
Association for Information Systems
AIS Electronic Library (AISeL)

WHICEB 2018 Proceedings Wuhan International Conference on e-Business

Summer 6-30-2018

New Weather Indices for China: Tool of Risk
Control of International Supply Chain
Qing Zhu
International Business School, Shaanxi Normal University, Xi’an, 710000, China ； Institute of Cross-Process Perception and
Control, Shaanxi Normal University, Xi’an, 710000, China

Jiarui Li
International Business School, Shaanxi Normal University, Xi’an, 710000, China

Jian Chai
Management and economic School, Xidian University, Xi’an, 710000, China

Follow this and additional works at: http://aisel.aisnet.org/whiceb2018

This material is brought to you by the Wuhan International Conference on e-Business at AIS Electronic Library (AISeL). It has been accepted for
inclusion in WHICEB 2018 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Zhu, Qing; Li, Jiarui; and Chai, Jian, "New Weather Indices for China: Tool of Risk Control of International Supply Chain" (2018).
WHICEB 2018 Proceedings. 72.
http://aisel.aisnet.org/whiceb2018/72

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwhiceb2018%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb2018?utm_source=aisel.aisnet.org%2Fwhiceb2018%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb?utm_source=aisel.aisnet.org%2Fwhiceb2018%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb2018?utm_source=aisel.aisnet.org%2Fwhiceb2018%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb2018/72?utm_source=aisel.aisnet.org%2Fwhiceb2018%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


The Seventeenth Wuhan International Conference on E-Business－Cross-border e-Commerce Initiatives under China’s Belt and Road Initiative          9  

New Weather Indices for China: Tool of Risk Control  

of International Supply Chain 

Qing Zhu
12*

, Jiarui Li
1
,
 
Jian Chai

3 

1
 International Business School, Shaanxi Normal University, Xi’an, 710000, China 

2
 Institute of Cross-Process Perception and Control, Shaanxi Normal University, Xi’an, 710000, 

China  
3
 Jian Chai, Management and economic School, Xidian University, Xi’an, 710000, China 

 

Abstract: China is at the core of the world’s supply chain because of its focus on production and consumption. However, as 

weather can significantly affect supply chain operations, China plans to introduce weather derivatives to secure the 

multinational supply chain. Using historical records over the decade, weather derivatives could be an important tool for 

hedging risk and meeting the needs of Chinese market. In this paper, new weather indices for China financial markets are 

experimentally created through simulated machine learning to assess the ability of the weather indices to reduce risk. 

Through a simulation test from 2008 to 2017, the indices were found to successfully match 98% of the risk with the situation 

across two dimensions: i). changing Chinese weather data; and ii). a connection with US weather indices. 

 

Keywords: ANNs, C-CDDs, DCC-GARCH model, weather derivatives 

 

1. INTRODUCTION 

While weather is generally predictable, its effects are often random. Therefore, the weather plays a 

significant role in production, especially for the energy industry 
[1]

 and other industries greatly affected by 

weather changes. Studies have shown that weather risks directly led to losses of around $1 trillion in the US 

economy 
[2, 3]

. Many enterprises also face dramatic changes in sales volumes because of weather variations, 

which can significantly affect viability and even hinder industrial development 
[4, 5]

. 

As risk management is a vital part of every enterprise 
[6]

, it was inevitable that weather derivatives would 

become a trend. Su (2010) 
[7]

 stated that weather derivatives could be used to hedge the risk of extreme or 

prolonged weather conditions
 [8]

. The first weather derivatives appeared in the US in 1997, and in 1998, the UK, 

Germany, Belgium, and Norway also introduced weather derivatives to hedge the risk of weather damage. In 

1997, the trading volume was $500 million, which rose to $1 billion in 1998 and to $3 billion in 1999, proving 

their viability in financial markets. 

In the early years, weather derivatives were only traded in US over-the-counter (OTC) markets. However, 

in January, 2000, the London International Financial Futures Exchange (LIFFE) in England began to trade these 

derivatives online 
[9]

. Exchange markets now include exchanges such as the Chicago Merchandise Exchange 

(CME) and the International Exchange in Atlanta. The types of weather derivative futures and options available 

include Cooling Degree Days (CDDs), Heating Degree Days (HDDs), and Cumulative Average Temperatures 

(CATs), with many corporations choosing to hedge risk for the best results. 

