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Abstract
Multiple combinations of hardware and network components can be selected to design an
information technology (IT) infrastructure that satisfies performance requirements.  The
professional criterion to deal with these degrees of freedom is cost minimization.  However, a
scientific approach has been rarely applied to cost minimization and a rigorous
methodological support to cost issues of infrastructural design is still lacking.
The methodological contribution of this paper is the representation of complex infrastructural
design issues as a set of four intertwined cost-minimization sub-problems: two set-coverings,
a set-packing and a min k-cut with a non linear objective function.  Optimization is
accomplished by sequentially solving all sub-problems with a heuristic approach and finally
tuning the solution with a local-search approach.

The methodology is empirically verified with a software tool including a database of costs
that has also been built as part of this research.  The work shows how an overall cost-
minimization approach can provide significant savings and indicates how corresponding
infrastructural design rules can substantially differ from the local optima previously
identified by the professional literature.
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1. Introduction

The information technology (IT) infrastructure is comprised of the hardware and network
components of an information system (Menascé and Almeida 2000).  In infrastructural design
of information systems, different combinations of hardware and network components can
satisfy given performance requirements and, accordingly, cost minimization has multiple
degrees of freedom.  The literature distinguishes between two macro design alternatives,
related to the selection of hardware and network components, respectively.  The first
alternative is how to distribute the overall computing load of a system onto multiple machines
(Gavish and Pirkul 1986; Jain 1987; Aue and Brew 1994).  The second is where to locate
machines that need to exchange information in order to minimize network costs (Mohapatra
1998; Lui and Chan 2002).  Design decisions on both alternatives are strongly inter-related.
Intuitively, different allocations of computing load can change the communication patterns
among machines and modify the economics of corresponding network structures.  From the
inter-relations between macro design alternatives, the cost-minizing design of an IT
infrastructure raises a NP-hard optimization problem.

Cost analyses have been primarily addressed by the professional literature, which evaluates
selected infrastructural choices to provide cost benchmarks and practical design rules (Gartner
Group 2002, Main Control 2002).  In contrast, a scientific approach has been rarely applied to
cost analyses and a rigorous methodological support to cost minimization is still lacking.  A
likely reason for this lack of attention is the empirical nature of costs whose value as a
function of design choices can only be obtained through empirical measure in real computer
systems (Parker et al. 1988; Willcocks 1992).  This makes the scientific verification of
methodological approaches particularly cumbersome, as it requires empirical data.

This paper proposes a methodology that supports the selection of a combination of hardware
and network components that minimize costs.  Infrastructural design alternatives are
organized within a methodological framework and are provided a formal representation
suitable for optimization.  Then, computational complexity is tackled through a sound
decomposition of the overall NP-hard optimization problem into sub-problems that can be
solved with operations research techniques.  Four intertwined cost-minimization sub-
problems are identified: two set-coverings, a set-packing and a min k-cut with a non linear
objective function.  Optimization is accomplished by sequentially solving all sub-problems
with a heuristic approach and finally tuning the solution with a local-search approach.  The
methodology is empirically verified with a database of costs that has also been built as part of
this research.  The paper shows how an overall cost-minimization approach can provide
significant savings and indicates how optimization results can substantially differ from the
local optima previously identified by the professional literature.

The next Section reviews previous approaches and highlights the main organizational and
technical variables of interest.  Section 3 presents the design methodology and optimization
process.  Section 4 discusses the experimental results of cost analyses for different
infrastructural design choices.  Conclusions are drawn in Section 5.
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2. Research Background and Motivation

The historical cost-minimizing design principle was centralization, which was advocated to
take advantage of hardware scale economies according to Grosch’s law (Grosch 1959).  A
further attempt to formulate a general design principle has been made in the mid ‘80s, when
Grosch’s law has been revised as “It is most cost effective to accomplish any task on the least
powerful type of computer capable of performing it”  (Ein-Dor 1985).  Decentralization and
its operating rule, referred to as downsizing, became the methodological imperative for cost-
oriented infrastructural design.  The corresponding infrastructural design guideline, which has
been effectively summarized as “think big, but build small”, is still considered valid by
practitioners (Scheier 2001).

