
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1989 Proceedings International Conference on Information Systems
(ICIS)

1989

A MODEL OF SYSTEMS DECOMPOSITION
Yair Wand
University of British Columbia

Ron Weber
University of Queensland

Follow this and additional works at: http://aisel.aisnet.org/icis1989

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1989 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Wand, Yair and Weber, Ron, "A MODEL OF SYSTEMS DECOMPOSITION" (1989). ICIS 1989 Proceedings. 48.
http://aisel.aisnet.org/icis1989/48

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1989%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989/48?utm_source=aisel.aisnet.org%2Ficis1989%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A MODEL OF SYSTEMS DECOMPOSITION

Yair Wand
University of British Columbia

Ron Weber
University of Queensland

ABSTRACT

The way in which systems should be decomposed so they can be better understood and better designed
remains a fundamental problem in the information systems discipline. A number of different
decomposition methodologies have been proposed. However, no methodology has emerged as
dominant, presumably because the relative strengths and limitations of each methodology are still
unclear. Case study research that has compared the methodologies, for example, has produced only
equivocal results.

In the absence of a theory of decomposition, it is difficult to make insightful predictions about the
merits and failings of a particular methodology. Consequently, it is difficult to undertake empirical
research that produces compelling results. Accordingly, in this paper we develop a rudimentary model
of decomposition that we hope might form the basis of a subsequent, more complete theory of
decomposition.

1. INTRODUCTION theory of decomposition, it is difficult, if not impossible, to
make good predictions about the strengths and weaknesses

Much of the computer science and information systems of different decomposition methodologies. Thus, empirical
literature has been concerned with the problem of decom- research that seeks to evaluate competing decomposition
position: the way in which an object should be broken up methodologies is problematical because researchers are
into smaller objects so it can be better understood or unable to identify the strategic hypotheses to test and the
better designed. Researchers' preoccupation with the relevant data to gather to allow comparative analyses to be
problem reflects their attitudes about its widespread undertaken.
importance for systems analysis, design, and implementa-
tion. For example, Bergland (1981, p. 14) argues: "I Accordingly, in this paper we seek to develop a rudimen-
believe the quality of the program structure resulting from tary theory of decomposition. Our ultimate goal has a
a design methodology is the single most important determi- threefold purpose. First, we are striving to identify a
nant of the life-cycle costs for the resulting software parsimonious set of precise, core concepts that can be used
system." as a common framework for describing and comparing

decomposition methodologies. Second, we then wish to
In spite of the attention that the decompor,ition problem use the model to better understand and predict the relative
has received, no single approach to decomposition has strengths and weaknesses of competing decomposition
emerged as dominant (see, e.g., Pressman 1987). The , methodologies. Third, in light of our theoretical predic-
issue of which decomposition method to use is still sorely tions about the relative strengths and weaknesses of
debated (see, e.g., Zave 1984), and researchers still seek different decomposition methodologies, we seek eventually
new approaches to decomposition as a manifestation of to conduct better-directed empirical research to evaluate
their dissatisfaction with current approaches (see, e. g., the methodologies.
Dromey 1988).

The remainder of this paper proceeds as follows. The first
We believe that research on decomposition has been section below provides a brief review of some important
undermined because a rigorous theory of decomposition prior research on decomposition theories and methodo-
has yet to be developed. Many of the central concepts logies. In the second section we develop the basic concepts
used in decomposition research -- for example, concepts used in our own model of decomposition. The third
like coupling, module, and hierarchy -- are poorly defined. section is the crux of the paper: it presents our formal
Consequently, decomposition apploaches are often fuzzy model of decomposition. In the fourth section we illustrate
and difficult to evaluate or apply. Indeed, as Bergland how the decomposition formalism can be applied via an
(1981, p. 35) comments: "All of the methodologies rely on example. Finally, the fifth section discusses future research
some magic." Moreover, in the absence of an underlying directions and presents our conclusions.

41

2. PRIOR RESEARCH ON DECOMPOSITION are relatively simple. With large systems, "structure
clashes" arise that may lead to complex design solutions.