Currently, the US, the UK, Japan, Australia, and some cities in Europe have introduced and are trading 

weather derivatives; however, China has not yet built a standardized weather derivatives trading platform. As 

China is at the core of the global supply chain, adverse weather conditions inevitably influence the development 

of the global economy; therefore, the risks caused brought by adverse weather need to be well-managed to 

ensure a stable global supply chain and reduce the negative influences. China also has a large well developed 

                                                           
*
 Corresponding author. Email: zhuqing@snnu.edu.cn 



10          The Seventeenth Wuhan International Conference on E-Business－Cross-border e-Commerce Initiatives under China’s Belt and Road Initiative  

agricultural sector 
[10]

 that contributes significantly to GDP every year; however, production can be easily 

influenced by adverse weather and climate change 
[11]

. Therefore, the introduction of weather derivatives is vital 

for securing the global supply chain and developing the domestic economy. If an enterprise chooses to purchase 

Chinese weather derivatives, they could better hedge their risks and maintain profitability, which would be 

beneficial to the development of the global economy and the international financial markets. Weather 

derivatives allow for the risks associated with the energy industry and agriculture to be well managed, and can 

and ensure the global supply chain and international financial market stability. 

Although China has not launched weather derivatives on the financial markets, there has been some 

associated weather derivative research. For example, Hong et. al (2013) 
[9] 

proposed a method using peer group 

analysis to set a prior price for new weather derivatives, and Zong et. al (2016) 
[12]

 proposed regional weather 

indices for China and demonstrated that weather derivatives were a practicable tool for efficiently hedging risk. 

Weather derivatives are fundamentally dependent on temperatures; according to data from the Chinese 

Government Network (2014), the 665 cities in mainland China had contract difficulties because of difficulties in 

obtaining temperature data 
[12]

.  

As contract prices are based on monthly and quarterly cumulative weather indices, the fluctuations in the 

weather indices are very important. Therefore, in this article, more attention is paid to the design of Chinese 

weather indices and new feasible and stable Chinese weather indices proposed. Being different with the weather 

indices of other cities, the new weather indices we propose is not only decided by local weather but influenced 

by global weather derivatives market. Therefore, the new weather indices will have much more possibility to 

suit the global market and improve its viability and adaptation.   

In this article, new weather indices for Chinese weather are proposed using a DCC-GARCH model and 

ANNs. In Section 2, the models used are introduced, in Section 3 the city selection process is described, and a 

new equation for the weather indices proposed. A simulation and discussion are presented in Section 4, and the 

conclusion is given in Section 5. 

 

2. METHODOLOGY 

 

2.1 Dynamic conditional correlations - Generalized autoregressive conditional heteroscedasticity 

The dynamic conditional correlation-Generalized autoregressive conditional heteroscedasticity 

(DCC-GARCH) model is based on the Generalized autoregressive conditional heteroscedasticity (GARCH) 

model proposed by Bollerslevb (1986) 
[13]

 and the generalized ARCH model by Engle (1982) 
[14]

. The 

GARCH(p, q) model is described as follows: 

                                        tt z t                                    (1)  
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where zt represents the uniform and independent random variables, and σt denotes the conditional variances. The 

parameter p and q represent the order for the ARCH and GARCH models; when p = 0 , it is considered an 

ARCH(q) model. 

Weather derivatives are monthly or quarterly contracts based on an index 
[4]

. As Chinese financial markets 

have been gradually integrated into the global financial system 
[15]

, and it is hoped that these new weather 

indices can be integrated into international weather derivatives markets, the new weather indices need to be 

correlated tightly with weather indices in other cities to ensure stability and feasibility. However, because the 

GARCH model was unable to represent the co-movement of two indices, we can hardly make a connection 
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between Chinese market and global markets. Therefore, in this article, we choose the DCC-GARCH model to 

calculate the dynamic conditional coefficients to make a tightly connection with markets trading weather 

derivatives and make sure the viability and adaptation of the new weather indices we proposed. In 2002, Engle 

(2002)
 [16] 

proposed the Dynamic conditional correlation-Generalized autoregressive conditional 

heteroscedasticity (DCC-GARCH) model to calculate the co-movement of two markets. In Engle’s model:  

                              t t t tH D R D                                   (3) 

where Rt is a n × n correlation matrix. 

,{ }t ii tD diag h    1, 2 , . . . ,i n                             (4) 

and 

2 2

, 0 1 , 1 2 , 1 , 1 1 , 1ii t i i i t i i t i t i ii th J h                                  (5) 

where Ji,t-1 = 1 if εi,t-1 < 0 , else Ji,t-1 = 0.  

