From dirty data to multiple versions of truth: How different choices in data cleaning lead to different learning analytics outcomes

Justian Knobbout
Huub Everaert,
Esther van der Stappen

Follow this and additional works at: https://aisel.aisnet.org/bled2019

This material is brought to you by the BLED Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in BLED 2019 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
From dirty data to multiple versions of truth: How different choices in data cleaning lead to different learning analytics outcomes

JUSTIAN KNobbOUT, HUUB EVERAERT & ESTHER VAN DER STAPPEN

Abstract Learning analytics is the analysis of student data with the purpose of improving learning. However, the process of data cleaning remains underexposed within learning analytics literature. In this paper, we elaborate on choices made in the cleaning process of student data and their consequences. We illustrate this with a case where data was gathered during six courses taught via Moodle. In this data set, only 21% of the logged activities were linked to a specific course. We illustrate possible choices in dealing with missing data by applying the cleaning process twelve times with different choices on copies of the raw data. Consequently, the analysis of the data shows varying outcomes. As the purpose of learning analytics is to intervene based on analysis and visualizations, it is of utmost importance to be aware of choices made during data cleaning. This paper’s main goal is to make stakeholders of (learning) analytics activities aware of the fact that choices are made during data cleaning have consequences on the outcomes. We believe that there should be transparency to the users of these outcomes and give them a detailed report of the decisions made.

Keywords: • Data Cleaning • Learning Analytics • Student Data • Moodle Data • Outcomes •

CORRESPONDENCE ADDRESS: Justian Knobbout, Researcher/Lecturer, HU University of Applied Sciences Utrecht, The Netherlands, e-mail: justian.knobbout@hu.nl. Huub Everaert, Ph.D., Researcher/Lecturer, HU University of Applied Sciences Utrecht, The Netherlands, e-mail: huub.everaert@hu.nl. Esther van der Stappen, Ph.D., Researcher, HU University of Applied Sciences Utrecht, The Netherlands, e-mail: esther.vanderstappen@hu.nl.

Dostopno na: http://press.um.si
1 Introduction

Virtual Learning Environments (VLEs) are digital learning platforms where students can interact with course materials (presentations, digital readers, instructional video’s et cetera), can test their knowledge via quizzes, and can interact with each other and instructors via e.g., the discussion board. They support learning and simultaneously enable the collection of data on learner behavior in the system. Data from virtual learning environments are used for learning analytics activities, cf. Agudo-Peregrina, Iglesias-Pradas, Conde-González, & Hernández-García (2014); Conijn, Snijders, Kleingeld, & Matzat (2016); Rienties, Toetenel, & Bryan (2015); Romero, Ventura, & García (2008). Objectives of learning analytics vary but often involve student behavior modelling, prediction of performance and increase in (self) reflection and (self) awareness (Papamitsiou & Economides, 2014).

Importantly, raw data exported from virtual learning environments need to be cleaned and transformed before it is of any use to educators and students. In general, data cleaning takes up to 80% of analytical time (Brink, Richards, & Fetherolf, 2016). However, in the current learning analytics field, details about cleaning and transforming are often overlooked or, at best, not described and discussed in literature. For example, searching the terms data cleaning or data preprocessing in the Learning Analytics & Knowledge conference proceedings 2011 till 2018 (n = 438) only yield 17 papers describing either cleaning or preprocessing of learner data before analyzing the data. To make matters even more complex, full-scale and multimodal learning analytics require aggregated data from multiple sources, amplifying the effects of data cleaning on the analysis’ outcomes. As we will show in this paper, data cleaning is problematic as (unspoken) choices can lead to a wide variety of outcomes and, subsequently, pedagogical interventions. Using a raw data set with VLE data, we will construct twelve different, cleaned sets and use these to calculate the time-spent-on the online part of six courses. With these data sets, we can provide an answer to our research question: “What are the effects of (unspoken) choices made during the cleaning process of student data on the outcomes when these data are in turn used for learning analytics?”.

The remainder of this paper is structured as follows. First, an in-depth description of learning analytics and data cleaning is given based on existing literature. Then, the research question and method are described, followed by the
presentation of our results. Finally, we provide five recommendations based on the outcomes of our study, as well as directions for future work.

2 Related work

In this section, we will present existing literature related to our study. First, we will provide a definition of learning analytics and an overview of the learning analytics process. Next, a thorough description of data cleaning and its implications is given.