Prior research on decomposition has been undertaken for
two reasons. First, researchers have sought better ways of The fourth approach, higher-order software (HOS),
understanding complex systems. During the definition requires analysts/designers to first represent a system as
phase of the system development life cycle, for example, a single mathematical function. Decomposition is then
systems analysts must come to an understanding of the undertaken by hierarchically breaking up the function into
existing system as a basis for eliciting the requirements for subfunctions. Successive levels of functions are decom-
the new system. Second, researchers have sought better posed iteratively using either mathematical partitioning of
ways of designing systems. During the program develop- functions or composition of functions (Hamilton and
ment phase of the system development life cycle, for Zeldin 1976; Martin 1985). Like data structure decomposi-
example, programmers must design and implement tion, HOS seems to lead to greater consistency among
programs that satisfy the requirements definition. In short, analysts/designers in their decomposition work. However,
decomposition has a role in both analysis and design. like functional decomposition, the basis for decomposition

(time, resources, data flow, etc.) is unclear. Moreover,
While a large number of decomposition methodologies practical experience with the methodology is still limited.
have been proposed, six have been prominent. The first
approach, functional decomposition, requires analysts/de- The fifth approach, object-oriented design, requires
signers to identify the primary function performed by the analysts/designers to first identify the objects in the
system. This function is then broken up into a co-ordi- domain of interest and operations upon the objects (see,
nated set of subfunctions using some type of divide-and- e.g., Cox 1986; Pressman 1987; Shaler and Mellor 1988).
conquer technique (sce, e.g., Parnas 1972; Wirth 1973; The software realization of an object and the operations on
Dijkstra 1976; Linger, Mills and Witt 1979). Functional the object are made up of a private part and an interface.
decomposition has proven useful across a large number of The private part is hidden from other objects. It contains
diverse problems. However, as Bergland (1981) points out, the data structure that describes the attributes of the object
it often leads to decomposition inconsistencies. Unfortu- that are of interest and the operations on the object. The
nately, it does not specify whether decomposition should interface is the shared part of the object through which
be undertaken with respect to time, control flow, data flow, messages are received and transmitted to other objects.
etc. Decomposition is attained as a natural result of the

information hiding that occurs via the private parts of
objects. Furthermore, operations that require two or more

The second approach, data flow decomposition, requires oNects must access the private part of only one of the
analysts/designers to construct a data flow diagram to objects; otherwise, the objects are considered to be too
describe the existing or proposed system. The data flow tightly coupled. While this approach to decomposition
diagram then forms the basis for two types of decomposi- seems promising, experience with object-oriented design is
tion: either (a) transform analysis, if the number of input still limited.
data flows to a process roughly equals the number of
output data flows from the process, or (b) transaction data The sixth approach, formal derivation, requires analysts/
analysis, if the number of input data flows differs substan- designers to specify the system as a predicate transfurma-
tially from the number of output data flows (see, e.g., tion between a set of input states (the precondition) and
Myers 1975; Yourdon and Constantine 1979). Pressman a set of output states (the postcondition) (see, e.g., Mills
(1987, p. 263) argues that data flow decomposition has et al. 1987). The predicate transformation is then trans-
proved useful when 'information is processed sequentially formed into a set of simpler transformations. Several
and no formal hierarchical data structure exists: In some strategies can be used to simplify the predicate transforma-
systems, however, data flow is a subsidiary issue, and the tion (see, e.g., Hoare 1987). A common one involves
approach is less useful. making a sequence of refinements on the predicate

transformation, each of which establishes the postcondition
The third approach, data structure decomposition, for progressively weaker preconditions (Dromey 1988).
requires analysts/designers to first build the data structures Eventually, the preconditions are sufficiently weak for the
for a system's input and output data streams. The struc- problem to be solved. While the approach provides rigor
ture of the system (and its decomposition) is then derived to the decomposition process, its applicability to large
as a natural consequence of the transformations needed to problems is still limited. Moreover, it can lead to multiple
map the input data structures to the output data structures decomposition solutions (Bergland 1981).
(see, e.g., Jackson 1975, 1983; Warnier 1981; Orr 1981).
While data structure design appears to lead to greater Which decomposition approach is "best" remains a funda-
consistency among the decompositions obtained by mental, unresolved problem. Often, comparative evalua-
different analysts/designers, it may not work well for all tions of the approaches are undertaken in light of expe-
types of systems. For example, Yourdon and Constantine rience with their use on some case study (see, e.g., Berg-
(1979) argue that the approach is useful only when systems land 1981). Unfortunately, the generality of the conclu-

42

sions reached on the basis of case studies is always a moot To illustrate these notions, consider Figure 1. The vertices
issue. Accordingly, we argue that a theory of decomposi- in the graph represent things. For example, raw materials
tion needs to be developed to provide a framework for is a thing. It can be described by a state vector of proper-
systematically investigating the strengths and weaknesses ties such as inventory item number, quantity on hand, and
of the different decomposition approaches. Each can then warehouse location. The values that these properties
be examined in terms of how well it instantiates the theory. assume at some point constitute a state of the raw
Based upon the theory, predictions about the likely materials thing. The set of states that the raw materials
strengths and weaknesses of the approach can be gene- thing might assume constitutes the possible state space of
rated. These predictions can then be systematically the raw materials thing.
evaluated via empirical research.