Although academic studies have challenged the generality of the decentralization principle
(Gavish and Pirkul 1986; Jain 1987), the empirical recognition of the cost disadvantages of
decentralization has only occurred in the ‘90s with the observation of client-server costs.
From an infrastructural perspective, client-server can be seen as an application paradigm that
allows personal computers (PCs) to share computing load with mainframes, thus facilitating
their replacement with cheaper mini-computers in compliance with the downsizing principle.
However, the expected reductions of infrastructural costs have not been verified.  Addressing
this failure, empirical studies have showed that initial acquisition expenses represent at most
20% of the total cost of a computer over its life cycle (Willcocks 1992).  As a consequence,
the minimization of acquisition costs does not deliver the most convenient infrastructural
design solutions.  The concept of “total cost of ownership” (TCO) has been introduced and
defined as the summation of both investments and management costs of infrastructural
components (Faye Borthick and Roth 1994).  It has been observed that while decentralization
reduces investment costs, it increases management costs, due to a more cumbersome
administration of a greater number of infrastructural components (Moad 1994; Stevens 1997).

Recentralization has been thereafter considered to reduce management costs.  The rationale
for recentralization is that the client-server paradigm can be extended to allow multiple
machines to share computing load (Dewire 1997).  Applications can be designed to be split
into multiple modules, called tiers, each of which can be allocated on a different machine
(Menascé and Almeida 2000).  Multi-tier applications give rise to multi-tier infrastructures,
that offer greater flexibility to implement the most convenient load sharing among multiple
machines.

Thin clients (TCs) are currently proposed as a less expensive alternative to personal
computers that can be exploited through a recentralization initiative (see Table 1, Molta
1999b).  Thin clients have lower computing capacity than PCs, which is sufficient for the
execution or the emulation of the presentation tier, but requires the recentralization of the
application logic on a server.  It has been empirically verified that thin clients have
management costs 20-35% lower than personal computers (Molta 1999a; The Tolly Group
1999.  Furthermore, the Independent Computing Architecture (ICA) and Remote Desktop
Protocol (RDP) standards allow remote access to the application logic by traditional PCs.
This translates into hybrid configurations of PCs which execute only a subset of client and
monolithic applications which will be referred to in the following as hybrid fat clients
(HFCs).

An application tier can also be simultaneously allocated on multiple coordinated machines,
known as server farm (Harchol-Balter and Downey 1997; Menascé and Almeida 2000).  Each
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computer within a server farm autonomously responds to a subset of service requests
addressed to the application tier, thus sharing the overall computing load with other
computers within the same farm.  This load sharing allows downsizing and reduces
acquisition costs.  Furthermore, it has limited negative effects on management costs, since
server farms are equipped with software tools that allow the remote management and
simultaneous administration of all servers (Microsoft 2000b).  Server farms help limit the cost
downside of recentralization and, overall, contribute to shift cost trade-offs towards
centralization.

Another important concern in infrastructural design is the reuse of existing components,
referred to in the following as legacy systems.   Legacy systems have often a high residual
economic value and, thus, their reuse becomes a relevant choice in infrastructural design and
can shift cost-trade-offs (Bisbal et al. 1999).  Furthermore, they can be upgraded and their life
cycle can be extended over a significantly longer period of time with limited additional
investments.  Even if current professional guidelines generally recommend recentralization,
the reuse of legacies may induce different design choices, reinforcing the need for a rigorous
optimization approach.

Table 1 summarizes the infrastructural design alternatives that generate centralization-
decentralization cost trade-offs.  Overall, current design rules generally encourage solutions to
these design alternatives that translate into a recentralization of hardware components.
However, most research efforts addressing centralization-decentralization issues lack
scientific rigor and only a few academic studies have attempted a more systematic analysis of
cost issues in infrastructural design (Gavish and Pirkul 1986; Jain 1987).  The goal of this
paper is to support the cost-oriented design of modern IT infrastructures with a rigorous
optimization approach to help the scientific verification of empirical design rules.
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Macro-alternative Sub-alternative Description

Client typology, thin vs.
fat vs. hybrid fat client
(HFC)

Thin clients manage the user
interface of applications stored and
executed remotely, while fat clients
store and execute applications
locally.  Hybrid fat clients (HFCs)
behave both as fat and thin clients
depending on the specific
application.

Number of tiers The client-server paradigm organizes
applications in multiple tiers.  Each
application tier can be allocated on a
separate machine and responds to
service requests from lower tiers.

Total number of servers The required computing capacity can
be allocated on one or multiple
servers, organized as server farms,
whose total number represents an
architectural alternative.

Allocation of applications Different applications (or application
tiers) can be allocated on separate
computers and, vice versa, multiple
applications can be allocated on the
same computer.

How to distribute the
overall computing load of
a system onto multiple
machines.