2.1 Learning analytics

Learning analytics is “the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environment in which it occurs” (Siemens et al., 2011). Learning analytics aim to improve learning processes at the level of students and teachers (Siemens & Long, 2011) and is, for example, used to analyze student behavior within digital learning environments, monitor the usage of course material, and predict whether students will fail a certain course or drop out entirely. The process of learning analytics consists of four steps: 1) learners generate learning data, 2) these data are captured, collected and stored, 3) analysis and visualization are performed, and 4) the design and use of data-driven pedagogical interventions (Clow, 2012) – see also Figure 1. Consequently, when the data is incorrect or incomplete, the analysis and subsequent interventions may be sub-optimal or even completely erroneous.

Figure 1: Learning Analytics Cycle (Clow, 2012).
2.2 Time-on-task

Study-time is the time students spend on studying learning materials, using (metacognitive) tools, solving questions etcetera and can be used as measure of affected learning (Knobbout & van der Stappen, 2018). In several studies, a positive correlation between study-time and achievements of students has been found, cf. Marzano (2003); Scheerens & Bosker (1997)). Estimating ‘time-on-task’ in the ‘traditional’ classroom is based on estimates by students and/or observations in classrooms. In a virtual learning environment (VLE), on the other hand, it is common to use the number of clicks (Wolff, Zdrahal, Nikolov, & Pantucek, 2013) or the time between certain clicks as measure for time-on-task (Kovanović et al., 2015).

Wolff et al. (Wolff et al., 2013) showed that “even fairly coarse grain data about students’ activities” is useful in predicting retention (p. 148). Unfortunately, it is not perfectly clear what part of the clicks were used “[w]hile the issue of data cleaning for all data within the [Open University] was not resolved, it was possible to gain enough knowledge about the data […] to start building models” (p. 146). From their point of view, it is import to note that in predicting failing students, changes in the student’s own VLE activity, compared to their previous activity, are indicative. A relative reduction of clicks hints an failing student. Kovanović et al. (2015) deal explicitly and extensively with the thorny methodological issues of estimating time-on-task in VLE’s. Their primary goal is “to raise awareness of the issue of accuracy and appropriateness surrounding time-estimation within the broader learning analytics community, and to initiate a debate about the challenges of this process” (p. 184). It is regarded good practice in different academic fields to discuss methodological issues and learning analytics should not become an exception to this rule. In this study, we extent the work of Kovanović et al. by estimating time-on-task for multiple parallel courses and by showing different options to handle missing data, i.e., records of events unlinked to any of the courses in the dataset.
2.3 Data cleaning

Data cleaning is an important part of the ETL (Extraction, Transformation and Load) process. According to VanderPlas (2016) the majority of the work in data science often “comprises cleaning and munging real-world data” (p. 188). Brink, Richards, and Fetherolf (2016) underline five common tasks, of which two - transforming original data to the target and create features that are more easily interpreted – are core business in working with large computer generated data files. Müller and Guido (2016) state that “in the real world, inconsistencies in the data and unexpected measurements are very common” (p. 19). Brink, Richards & Fetherolf (2016) estimate researchers are spending about 80% of their research time to munging, wrangling, combining or reshaping data. Special attention is given to utilizing expert knowledge. Although machine learning can reduce the need to create a set of expert-designed rules, that does not mean that prior knowledge of the application or domain should be discarded. Domain experts can help to identifying useful features that are more informative than the initial representation of the data (Müller & Guido, 2016).

2.4 Missing data

In (social sciences) papers and articles an often-subordinated subject is missing data. One of the most frequent and most ignored sources of bias is missing data (Baguley, 2012). Missing data is a stubborn problem in data analyses and, in general, we have to consider two issues: how much is missing and why it is missing. Thanks to eloquently written textbooks like ‘Applied missing data analysis’ (Enders, 2010), solutions to deal with missing data mechanisms are nowadays within reach for social researchers. In an overview of traditional techniques, Enders (2010) describes (listwise/pairwise) deletion, several imputation methods, averaging items in Likert scales, or last observation carried forward to address the problem and concludes that “most single case imputation methods produce biased estimates, even with Missing Completely at Random (MCAR) data. Stochastic regression imputation is the one exception and is the only traditional approach that yields unbiased estimates under a Missing At Random (MAR) mechanism” (p. 54). He demonstrates benefits of modern methods like maximum likelihood approaches and multiple imputation. Even in MCAR – which occurrence can hardly be safely assumed – the problems of missing data may become more serious if more cases are missing. “Unfortunately,
there are as yet no firm guidelines for how much missing data can be tolerated for a sample of a given size” (Tabachnick & Fidell, 2007) (p. 63). Indirectly, Tabachnick & Fidell (2007) seem to consider about 5% missing or less of the sample size as ‘manageable’ in some way or the other. It also depends on the pattern of missing data. Choosing among different techniques for dealing with missing data may also depend on knowledge, confidence, and familiarity with the subject matter on part of the researcher. Van Belle (2011) among others advocates sensitivity analysis as a good idea based on “a thorough understanding of the subject matter” (p. 186).