The states that a thing might assume are often constrained
by laws. Laws reflect restrictions imposed upon things

3. BASIC CONCEMS UNDERLYING THE either by nature or humans. For example, if the quantity-
DECOMPOSITION MODEL on-hand property of the raw materials thing shown in

Figure 1 assumes a negative value, the state may be
In this section, we develop the basic concepts that underlie deemed unlawful. The set of states of a thing that are
our model. Since we have formally articulated these deemed lawful constitutes the 4411 state space of the
concepts at length elsewhere (Wand and Weber 1988, thing.
1989), we proceed below in a concise and intuitive fashion.
The concepts are based upon and an extension of a theory The dynamics of a thing are modeled via events and
of ontology developed by Bunge (1977,1979). histories. An event arises because an existing state is

mapped into a new state via a transfo,mation. Thus,
We view the world as being made up of Utingr or objects events can be represented as pairs of states, e = <s, s' ,
that have known properties. Things are modeled via a where s represents the "bdfore" state, s' represents the
functional schema, which is a set of functions that assigns "after" state, and s' = g(s). If the before and after states
values to the properties of the thing. Each function in the are lawful and the transformation, g, that gives rise to the
set is called a state function or state vatiable. A combi- event is lawful, the event is a tawjet event. The set of
nation of values that the state variables might assume is lawful events that may arise constitutes the hn,0,1 event
called a state. The set of all states that the thing might space of the thing.
assume is called the possibk state jpace of the thing, S
= {s}. We represent a state via astate vector of proper- To illustrate these notions, consider, again, the raw
ties, s = <xi, ···, x„>, and we assume that the state vector materials thing shown in Figure 1. If sufficient inventory
contains all the information needed to analyze the thing of is on hand, a lawful transformation on the state space of
interest. the raw materials thing may be a withdrawal of inventory.

Inventory Supplier
Management
Subsystem

Replenishment

 Finished Goods

Hire Labor
Labor Management

Subsystem

Production Order
Worker

Figure 1. First Decomposition of Production Management System

43

A new state arises when the value of the quantity-on-hand subsystem is a subsystem of the production management
property changes because inventory has been withdrawn. system because it possesses these characteristics.
The change of state represents an event.

Things in the composition of the system which are acted
A sequence of events gives rise to a history. A histo,y of upon by things in the environment of the system are called
a thing is represented via the set of states that the thing input componenS. Conversely, things in the composition
assumes across time. For example, a history of the raw of the system that act upon things in the environment of
materials thing in Figure 1 might contain a series of state the system are called output components. For example,
changes that have occurred to the thing because replenish- in Figure 1 the replenishment thing is an input component
ments and withdrawals have altered the value of the because the supplier thing acts upon it to change its state.
quantity-on-hand state variable. Similarly, the job thing is an output component because it

acts upon the finished goods thing to change its state.
Relationships among things are modeled via bondings or
couplings. Two things are coupled when the history of at Things may undergo different types of events. An input
least one of the things depends upon the history of the event is a state change that a component of a system
other thing -- in other words, the states assumed by one of experiences by virtue of the action of a thing in the
the things are different because the other thing exists. The environment of the system on the component. An ouiput
latter thing is said to act on the former thing. For ex- event is a state change that occurs to a thing in the
ample, in Figure lthe raw materials thing is coupled to the environment of a system by virtue of the action of a
replenishment thing because the history of the raw mate- component of the system on the environmental thing. A
rials thing depends upon the history of the replenishment processing event is a state change that occurs to a compo-
thing. nent of a system by virtue of the action of another thing in

the composition of the system on the component.
A set of things that are coupled to each other constitutes
a system, providing the set cannot be partitioned into two
or more independent subsets of interacting things. The
things that make up the system are called its composifion. 4. THE FORMAL MODEL
The envimnmeit of the system comprises the set of things
which are not in the composition of the system but which Given our basic concepts, we now develop a formal model
are coupled to things in the composition of the system. that enables us to analyze the nature of a good decomposi-
The slmcmre of the system comprises the set of couplings tion. Again, some of the fundamental elements of our
among things in the composition of the system (the formal model of decomposition have been developed
internal bondings) and among things in the composition of elsewhere (Wand and Weber 1989), but we repeat them
the system and the environment of the system (the external here as the basis for our analysis.
bondings).

