following schema:

Business

Information/
Communication

Technology

Incep-
tion

Business “Logic”

Presentation “Logic” (intake, control,
presentation and dispersion of  information)

Technology and Scheduling options

A
B
S
T
R
A
C
T
I
O
N

ASPECTS

Analysis
Design

Realisation
Verification

Generalisation

Structure

F
u
n
c
t
i
o
n

       TASKS

Elabora-
tion

Con-
struction

Transi-
tion

This schema incorporates an explicit checklist for the Utilitas and Firmitas dimensions of software

architecture. The Venustas dimension is covered by the MATURE list of quality criteria discussed

before.

As a matter of fact, the real test of any construct is in its interpretation and its application (its own

utilitas). Various interpretations/applications of this integrative framework can be envisioned, and

some of them are suggested here. First of all, an obvious question is how systems developed under

architecture can be recognised and discerned from others. An important criterion is of course the

realisation of the different abstraction layers of the utilitas dimension in the software specifications.

The business functionality constitutes the external, core functionality of the software system, and the

other layers are built around it.

Such an approach is not new, and was proposed earlier (Jackson, 1983). A fundamental critique at that

time was the fact that this layering heavily impacts the software development process: the
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information/communication layers, e.g., can only be developed when the business model is completed.

Today, with component-based and object-oriented development approaches, these remarks are

obsolete. An architected software system can nowadays be developed in slices, where each slice

contains the components/objects with their appropriate levels of abstractions (which can in their turn

be represented as stereotypes in the Unified Modeling Language notation).

Business model

Transaction

model

Input, output &

control logic

User

interface

Technology

logic

Components

Another important application of the proposed framework is the fact that it incorporates a structure for

the meta-models which underlie Computer Aided Software Engineering (CASE) tools and application

software frameworks. Frameworks and tools that really assist the developers in realising their tasks

should incorporate the dimensions of the proposed framework for software architecture.

The framework will also stimulate the research for patterns for software re-use: business analysis

patterns are different from, for example, technical design patterns. An overwhelming rich variety of

patterns has been proposed in the literature today (Jézéquel et.al., 2000). The framework can help

considerably in classifying these patterns, also in view of their applicability in the software

development process.

Finally, the framework can help in realising a better degree of exchange between software system

specifications. Software architecture can help to improve the degree of model interchanges between

software development communities. Needless to emphasize that this may be very important to

stimulate modern software approaches, such as Open Source Software.
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Conclusions

This paper started by analyzing the very nature of architecture. Based on this, an investigation was

made of the various components of an integrative framework for software architecture. A new, more

integrative framework was derived from the Unified Process Model and from the generic framework

for information management. The proposed framework enjoys a number of advantages:

•  The structure of the framework is compliant with the way the original and seminal Zachman

framework for Information Systems Architecture (Zachman, 1987) was conceived. However, it

also satisfies further formalisations of this type of frameworks, as proposed by Martin and

Robertson (Martin & Robertson, 1999).

•  The proposed framework coincides with two of the three dimensions in architecture, in the way

they have been discussed in the classical literature on architecture.

•  The proposed framework is compliant with and enhances the Unified Process Model and the

Unified Modeling Language. This allows a fair integration of the framework with a variety of tools

that are available today. Moreover, the proposed framework induces further structure in the UML

notations.

•  The proposed framework fits neatly into a generic conceptual framework for information

management.

Further research should reveal to what extent the proposed framework can assist in comparing and

assessing software development methodologies. It is our impression that systems that are realised

under architecture enjoy a higher degree of quality and a lower degree of complexity. The proposed

framework incorporates modern insights taken from the field of software development and of

information management, but equally well standing insights from classical literature on architecture.

At least it offers a guarantee that systems built under this architecture and complying with the

MATURE set of conditions are up-to-date elaborations of time-honoured visions on architecture.
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