It does not matter whether the above mentioned authors are working in the different fields varying form social or educational sciences, general data sciences to hard core machine learning and it seems fair to conclude that working with data is time consuming and in general comes with trouble, caveats or thorny issues. Fortunately, at the end of the process we will rely on some technical solutions, but working the data is in itself a muddy experience in which the data scientist/researcher has to rely on (several) subjective views and or decisions.

Educators are in the midst of a transition from learning analysis to learning analytics. The analysis of classical test scores is not enough. The availability of VLEs and the tracking of student behavior gives both students and educators much more opportunities to follow the learning of students in real–time and opportunities to intervene if necessary. At the same time, the upper limits of learning analytics are not well defined. Techniques borrowed from educational data mining, data science and machine learning combined with data from social-media become more and more intertwined (Daniel, 2017; Gibson & Ifenthaler, 2017). Technical solutions by themselves are not sufficient for successful use of educational data, as “[d]ata do not exist independently of the ideas, instruments, contexts and knowledge used to generate, process and analyze them” (Kitchin, 2014) (p. 2) thereby (implicitly) suggesting that data scientist are not aware of the pitfalls of data construction. As we will later show in this paper, most data scientists are aware of the true nature of data, that is, data are not neutral, objective and pre-analytic in nature. What often lacks is a thorough discussion of the possible solutions and consequences of a technical data issue, which is a major motive to conduct the study at hand.
3 Research method

The choices made in the cleaning of student data extracted from VLEs has effect on the outcome of this process – the dataset which is used for analysis and visualization of learning. However, not much is written about this effect and, consequently, the differences between outcomes based on the assumptions and choices made by the people responsible for the cleaning of the raw data are also underexposed. This study’s aim is to fill this gap in the current learning analytics knowledge based on answering the following research question: “What are the effects of (unspoken) choices made during the cleaning process of student data on the outcomes when these data are in turn used for learning analytics?” As we will research how the made choices affect analytical outcomes of contemporary events whilst we do not have control over these events, a case study is a suitable research method for our study (Yin, 2014).

3.1 Case description

In this single case study, we analyze data from an international minor program. Students (n = 34) from the Netherlands, Finland, Spain, United Kingdom, Mexico, and Germany all participate in six blended courses (in this study named A to F), offered in ‘traditional’ classrooms, at an external workplace, as well as online via Moodle – a well-known VLE. In this study, we focus on data obtained from the latter.

Log files from Moodle are collected by exporting them via the administrator dashboard. This dashboard allows administrators to download all logs in comma separated value (.csv) format, which in turn can be processed in more specialized statistical software or learning analytics tools – in this study, we used IBM SPPS Statistics 24. The data are aggregated by us, i.e., events from all six courses are combined in one dataset. In compliance with the ethical procedures and guidelines that were applicable at the time the research was conducted, students were asked to give passive informed consent and all data were after collection immediately anonymized. Initially, the dataset comprises the variables as shown in Table 1 and Figure 2.
Table 1: Variables extracted from Moodle.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Date of the event taking place</td>
</tr>
<tr>
<td>Time</td>
<td>Time, in HH:MM-format, of the event taking place</td>
</tr>
<tr>
<td>User id</td>
<td>Moodle id of the user</td>
</tr>
<tr>
<td>Event context</td>
<td>Page of the VLE where event takes place</td>
</tr>
<tr>
<td>Component</td>
<td>Whether it involves an assignment or not</td>
</tr>
<tr>
<td>Event name</td>
<td>Name of the activity</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the event, including course and user(s) id</td>
</tr>
<tr>
<td>Origin</td>
<td>Whether website or app is used</td>
</tr>
<tr>
<td>IP-address</td>
<td>IP-address from where Moodle is accessed</td>
</tr>
<tr>
<td>Id of affected user</td>
<td>In case of e.g., message sent or discussion board reaction</td>
</tr>
</tbody>
</table>

As a case for our study, we want to determine for each individual student how much time is spent on each of the six courses of the minor program and the underlying learning activities. This means we have to structure the data in such way that we can estimate the time-on-task for all events in the data set. We elaborate on this process and its results in the next section.