We begin with the notion of a decomposition of a system,
For example, Figure 1 shows the graph of a production not necessarily a good decomposition. Intuitively, a
management system. The composition of the system decomposition of a system is a set of subsystems that has
comprises the replenishment thing, the raw materials thing, three properties: (a) every element in the composition of
the job thing, the labor thing, and the hire thing. Note the system is included in the composition of at least one of
how all these things are coupled together and how they the subsystems in the set; (b) the (set) difference between
cannot be partitioned into disjoint subsets. The environ- the union of the environments of the subsystems and the
ment of the system comprises the supplier thing, the composition of the system equals the environment of the
production order thing, the worker thing, and the finished system; and (c) every element in the structure of the
goods thing. The structure of the system includes the system is included in the structure of at least one of the
internal bondings between replenishment and raw mate- subsystems in the set. Formally we have:
rials, raw materials and job, job and labor, and labor and
hire. In addition, the structure includes the external
bondings between supplier and replenishment, production Definition 1: Let I be an index set, let a be a system, and
order and job, worker and hire, and job and finished let xi be a subsystem of a, denoted xi < a. Then
goods. D(a) = {xi},E, is a decomposition over a iff:

A subsystem is a system which has a composition and (a) 2 (a) = u,E,C (X, L where C (a) is the composition of
structure that are subsets of another system. In addition, the system and C (xi) is the composition of the i-th
its environment is a subset of those things that are in the subsystem;
environment of the system plus those things that are in the
composition of the system but not in the composition of (b) f (a) = u,e(X/E - 8 (a):yhere f (a) is the environ-
the subsystem. In Figure 1, for example, it is easy to show ment of the system and E (xj is the environment of
that the system designated as the inventory management the i-th subsystem;

44

We now want to analyze how events propagate through a(c) S Co=) - Uier S- (xi), where S (a) is the structure of the system -- through the various subsystems and up and down
system and S fri) is the structure of the i-th subsys- the level structure of a system. Our eventual goal is totem. design decompositions and level structures that force

Figure 1 shows that the production management system events to propagate throughout systems in well-defined
ways. Accordingly, we begin with the notion of the statehas been factored into two subsystems: an inventory space of a decomposition of a system:management subsystem and a labor management subsys-

tem. It is a straightforward exercise to show that these two Definition 3: Let I be an index set, and let DCa) be asubsystems constitute a decomposition of the system. decomposition of a system a. Then the possible state
Since subsystems can be nested within other subsystems, space of the decomposition is the Cartesian product of
the concept of a decomposition leads naturally to the the possible state spaces of the subsystems that constitute
concept of a level structure over a system. Formally we the decomposition. That is, S(D(a)) = ®,E, SC-ri).
have:

Notation 3(a): Henceforth,S((D(c)) willbe abbre-
Definition 2: Let D (o) be a decomposition of a system, viated to S(D).
0, and let L = {L, I i-1, ..., n} bea partition of D(a).
Then a level shcaue L = <4 <> over D(o) is defined Notation 3 (b): sl denotes the j-th state of the i-th
recursively as follows: subsystem.

(a) (Basis): Lo = {a}
To illustrate this concept, consider the two subsystems

(b) (Induction Step): L,+,(i = 0, ..., n - 1) is a (finite) shown in Figure 1. Assume, for simplicity, that we use
nonempty set of subsystems such that only one state variable to describe each of the two subsys-

tems: RM-AvaH (raw materials availability in units) for
(Vx)[x €L'+1 * 3y E L' A x < y]. the inventory management subsystem; and Lab-Avail

(labor availability in units) for the labor management
The top panel of Figure 2 shows the level structure for the subsystem. Furthermore, assume the inventory manage-
production management system of Figure 1. The bottom ment subsystem can take on only three states representing
panel has been added to show the composition of the differing levels of raw material availability: S(xi) = {sj,
lowest-level subsystems and, ultimately, the composition of s , s } = {0,10,20}. Likewise, assume the labor manage-
each higher-level (sub)system. ment subsystem can take on only four states representing

r-

,

Production ,
, Management

System ,
, ,

I ,

, ,

'
*

1 ,
' *

j Inventory Labor '
I Management Management ,
' Subsystem Subsystem ,, ,

, ,

, ,

, ,

---------- ------------- - - - - - - - - - - - - - I. - - - - - - - - -I

Replenishment Raw Materials I Job Labor Hire '
1

--

Figure 2. Level Structure for First Decomposition

45

differing levels of labor availability: S(xj = {sj, s j, 323, Notation 3(c): Let s E S(a). Denote by d(s) € P(S(D))
324} = {0,10,20,30}. In this light, the state space of the the set of all corresponding states in SCD), Hft) = d(s).
decomposition is: Denote by d(s) the j-th element of Cds). Denote by

dl(s) the i-th component of the j-th element of d(s),
namely, the state of the i-th subsystem when the system is
in state s E S(a). Note, d/(s) will be termed the projec-
tion of state s in subsystem xi.