Reuse of legacy systems Requirements can be satisfied by
means of either new or legacy
systems.  Legacy computers can also
be upgraded to satisfy increasing
capacity requirements.

Location of servers Servers can be located in different
sites, although all servers within the
same server farm must be located in
the same site.

Where to locate machines
that need to exchange
information.

Network topology and
standards

Sites can be connected with different
routing policies and through different
logical and physical communication
standards.

Table 1 – Infrastructural design alternatives that generate cost trade-offs.



Ardagna,Francalanci,Trubian                A Multi-Model Algorithm for the cost-oriented design of the IT infrastructure

3. Design Methodology and Optimization Algorithm

From a methodological standpoint, revisiting centralization-decentralization trade-offs
requires the representation of design alternatives in Table 1 as a single cost-minimization
problem.  Note, that design alternatives in Table 1 are not always applicable and can be
constrained by drivers of choice different from cost minimization (Lazowska et al. 1984;
Menascé and Almeida 2000).  The methodology presented in this paper assumes that
constraints can be defined as predetermined solutions for all design alternatives listed above,
as explained in the next Sections.

In this first version of the methodology, the last design alternative in Table 1 is pre-
constrained to a specific topology and standard for both local and geographical networks.
LANs that connect different buildings within the same site are constrained to the extended-
star topology.  Different sites are constrained to be connected through an IP-based Virtual
Private Network (VPN).  In this way, network design is not explicitly addressed.  However,
the methodology includes both a sizing and a costing step for network components.  This
provides a necessary input for the evaluation of total infrastructural costs and allows
preliminary analyses of the impact of network costs on hardware design choices.

The goal of the methodology is to select a combination of infrastructural components that
minimizes costs while satisfying requirements.  This involves an initial specification of
technology requirements, which will be described in the next Section and a cost-minimization
process, which is then presented in Section 3.2.

3.1 Technology requirements
Technology requirements are expressed by means of the following fundamental variables:
• Organization sites Si, defined as sets of organizational resources (users, premises and

technologies) located within a 1 km distance from each other (and connected through a
LAN).

• Buildings Bi, defined as the smallest components of an organization’s premises.
• Applications Ai, defined as a set of functionalities that can be accessed by activating a

single computing process.
• User classes Ci, defined as a group of ni users using the same subset of applications, with

common capacity requirements.
• Requests Ri, defined as interactions among applications aimed at exchanging services

according to the client-server paradigm.
• Databases Di, defined as separate sets of data that can be independently stored, accessed

and managed.

The specification of sites, buildings and user classes is critical to select network components
during optimization.  Applications, requests and databases are the main drivers of design
choices related to client and server computers.

Technology requirements are specified by modeling the characteristics of requirement
variables, summarized in Table 2, and by describing their mutual relationships, as shown in
Table 3.  Legacy components that should be reused are specified as shown in Table 4.
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Requirement
variable

Symbol Characteristics

Organization site Si type(Si): it indicates whether Si represents a company’s or an
external site.

Building Bi floors(Bi): total number of floors of building Bi.
Class of users Ci n(Ci): number of users in class Ci.

think-time(Ci): average think time of users in class Ci, which can be
either high or low.
p(Ci): average percentage of concurrent users in class Ci that
execute client or monolithic applications.

Application Ai type(Ai): it indicates whether Ai represents a client, a monolithic, a
server or an external application.
d(Ai): required size of secondary memory.
If type(Ai)=client ∨ monolithic the following characteristics should
be specified:
MIPS(Ai,OS): Computing capacity needed to support the execution
of application Ai on a client computer with operating system OS.
RAM(Ai,OS): Primary memory needed to support the execution of
application Ai on a client computer with operating system OS.
MIPS(Ai, OS, RP, TT): Computing capacity needed to support the
execution of application Ai for a single user with think time TT, on
a server computer with operating system OS and remote protocol
RP.
RAM(Ai, OS, RP, TT): Primary memory needed to support the
execution of application Ai for a single user with think time TT, on
a server computer with operating system OS and remote protocol
RP.
If type(Ai)=server the following characteristics should be specified:
tuning-system(Ai)=(OS, processor, disk): tuple of operating system
OS, processor, and disk technology of the reference tuning system
for application Ai.
RAM(Ai): primary memory required to support the execution of
application Ai.