3.2 Cleaning of the data

Our focus in the ETL process of the Moodle data is on cleaning and transforming the data by deriving new calculated variables and values by splitting a column (existing variable) into multiple columns (new variables) and so disaggregating the data. Our VLE data records user id, event description and
timing of an event. The variable Description (including the user id and course id) is split in different variables to identify the course the student is working on. We are willing to assume that a student’s action in the VLE and thus creating an event in the data set is synonymous with studying. Therefore, we have to assume that opening of a second event implies the end of the first event and the time-spent-on the first event T_1 amounts to t_2 minus t_1 – see Figure 3. Unfortunately, closing of the event is normally not registered in the VLE. Consequently, time-spent-on the last event in a session (T_4 in Figure 3) cannot reliably be calculated.

![Figure 3: Calculation of time-spent-on task by using the start of new event.](image)

Another issue is missing data: many events are not linked to a specific course. For example, when a student sends a message to another student, Moodle does not know to what course (if any at all) the message relates and therefore omits the inclusion of a course id in the event description. This proves problematic when calculating the total-time-spent-on a course. In Figure 4 we see that a student is working on course D at t_2. Later, at t_5, he is involved in course C. In order to link the other events ($t_1, t_3, t_4, t_6,$ and t_7) to a specific course to compute total-time-spent-on a course, we must make some assumptions.

![Figure 4: Total-time-spent on different courses, based on varying session times.](image)

First, we must decide whether the event on t_4 is to be associated with a session in which the student is working on course C or course D. In the literature, a session or study-period often ends 30 minutes after the last click (see discussion and overview of time-on-task in (Kovanović et al., 2015)). Moodle’s default setting, however, automatically ends sessions after 120 minutes. That are two
main versions we worked with in this study, but there is no logical reason to limit ourselves to these options – why not 60 or 90 minutes? By deciding to end a session after 30 minutes of inactivity, we also assumed that the course worked on in the 30 minutes version is D at t1, t2, t3 and t4, while the student started with course C at t5. We can now calculate the total-time-spent (TTS) during this session by adding all T_s within the session. In the default Moodle version, on the other hand, the timing between all events is smaller than the 120 minutes cut-off time. In such a study period (see Figure 4), we can calculate the total-time-spent during the session but do not know to what (portion of a) course to assign it. It can be DDDDCCC, but also DDCCCCC or whatever permutation possible. Obliviously, this is of influence when computing total-time-spent-on a course.

To deal with the problem of events not linked to courses – which is essentially a missing data issue – we defined six scenarios:

- In the first scenario (strict) we disregarded sessions with events not referring to any course. This way, we do not have to make assumptions to what course a session relates. The downside, however, is that we lose sessions and, thus, information.
- In the second scenario (wide 1), we filled out the missing values by carrying the last observation forward till the next observed course or the end of the study session.
- In the third scenario (wide 2), we simply relied on the most frequent course in a study period as the one and only; overwriting missing values in that particular time frame.

In the other three scenarios, we imputed the missing values with randomly assigned courses weighted by the number of known courses worked on:

- In the fourth scenario (wide 3), the weight was based on the number of all courses observed on a weekly basis of all students together and all missing values of a single student in a particular time frame got the same random course assigned (for instance, AAA or BBB)
- In the fifth scenario (wide 4), the same is done as in wide 3 but several missing values in a particular computed study-period were independently randomized (for instance, DBA, or CAC or just FFF).
• In the final scenario (wide 5), the weight is computed by the number of courses directly chosen by an individual student on a weekly basis and missing values were imputed as in wide 4.

We just want to show that all scenarios are plausible in one way or the other, and indeed, we could have chosen other ways to deal with missing values. At this point we are not interested in the stability of the different approaches. In order to compute the total-time-spent-on a course (TTS_A, TTS_B et cetera) in the different versions and session, we recomputed the study sessions by taking t-last minus t-first of a row of equal courses in order to estimate time-spent-on a course. See Figure 5 for a schematic representation of some of the scenarios.

Figure 5: Schematic representation of scenarios Strict, Wide 1 and one of the other Wides.