= { (0,0), (0,10), (0,20), (0,30), (10,0), (10,10),
(10,20), (10,30), (20,0), (20,10), (20,20), (20,30)}. To illustrate the notation using the production manage-

ment system example described above:
Since system states are a manifestation of subsystem states
(and vice ve,sa), it must always be possible to map a state H(sb = d(&02) = {(si sj), @12, 324), (313, Sb, (S , S;)}
of the system into one or more states of a decomposition
of the system. Thus we have: Thus:

di(sb = (s?, sj) and d (sb = 312, dj(sb = Sj
Lemma 1: Let S(a) be the possible state space of a sys-
tem, a, let S(D) be the possible state space of a decompo- d2(sb = (312, 324) and diz(602) = sf, d22(sb = s;
sition of a, and let P(S(D)) be the power set of S(D).
Then a function, H, exists that maps the possible state d3(sh = (s:, Sb and d&(sj) = s , d;(sob = sj
space of the system into the power set of the possible state
space of a decomposition of the system. That is, d'(sh = (s , s;) and di(sb = si, 614(302) = 324
H: S(4 -+ P(S(D)).

Using this notation, we are now able to define the notion
For example, assume only one state variable is used to of an induced event. Intuitively, an induced event is an
describe the state of the production management system, event that occurs in a subsystem of a system as a manifes-
xo, shown in Figure 1: Prod-Cap (available production tation of an event that occurs in the system. If we observe
capacity in units). Furthermore, assume that production a change of state in the system, at least one of its subsys-
must occur in lot sizes of 5 units and that each unit of tems must undergo a change of state. This change of state
finished goods requires 2 units of raw materials and 4 units in the subsystem is the induced event. Formally we have:
of labor to produce. Given the state space of the decom-
position of the system described above, the following map- Definition 4: Let <s, s') € E(a) be an event in the
ping shows the circumstances under which 0 and 5 units of possible event space of the system, and let &(s) and d;,(s,)
finished goods can be produced: be the corresponding states in P(SCD)) U and k are not

necessarily distinct). Let di'(s) and d,*(s') be the state of
H(soi) = H(0) = { (st, st), (si, sb, (sj, st), (sj, st), the i-th subsystem when the system is in states s and s'

respectively. Then the event <dl(s), di"Cs') will be called
(S?, S]), (S?, Sb, (S , Sj) (Si Sb} aninduced event onsubsystemxi < oiftd;(s) 0 d,*(s').

The induced event on the subsystem xi will be designated
= { (0,0), (0,10), (0,20), (0,30), e,.

(10,0),(10,10),(20,0),(20,10)}
To illustrate the notion of an induced event, assume the

H(sb = H(5) = { (si 523), (S12, SD, (S?, Sj), (S , Sb } event <sj, 40 occurs in the production management
system. Furthermore, assume that &(sol) is the state of

= { (10,20), (10,30), (20,20), (20,30)} the decomposition when the system is in state sj and di(Sb
is the state of the decomposition when the system is in

It is important to note that a state of the system may map state sj. Thus we have:
into more than onc state of a decomposition of the system.
In other words, if we "observe" the system only at the &(sol) = (st si) = (10,0)
system level, we may not know the states of the subsystems
because a one-one mapping (an injection function) may not dl($02) = ($12, Sj) = (10,20)
exist between the state space of the system and the state
space of a decomposition of the system. df(sj)= sf =10

d;(st) = sj = 0
We now show how events observed at the system level are
manifested as events in the subsystems of the decomposi- di(sb= s?=10
tion. To aid our analysis, we first introduce some addi-
tional notation: 4(sb= 4=20

46

Since d (sj) = dli(sj), the system event has not produced Definition 6: Let g be a transformation on a system, a,
an induced event in the inventory management subsystem. and let St be the set of subsystem equivalence states for
However, an induced event has occurred in the labor the i-th subsystem in the k-th state. The decomposition
management subsystem becaused&(sj) 0dj(sb. In short, condition holds when:
the increase of productive capacity of 5 units has occurred
because 20 more units of labor have become available, s € S,* 4 g(s) € S, , k and h are not necessarily distinct.
presumably because more labor has been hired.

Corollary i d (s) = d (s') =dig(s)) n d,(g(s')) 0 h
Note that whenever a change of state occurs in a system,
it will always be manifested as an induced event in at least For the decomposition condition to hold, subsystems must
one of its subsystems. Formally, we have: behave independently. Given we know that the i-th

subsystem is in statey = di*(s) when the system is in state
Lemma 2: V(<s, s') E E(a), 3,; . xi < 0, such that s, we have sufficient knowledge to predict the new state
3d/(s), 3di*(s') and d/(s) 0di*(s'). Note, j and k are z =di'(g(s)) when anevent occurs. Thus, the new systemnot necessarily distinct. states that arise by virtue of a transformation on the states

in a set of subsystem equivalence states must also map into
However, the converse is not true: changes of state in a the same new subsystem state. Otherwise, it is impossiblesubsystem will not always be manifested as changes of to predict the new state of the subsystem when a transfor-
state in the system. For example, in the production mation occurs on the system states.