Request Ri f(Ri): average frequency of request Ri for a single user or external
application.
Server(Ri)= {Ai}: set of server applications involved in the
execution of Ri.
Request-data(Ri,Aj,Ak): data exchanged from the triggering Aj and
responding application Ak to support the execution of Ri.
Response-data(Ri,Aj,Ak): data exchange from the responding
application Ak  and  triggering application Aj to support the
execution of Ri.
CPU-time(Ri,Aj): CPU demanding time of server application Aj to
support the execution of Ri on Aj’s tuning system.
Disk-time(Ri,Aj): Disk demanding time of server application Aj to
support the execution of Ri on Aj’s tuning system.

Database Di d(Di): required size of secondary memory.

Table 2 – Requirement variables and corresponding characteristics.
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Relationship
among
requirement
variables

Symbol Characteristics

Location of
buildings

{(Si,Bj)} Set of pairs (Si,Bj) indicating that building Bj is located in site
Si.

Location of user
classes

{(Ci,Bj,f)} Set of tuples (Ci,Bj,f) indicating that user class Ci is located in
building Bj at floor f.

Location of external
applications

{(Si,Aj)|
type(Si)=ext
ernal ∧
type(Aj)=ext
ernal}

Set of pairs (Si,Aj) indicating that application Aj is located in
site Si where both Si and Aj are external.

Use of applications Θ={(Ai,Cj)} Set of pairs (Ai,Cj) indicating that application Ai is used by
user class Cj.

Concurrency among
users of server
applications

{p(Ai,Cj)|typ
e(Ai)=
server}

Set of average percentages of concurrent users of server
application Ai in user class Cj.

Data management ∆={(Di,Aj)} Set of pairs (Di,Aj) indicating that database Di is managed by
application Aj.

Table 3 – Relationships among requirement variables.

Applications are classified as client, monolithic, server or external.  Note that DBMSs are
supposed to be specified as server applications and, accordingly, databases are simply
described by the size of secondary memory that they require (database are stored in the
physical server that support DBMS execution).  Also note that application tiers abide by the
same technical definition as applications.  It is hypothesized that application tiers are specified
as a set of applications {Ai} exchanging requests and characterized by the same operating
system.
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Legacy
component

Symbol Configuration Description

Legacy server LSi Configuration=
 (OS, processor, disk
technology, disk size, RAM)

Upgrade={(OS, processor, disk
technology, disk size, RAM,
cost)}

ResidualValue

Tuple of operating system OS,
processor, disk technology, disk
size and RAM installed on
legacy server LSi.

Set of  tuples describing
upgraded configurations of a
legacy server.

Residual economic value of a
legacy server.

Legacy PC LPCi Configuration=(OS, processor,
disk technology, disk size,
RAM)

Upgrade={(OS, processor, disk
technology, disk size, RAM,
cost)}

ResidualValue

Tuple of operating system OS,
processor, disk technology, disk
size and RAM installed on
legacy PC LPCi.

Set of  tuples describing
upgraded configurations of a
legacy PC.

Residual economic value of  a
legacy PC.

Legacy thin
client

LTCi Configuration= (processor,
RAM)

Upgrade= {(processor, RAM,
cost)}

ResidualValue

Tuple of processor and RAM
installed on legacy thin client
LTCi.

Set of  tuples describing
upgraded configurations of a
legacy thin client.

Residual economic value of a
legacy thin client.

Table 4 – Legacy components.
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3.2 Cost-minimization algorithm

The optimization problem has been split into four intertwined sub-problems, which
correspond to well-structured problems of the operations research literature (see Figure 1). A
final overall re-optimization step that implements a tabu-search approach is also introduced,
in order to improve the local optimum that is found through the isolated solution of the four
sub-problems.  The following sub-problems have been identified:

1) Client optimization: user classes are assigned to minimum-cost client computers that
satisfy constraints.

2) Server optimization: server applications are assigned to minimum-cost machines that
satisfy computing requirements and constraints (see Section 3.3.4).

3) Server localization: server machines identified by solving sub-problems (1) and (2) are
allocated to sites by minimizing overall network and management costs (see Section
3.4.5).

4) Reuse of legacy systems: server machines identified by solving sub-problems (1) and (2)
and assigned to organization sites by solving sub-problem (3) are replaced with legacy
machines to further reduce acquisition costs (see Section 3.4.6).

Note that physical components, either legacy or new are selected as the lowest-cost devices
satisfying requirements.  A complete specification of sizing rules applied to select physical
components that satisfy requirements is provided in (Ardagna and Francalanci 2002).  The
formalization of optimization sub-problems can also be found in (Ardagna et al. 2002).  A
brief discussion of the four sub-problems is provided in the following.
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Figure 1 – Optimization steps of the multi-model algorithm.