3.3 Data processing

In line with our own recommendations (see section 5.1), we provide a summary of assumptions and decisions made in the processing of our data:

• Events related to accessing the VLE with phones or mobile apps creates records without any information other than that a mobile device is used and can be removed from the dataset;
• Activities as changing passwords or failed login attempts are not related to learning and thus can be removed from the dataset;
• Our research focuses on learners so event caused by other users (teachers, administrators et cetera) can be removed from the dataset;
• All remaining events in the dataset represent learning activities in the VLE;
• Learning sessions end either 30 or 120 minutes after the start of the last event in said session;

Data is cleaned by applying one of the six methods described in section 3.2.

4 Results

Now we have 12 different data sets – the six scenarios how to deal with missing data and two different sessions times (30 versus 120 minutes). With these data sets, we now calculate the time-spent-on the six courses of the minor program.

4.1 Identifying events and courses

In total, our raw dataset comprised 148,285 events. After removing events related to accessing the VLE with phones or mobile apps removing non-learning activities, and limiting ourselves to student users, we end up with 57,811 events. Of all these events, just 12,334 events (21% of relevant events) are directly linked to a course – see Figure 6. This leaves 45,477 events (79%) unaccounted for and the only way to link the registered student activity to a course is within a study session based on the Moodle default of 120 minutes or the 30 minutes often used in academic studies.

![Figure 6: Number of events during and after data processing.](image)

As a result of the option between 30 and 120 minutes, we see in Table 2 that in the 120 minute default 3,832 events take place within study periods in which there is no link to any course at all. Just by shortening the end of the study session to 30 minutes, the number of not directly identifiable events more than doubles to 8,546 events. Shorter periods in the 30 minutes version leads to more
unequivocally identifiable events; all known events in these periods belong to one and the same course. In the 120-minute default, it is just the opposite: the number of events pertaining to two or more different courses within a study period nearly doubles compared to the 30 minutes variant. Independent of the selected version, there are 137 not directly identifiable events we could not solve by carrying the last observation forward till the next observed (wide 1) or just taking the most frequent course in a study session (wide 2).

Table 2: Assigning events to courses in order to estimate time-spent-on course.

Moodle default: 120 minutes

<table>
<thead>
<tr>
<th>Decision</th>
<th>Unidentified</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Total events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw data</td>
<td>3,832</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,832</td>
</tr>
<tr>
<td>Events relating to courses</td>
<td>0</td>
<td>15,125</td>
<td>6,015</td>
<td>3,851</td>
<td>1,125</td>
<td>1,943</td>
<td>5,744</td>
<td>33,354</td>
</tr>
<tr>
<td>Two or more options</td>
<td>7,207</td>
<td>5,182</td>
<td>6,563</td>
<td>8,127</td>
<td>8,024</td>
<td>9,425</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theoretical standard/advise: 30 minutes

<table>
<thead>
<tr>
<th>Decision</th>
<th>Unidentified</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Total events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw data</td>
<td>3,846</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,846</td>
</tr>
<tr>
<td>Events relating to courses</td>
<td>0</td>
<td>15,160</td>
<td>7,000</td>
<td>4,000</td>
<td>2,000</td>
<td>2,000</td>
<td>7,205</td>
<td>16,303</td>
</tr>
<tr>
<td>Two or more options</td>
<td>4,914</td>
<td>3,071</td>
<td>3,562</td>
<td>4,072</td>
<td>4,324</td>
<td>3,523</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Identifying time-spent-on tasks and courses

After cleaning the data and imputing the missing values, we have 12 datasets and can calculate the number of activities on each course based on the various data sets. At first glance it seems that only differences between the strict and the wide scenarios are noteworthy. The solutions within the five wide approaches do not differ that much. That is erroneous: the number of events in Table 2 are presented over all students together. What we really want to know is the number of events – and more importantly – time-spent-on by each individual student. Both measures vary enormously according to the chosen dataset. We can now
also calculate the time-spent-on each course by each individual student as shown in Table 3 for just four students.

Table 3: Relative amount of time spent on courses for four different students.