management system, assume the followi g event occurs inthe event space of its decomposition: ,(sii, sj),(si sb>· We formalize these notions in terms of the concepts of a
A change of state will not be produced in the system; the well.defined, induced transformation and a good decom-
system will remain in soi. position:

We turn, now, to address the concept of a good decompo- Definition 7: Let g be a transformation on a system a.
sition more directly. We begin with the notion of subsys- Then the transformation, g, induced on the subsystem
tem equivalence states: Xi < o is well-dejined iffg is a function, i.e., gi(S) = s'

andg,(s) =s" *s' =s" forevery s, s' s" € S(xj.
Definition 5: Let so' be the j-th state of the system, let
s,*0- > 0) be the state of the i-th subsystem, and let d,(sj) Definition 8: A decomposition, D(a), of a system is a
be the set of possible states of the i-th subsystem when the good decomposition with respect to a transformation, g,
system is in state j. Then the set of system states, Si*, that on the system iff the transformation g induces a well-
map into the same state k of the i-th subsystem will be defined transformation, gi, in every subsystem, xi, of the
called the subsystem equivalence states. That is, decomposition.
Sik = fs I di'(s) = s,9. Note, d/(s) is the /-th element of
the set of possible states of the i-th subsystem when the
system is in state s. 5. APPLYINGTHEDECOMPOSITIONFORMALISM:

AN EXAMPLE
To illustrate this concept, consider the production manage-
ment system example. Given the two states the system To illustrate the notion of a good decomposition in the
can assume -- S(ro) = fs ,su = {0,5} - the sets of context of the model, consider, again, the production
subsystem equivalence states are: management system. Assume that we have a transforma-

tion, gl, which effects a change of production capacity in
S = s ; d (s) = d (s) = d (s) = d (s) = 0 light of a production order for 5 units of finished goods.

Thus, the mapping for gi is:
ST = {st, sg} ; d (st) = df(sj) = d](si) = di(sj) - 10

gi (sol) = 4, i.e., 2(0) = 0
S = <st, 4 ; d&(sb = d (509 = dr(sj) = di(4) = 20

2(302) = 4, i.e., 2(5) = 0

st - {4} ; 4(*= 4*= 4*= O
In short, if a production order for 5 units is received and

52= {sj} ; 4* - 4* = 4(* = 10 the production capacity is 5 units, the production capacity
is reduced by 5 units to reflect that production of these

S] = {s , sj} ; d](s) = dj(s) = d](sJ) = 20 units has started.

S = {sj, s } ; <(so) = d (sj) = ** = 30 Consider, now, the transformation gli induced on the
inventory management subsystem, xt• Table 1 shows the

In light of the notion of subsystem equivalence states, we changes of state that occur as manifested in the values of
can now define the decomposition condition: the RM-Avail state variable. The mapping for gli is:

47

Supplier

Job Inventory
Management Management
Subsystem aw Materlair Subsystem

I planiehment

ob
 Finished Goods

Hire Labor
Management

 -,Subsystem

Production Order
Worker

Figure 3. Second Decomposition or Production Management System

g11(S) = sll, i.e., 11(0) = 0 g (SD = 4, Le., g21(0) = 0

gii(Sb = {4, s12},i.e., gli(10) = {0,10} g;(51) = st, Le.,g22(10) = 10

g:(s?) = {s?, 313},i.e., gl(20) = { 10,20} g21(SD = {Sj, Sj},i.e., g21(20) = 20

g (S24) = {Sj, S;},i.e., g (30) = 30
Clearly the transformation induced on the inventory
management subsystem is not well defined. Again, the transformation induced on the labor manage-

ment subsystem is not well defined.

Table 1. State Changes Produced by Production Order Transformation We conclude, therefore, that the decomposition shown in
Figure 1 is not a good decomposition with respect to the

Before After production order transformation. Indeed, the formal
RM·Avail Lab-Avail Prod-Cap RM-Avail Lab-Avail Prod-Cap results probably reflect our intuition about the decomposi-
00 0 0 0 0 tion-- namely, given the important bonding between the
0 10 0 0 10 0 RM-Avail andLab-Avail state variables, the components
0 20 0 0 20 0 whose states these values manifest ought to be together in
0 30 0 0 30 0

10 0 0 10 0 0 the same subsystem.
10 10 0 10 10 0
10 20 5 0 0 0 Consider, now, an alternative decomposition of the
10 30 5 0 10 0 production management system -- the decomposition
20 0 0 20 0 020 10 0 20 10 0 shown in Figure 3. The system has been factored into
20 20 5 10 0 0 three subsystems: an inventory management subsystem,xt;
20 30 5 10 10 0 a labor management subsystem, x2; and a job management

subsystem, x3. Assume that the states of the inventory
management and labor management subsystems are

Similarly, consider the transformation, gj, induced on the represented by the RM-Avail and Lab-AvaU state
labor management subsystem, x21 Table 1 shows the variables respectively. Furthermore, assume that the states
changes of state that occur as manifested in the values of of the job management subsystem are represented by the
the Lab-AvaH state variable. The mapping for g21 is: state vector (RM-Avail, Lab-Avaiq.