3.2.1 Client optimization
In this phase, decisions are made on (a) which client computer is assigned to each user class,
(b) which servers are necessary, (c) how servers are connected to thin clients and HFCs, and
(d) where servers are located.

Pre-optimization

For each couple of values of RAM and MIPS corresponding to capacity requirements of a
server (Ardagna and Francalanci 2002), an off-line exhaustive search has been implemented
to determine the value v(RAM, MIPS) of the minimum cost sever(s) configuration which can
satisfy memory and computing capacity requirements.
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Optimization process

This optimization phase has been split into three steps.
In the first step each user class Ci is assigned to a set of n(Ci) identical client computers. All
machines are located in the site i(C )S , where Ci resides.

In the second step the solution obtained in the first step is improved by connecting sets of
client computers to the same server.  The assignment of TCs and HFCs to servers is modeled
as a Set Covering Problem (SCP) (Papadimitriou and Steiglitz 1982; Ardagna et al. 2002).

In the third step a local search based algorithm attempts an improvement of the solution
provided by the first two steps.  Previous choices are modified by assigning a user class to a
different type of client computer.  Hence, the neighborhood of a solution is defined by all
solutions that can be obtained by applying this move to a user class.

3.2.2 Server optimization
This sub-problem is the optimum allocation of server applications to server machines.  Server
applications are organized in tiers, i.e., into sets of server applications that cooperate to serve
the same request (see Table 2).  Each server application or application tier has to be assigned
to exactly one server (or server farm).  The problem can be modelled as a Set Covering
Problem (Papadimitriou and Steiglitz 1982; Ardagna et al. 2002).

3.2.3 Server localization
This sub-problem is the optimum allocation of servers to sites.  Two cost items are affected
by the allocation of servers: WAN costs and hardware support personnel costs.  This cost-
minimization sub-problem can be modelled as a network optimization problem which, in turn,
can be represented as a min k-cut problem (Lengauer 1990; Ardagna et al. 2002).  Since this
problem is strongly NP-hard, a heuristic approach based on local search is adopted.  The
neighborhood of each feasible solution is defined by all solutions that can be obtained by
moving a server to a different site.  The search is guided by a tabu-search meta-heuristic in
which only the short-term memory mechanism has been implemented.

3.2.4 Reuse of legacy systems
Each site has a (possibly empty) set of legacy machines and a set of servers defined by
previous optimization steps.  Each server could be replaced by one or more combinations of
legacy machines.  Moreover each legacy machine could be upgraded to provide higher
performance.  This problem can be modelled as a Set Packing Problem (Papadimitriou and
Steiglitz 1982; Ardagna et al. 2002).

Different from legacy servers, legacy clients are supposed to be assigned to the user class that
owns them.  Therefore, decisions on the reuse of legacy clients are simply made by comparing
the cost of upgrading legacy clients to meet current requirements with the acquisition costs of
new machines.
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3.2.5 Overall re-optimization
The decomposition of the overall optimization problem into four sub-problems does not
guarantee that the final solution is a global optimum. Hence, an overall re-optimization
process based on a tabu-search approach has been implemented to improve the (possibly)
local optimum obtained  by separately solving the four sub-problems. The move that is
applied is defined as follows.  A user class, say Ci, or a server application, say Ai, is
disconnected from the server, say serverA, to which is currently connected.  A new minimum-
cost server (or server farm), say serverB, is selected to replace serverA.  Costs are evaluated by
assuming that serverB is located in the same site, say SA, of the replaced server.  A new
minimum-cost server, say serverC, is introduced to support Ci (or Ai), which is selected by
comparing the cost of allocating the server in each site different from SA.  For each site, server
management costs and network communication costs are evaluated.  In this way, a destination
site, say SB, is identified for serverC.  At last, the possibility of discarding serverC is evaluated
by connecting Ci (or Ai) to a different server in SB.  For each considered server a new
upgraded configuration is evaluated on the basis of both acquisition and management costs.
The neighborhood of a solution is defined by all solutions that can be obtained by applying
this move to all user classes and to all server applications sharing a server.  The search is
guided by a tabu-search meta-heuristic in which only the short-term memory mechanism has
been implemented.