<table>
<thead>
<tr>
<th>User id</th>
<th>Scenario</th>
<th>Moodle default: 120 minutes</th>
<th>Theoretical standard/advise: 30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>128</td>
<td>16%</td>
<td>28%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>24%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>13%</td>
<td>26%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>27%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>25%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>14%</td>
<td>24%</td>
<td>15%</td>
</tr>
<tr>
<td>132</td>
<td>28%</td>
<td>13%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>22%</td>
<td>18%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>21%</td>
<td>17%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>22%</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>13%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>19%</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>138</td>
<td>26%</td>
<td>21%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>22%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>21%</td>
<td>20%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>22%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>22%</td>
<td>25%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>21%</td>
<td>27%</td>
<td>14%</td>
</tr>
<tr>
<td>144</td>
<td>44%</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>26%</td>
<td>6%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>27%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>31%</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>37%</td>
<td>8%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Compared to the theoretical standard/advise of 30 minutes, students spend about 3 to 4 times as much time on the total of six courses under the Moodle default of 120 minutes. Considering Moodle's default session ending time of 120 minutes, students spent about 3 to 4 times as much time on their courses compared to the total time-on-task when using the theoretical standard ending time of 30 minutes. This is in line with the assumptions used – 120 minutes is four times as long as 30 minutes. However, if we look at the relative time students spent on specific courses between the two versions or within the used scenarios of a version, the link between assumptions used and relative time becomes foggy and blurred.

In the 30 minutes version, all students seem to spend relatively more time on course A and less on course B, compared to the Moodle default of 120 minutes. However, student 144 spends also relatively less time on course E. If we compare over the scenarios within the separate versions, we sometimes see huge
differences between strict and several wide scenarios. For instance, in the 30 minutes version, student 138 spends 45% of his time in the strict version to course A, in wide 5 this is reduced to a mere 28%. In the Moodle default, the relative time-spent-on in these sets is more or less the same (26% versus 21%).

As our results show, it is difficult to see a common pattern in these figures, indicating different assumptions lead to different dashboard figures. Concluding, we observe that time-spent-on as a key variable for the quality of learning stays without reach for teachers as a basis to act upon and interfere with a particular student: it just depends and variates with the assumptions made and the truth is hard to find.

5 Discussion and conclusion

In this paper, we have shown that the choices made during the cleaning process of student data can have large impact on the outcome of the subsequent analysis. Estimating time-on-task is one example of a learning (outcome) measure which is affected by data cleaning, but also other metrics used in learning analytics research might be influenced, e.g., the use of (metacognitive) tools or the number of discussion board postings. With the emerge of full-scale and multimodal learning analytics – requiring the aggregation of data from multiple sources – the effects of data cleaning on the analysis’ outcomes are even more amplified. We are not in search of a holy grail for student data cleaning (which probably does not exist at all), but the goal of this study is to make both practitioners and academics aware of these - often unspoken - choices and their effect.

5.1 Recommendations

Based on our research, we present the following recommendations: (1) provide users of learning analytics tools (students, teachers et cetera) with the insight what assumptions and corresponding choices were made during the data cleaning process. This helps them to better understand the results and visualizations of the data analysis; (2) provide users with the opportunity to see other versions based on different assumptions of the data set as well; (3) to make scientific work better reproducible and comparable, researchers should elaborate on the cleaning of their data. In the current literature, researchers often almost immediately jump from raw data to results without saying anything on the choices made, although
some exceptions exist, cf. Bos & Brand-Gruwel (2016); Chen, Chen, & Xing (2015); Kovanović et al. (2016); (4) involve domain experts in the cleaning process. Data experts working on the data sets without knowing the exact context the data was collected in, might use erroneous assumptions to clean the data. By consulting domain experts before the data handling, the resulting data might be better suit the learning context (Müller & Guido, 2016); (5) stakeholders should feel responsible, support the choices made, and be transparent about them.

If we want students, colleagues and other professionals to work with our analysis, results or dashboard functionality, we should be open and give them a detailed report of the decisions made. As a rule of thumb, we should state and explain explicitly how we have dealt with the issues at hand in such way the user can understand it (Van Belle, 2011).

5.2 Future work

Now we have different data sets, we might want to research in what ways to inform end users about the data cleaning process. That is, how can we inform users – students, teachers et cetera – what assumptions were made, what steps were taken, what user preferences are, and what the effects on the analysis outcome are. We propose the use of focus groups to identify (critical) success factors for awareness creation about data cleaning and its consequences.

References

Learning Analytics and Knowledge, 340-349.
Gibson, D. C., & Ifenthaler, D. (2017). Preparing the next generation of education researchers for big data in higher education. Big data and learning analytics in higher education (pp. 29-42) Springer.