48

Under this decomposition, the transformation, gJ, is the subsystem. Rather, it manifests an input to each
induced on the job management system. From Table 1, subsystem.
the mapping can be derived as follows:

Assume, now, that another state variable is used to
describe the production management system: Tot-Val,

g,i(<sj, si)) = <4, si>,Le., 2(<0,0>) = <0,0> representing the total value of raw material and labor
assets in the system. Similarly, assume that the inventory

%&(<sj, s) = <s?, s , Le., 2(<0,10>) = <0,10>
management and labor management subsystems are now
described via the state variables RM-Val (value of raw

gj(<si, s) = <sll, s27, i.e., g31(<0,20>) = <0,20> simplify matters, assume, further, that a unit of raw
materials) and Lab-Val (value of labor) respectively. To

materials and a unit of labor are each worth $1. In this
gj(<S?, S;>) = <st , s; , i.e., g#(<0,*) = <0,30> light, the "before" columns of Table 2 show the possible

states of each of these state variables. Note that the value
g <St Sj)) = <sli, s , i.e., gjl(<10,0) = <10,0) of Tot- Val is simply the sum of RM-Val and Lab-Val.

g 1(<s , S) = <si Sf , i.e., gj(< 10,10) = < 10,10) Assume, now, that an across-the-board increase of 100
percent occurs in the value of all assets (e.g., a large

g <S12, *) - <sll, s , i.e., g (<10,20>) = <0,0 inflationary increase in prices). Let g2 be the transforma-
tion that effects the change on Tot-Val. Thus, the map-

 3 <313, s;>) = <sll, *, i.e., g (<10,30>) = <0,10>
ping will be:

%7(0) = 0
gi(<4, Sj) = <4, S , i.e., g3(<200)) = <200>

g l<sr, so) = <si so, i.e., g2(<20,1®) = <20,10)
g2(10) = 20

82(20) = 40
gj(<s,3, s) = <312, sj), i.e., g4(<20,20) = <10,0

%2(30) = 60
gj(<s , *) = <512, sj),i.e., gj(<20,30) = <10,10

g2(40) = 80

Since the mapping shows that g2 is a function, the trans- g2(50) = 100
furmation induced on the job management subsystem by
the job order transformation is well defined. Furthermore, under the two decompositions shown in

Figures 1 and 3, the transformations induced on the
inventory management subsystem and the labor manage-

Table 1 State Changes Produced by Price Increase Transformation ment subsystem will be:
Before After

RM·Val Lab-Val Tot-Val RM-Val Lab·Val Tot-Val 570 =0 g2(0) = 0
0 0 0 0 0 0
0 10 10 0 20 20 &52(10) = 20 g*10) = 20
0 20 20 0 40 400 30 30 0 60 60 g (20)=40 g&(20) = 40
10 0 10 20 0 2010 10 20 20 20 40 g22(30) = 6010 20 30 20 40 60
10 30 40 20 60 80
20 0 20 40 0 40 Clearly, both induced transformations are well formed, and

30 40 20 60 both the Figure 1 and Figure 3 decompositions are good20 20 40 40 40 80 decompositions under the transformation gv.20 30 50 40 60 100

Our example illustrates, therefore, that the goodness of a
Note that gl does not induce a transformation on either decomposition must be evaluated with respect to a

the inventory management subsystem nor the labor particular transformation. A decomposition may be good
management subsystem under the new decomposition. in the context of one transformation but poor in the
While both subsystems may undergo a change of state context of another transformation. Thus the formalism
because they each share a state variable with the job reflects what intuitively we might expect - namely, that the
management subsystem, the change of state does not goodness of an existing decomposition might be under-
manifest that an induced transformation has occurred on mined as new transformations (e.g., modifications to the

49

system or different transaction types) must be taken into Dijkstra, E. W. ADiscipline ofProgramming. Englewood
account. Cliffs, New Jersey: Prentice-Hall, 1976.

Dromey, R. G. "Systematic Program Development." IEEE
6. FUTURE RESEARCH DIRECTIONS Transactions on Software Engineering, Volume SE-14,

AND CONCLUSIONS January 1988, pp. 12-29.