4. Empirical Verifications

The methodology is verified to assess the magnitude of cost reductions and, thus, the potential
benefits of a systematic methodological approach to cost issues of infrastructural design.
Analyses were supported by a prototype tool that implements the methodology presented in
Section 3 and integrates CPLEX, a commercial tool for integer linear programming, with
meta-heuristic algorithms (see Figure 2).
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Figure 2 – Sample window of the tool implementing the methodology.

Empirical verifications have been based on the following sample of physical components and
related cost data:

• 80 thin client configurations from 5 major vendors.

• 1100  PC configurations from 4 major vendors.

• 9000 server configurations from 4 major vendors.

• 1000 switch configurations and 10 hubs form 3 major vendors.

• 50 backbone link node router configurations form 3 major vendors.

Cost reductions are assessed for all design alternatives listed in Table 1.  Individual design
alternatives listed in Table 1 are analyzed first, by separately modifying corresponding
technology requirements variables.  Variables are then simultaneously modified to test
whether local results change as an overall design perspective is taken.  Savings are evaluated
as follows:
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• Tests on client topology, number of tiers, allocation of applications and server location:
average savings are calculated as the mean value of cost variations between the minimum-
cost solution and all viable alternatives.

• Tests on total number of servers: average savings are evaluated as the mean value of the
difference between the cost of the optimum solution and the cost of neighboring solutions
with either one additional or missing server in the server farm.

• Tests on reuse of legacy: average savings are evaluated as the mean value of the
difference between the cost of the optimum solution and the cost of a corresponding
solution obtained by reusing all legacy machines possibly upgraded.

• Overall optimization:  average savings are evaluated as the mean value of the difference
between the cost of the optimum solution and the cost of a corresponding solution
obtained by applying the following professional guidelines according to the professional
literature:

o Centralizing all application servers at one site, to minimize management costs.

o Allocating applications with the maximum number of tiers, to minimize hardware
acquisition costs.

o Introducing server farms built with the smallest server in the database, to minimize
hardware acquisition costs.

Significant cost reductions have been obtained in all cases, with average 30% savings.
Findings are summarized in Table 5 and contrasted against the design rules of the professional
literature.  Results show that general design guidelines are difficult to infer from empirical
results, thus challenging current professional rules.
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Architectural
alternative

Findings

Client typology Results show that for a low number of users (1-6), PCs are selected as
the cost-minimizing type of client.  For a number of users higher than
6, the cost-minimizing solution switches to thin clients and does not
further modify as the number of users grows.  Savings from the
adoption of HFCs range between 2 and 5%. This low value contradicts
previous results in the professional literature, which present HFCs as a
potential source of significant cost reductions (Molta 1999b; Microsoft
2000a).

Number of tiers The number of tiers minimizing costs increases with requests’
frequency, consistent with the professional literature (Dewire 1997).
However, the number of tiers minimizing costs is found not to increase
linearly with requests’ frequency.

Total number of
servers

Given the discrete distribution of physical servers along capacity
requirements, the number of servers increases discontinuously with a
varying capacity of servers in the server farm as the total computing
requirements increase.  This partly contradicts the professional
literature which suggests always to introduce smaller machines to
obtain cost reductions (Scheier 2001).

Allocation of
applications (or
server sharing)

Either a single-server or a multi-server option was preferred depending
on total load.  Based on professional guidelines, the multi-server
solution would be expected to provide cost reductions above a load
threshold. Results challenge the generalizability of this design rule.

Reuse of legacy Reusing and possibly upgrading legacy machines minimizes costs in
65% of all tests, consistent with the professional literature (Bisbal et al.
1999).

Location of servers The centralized solution is preferred in most, but not all cases (54% of
all tests).  In this respect, the professional literature provides design
guidelines generally supporting the centralized solution (Robert
Frances Group 1999, HP 2002).

Overall
optimization

The centralized solution is the optimal solution in 30% of all tests.  The
maximum number of tiers is the optimal solution in 40% of all tests,
while the number of tiers of the minimum-cost solution varies with no
recurring pattern, contrary to professional guidelines (Dewire 1997;
Scheier 2001).

Table 5 – Summary of findings.
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5. Conclusions

Preliminary results from the empirical verification of the methodology indicate that cost
reductions can be significant.  Cost reductions are substantial when design alternatives are
considered in isolation and do not decrease when design alternatives are combined within a
more complex design problem of a practical infrastructure.  This indicates that cost variations
on individual design alternatives do not counterbalance each other and the divide et impera
paradigm does not seem helpful from a cost perspective.  Current work is completing the
range of design alternatives by extending the methodology to include network design
alternatives.
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