There are at least three major research directions that can Hamilton, M., and Zeldin, S. "Higher-Order Software: A
be pursued in light of our model. First, an attempt can be Methodology for Defining Software." IEEE Transactions
made to express existing decomposition methodologies in on Software Engineen'ng, Volume SE-2, March 1976,
terms of the constructs and relationships used in the pp. 9-32.
model. For example, the object-oriented approach to
decomposition can be formalized via things, states, laws, Hoare, C. A. R. "An Overview of Some Formal Design
bondings, etc. (Wand 1989). The ability of the model to Methods for Program Design." IEEE Computer, Volume
describe existing decomposition methodologies using a 20, September 1987, pp. 85-91.
common language is an important test of the model's ade-
quacy. Jackson, M. Principles of Program Design. New York·.

Academic Press, 1975.
Second, if the decomposition methodologies can be
expressed in terms of the model, an attempt can then be Jackson, M. System Development. Englewood Cliffs, New
made to use the model to generate predictions about the Jersey: Prentice-Hall, 1983.
strengths and weaknesses of the different methodologies.
Specifically, the methodologies can be evaluated to Linger, R. C.; Mills, H. D.; and Witt, B. I. Stnicmred
determine whether they generate decompositions that Prograii:inii:g--77:eoiy and Practice. Reading, Massachu-
always comply with the good decomposition condition. setts: Addison-Wesley, 1979.
The circumstances under which a decomposition methodo-
logy does or does not comply with the good decomposition Martin, 1. System Design from Provably Correct Con-
condition also might be identified. st,ucts. Englewood Cliffs, New Jersey: Prentice-Hall,

1985.
Third, once the predicted strengths and weaknesses of the
different decomposition methodologies have been deter- Mills, H. G.; Basili, V. R.; Gannon, J. D.; and Hamlet, R.
mined via the model, empirical tests of the predictions can G. Principles of Computer Programming: AMathemati-
then be undertaken. Hopefully, the model will allow cal Approach. Boston, Massachusetts: Allyn and Bacon,
better-directed empirical tests than the isolated and 1987.
somewhat random case study comparisons among the
methodologies that have been undertaken in the past. Myers, G. I. Reliable Software through Composite

Design. New York: Petrocelli/Charter, 1975.
7. ACKNOWLEDGEMENTS

Orr, K. Stmctured Requirements Dejinition. Topeka,
This research was supported by an operating grant from Kansas: Ken Orr and Associates, 1981.
the Natural Sciences and Engineering Research Council of
Canada and by a grant from GWA Ltd.

Parnas, D. L. "On the Criteria to be Used in Decom-
8. REFERENCES posing Systems into Modules." Communications of the

ACM, Volume 15, December 1972, pp. 1053-1058.
Bergland, G. D. "A Guided Tour of Program Design
Methodologies." IEEE Computer, Volume 14, October Pressman, R. S. Software Engineering: A Practitioner's
1981, pp. 13-37. Approach. Second edition, New York: McGraw-Hill,

1987.
Bunge, M. Treatise on Basic Philosophy: Volume 3:
Ontology L. 77:e Furniture ofthe World. Boston, Massa- Shaler, S., and Mellor, S. J. Object-Oriented Systems
chusetts: Reidel, 1977. Analysis. Englewood Cliffs, New Jersey: Yourdon Press,

1988.
Bunge, M. Treatise on Basic Philosophy: Volume 4:
Ontology IL· A World Of Systems. Boston, Massachu-
setts: Reidel, 1979. Wand, Y. 'A Proposal for a Formal Model of Objects."

In Object-Oriented Concepts, Applications, and Data-
Cox, B. Object On'ented Programming. Reading, Massa- bases. Reading, Massachusetts: Addison-Wesley, 1989,
chusetts: Addison-Wesley, 1986. publication forthcoming.

50

Wand, Y., and Weber, R. "A Model of Control and Audit Wirth, N. Syste,izatic Progratilining. Englewood Cliffs,
Procedure Change in Evolving Data Processing Systems." New Jersey: Prentice-Hall, 1973.
Die Accounting Review, Volume LXIV, January 1989,
pp. 87-107. Yourdon, E., and Constantine, L. L. Stmcmred Design:

Fundamentals of a Disciplilte of Computer Program and
Wand, Y., and Weber, R. "An Ontological Analysis of System Design. Englewood Cliffs, New Jersey: Prentice-
Some Fundamental Information System Concepts." Hall, 1979.
Proceedings of the Ninth International Conference on
Information Systems, Minneapolis, MN, November 1988, Zave, P. "The Operational versus the Conventional
pp. 213-226. Approach to Software Development." Con,inunicadons

of the ACM, Volume 27, February 1984, pp. 104-118.
Warnier, 1. D. Logical Construction of Systejits. New
York: Van Nostrand Reinhold, 1981.

51

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1989

	A MODEL OF SYSTEMS DECOMPOSITION
	Yair Wand
	Ron Weber
	Recommended Citation

	tmp.1422401593.pdf.lwp7H