'

1 1 1(1 )t t t tQ a b S au u bQ                                 (6) 

where ut = εt / Dt, the conditional correlation matrix of εt is derived from Rt=E(utut’|It-1), and S is a matrix of the 

location parameters. Another conditional correlation matrix Rt can be defined as 

11,t nn,t 11,t nn,t( ,..., ) ( ,..., )t tR diag q q Q diag q q                     (7)           

The elements of Rt can be expressed as  

, , , ,ij t ij t ii t jj tq q q                                    (8) 

which equals 

2 2

, , 1 , 1 , 1 , 1 , 1 jj, 1 , 1[(1 ) ] [(1 ) ][(1 ) ]ij t ij ij t i t j t ii ii t i t jj t j ta b q bq au u a b q bq au a b q bq au                    
  

                                                                                       (9) 

The dynamic correlation coefficients are nonlinear functions of the two parameters a and b from the DCC 

model 
[17]

. In this article, the DCC-GARCH model is used to estimate the volatility of data and ensure the 

co-movement of the new weather indices with existing weather indices, in order to improve the feasibility and 

stability of the proposed weather indices.  

 

2.2 Artificial neural networks(ANNs) 

During data classification and prediction, ANNs simulate the learning processes of human brains 
[18]

 and 

are composed of three parts; an input layer, hidden layers, and an output layer. Each neuron has an activate 

function, with variables distributed to different neurons in the hidden layers based on different weights. The 

ANNs structure is shown in Figure 1. 

The ANN is a nonlinear model that can efficiently learn data characteristics and encapsulate time 

dependency 
[19]

. As weather contract prices are based on monthly or quarterly cumulative indices, the contract 

price can be set based on the proposed weather derivatives; therefore, the feasibility and stability of the weather 

indices are very important when introducing weather derivatives and developing weather indices. In recent years, 

there have been some methods proposed to research and predict weather derivative indices. Zapranis et. al(2009) 
[19] 

proposed a model that demonstrated that neural networks were better able to approximate any nonlinear 

process. Therefore, based on the characteristics of the weather derivatives indices, ANNs were selected to 



12          The Seventeenth Wuhan International Conference on E-Business－Cross-border e-Commerce Initiatives under China’s Belt and Road Initiative  

simulate the proposed indices. Using machine learning, the stability and feasibility of the new weather indices 

were tested, the details of which are in Section 4. 

 

 

3. DATA SELECTION AND MODELING 

 

3.1 Data selection 

3.1.1 Selection of Chinese cities 

As the new Chinese weather indices were developed based on existing CDDs, they could be the basis for 

the Chinese weather derivative development. Because of China’s size, it is not possible to have weather 

derivatives for the whole country; therefore, it is necessary to develop regional Chinese weather indices. There 

are four dominant futures trading markets in China; Dalian, Shanghai, Shenzhen and Zhengzhou, of which 

Shanghai is the most important as it is the economic and financial center of China and an important harbor 

trading city. Therefore, Shanghai and its surrounding area were set as the research region for the design of the 

new weather indices for four main reasons. i). Shanghai is the economic and financial center of China, with a 

GDP of 2.5 trillion RMB in 2015 (from: http://data.stats.gov.cn/index.htm), and the cities near Shanghai such as 

Hangzhou and Nanjing also contribute around 1 trillion RMB GDP each year. This region that encompasses 

Shanghai, Jiangsu province and Zhejiang province contributes approximately 16.6% to Chinese GDP (from: 

http://data.stats.gov.cn/index.htm). ii) Shanghai and its surrounding areas annually face adverse weather and 

regularly suffer from typhoon and flood damage, which can result in enormous losses, especially for energy 

enterprises. iii) The weather conditions in Shanghai and its surrounding cities are generally stable, which is 

beneficial for derivatives trading. 

Therefore, Shanghai was chosen as the center for the proposed weather derivatives, with the cities 

surrounding Shanghai selected for the regional temperatures. Therefore, three cities; Shanghai, Hangzhou and 

Nanjing; were selected for the regional temperatures. The correlation coefficients for the monthly average 

temperatures over 25 years for Shanghai, Nanjing and Hangzhou were 1, 0.994, 0.995, respectively, indicating a 

tight correlation between the three cities. 

3.1.2 Selection of cities to trade weather derivatives 

There are 24 cities in the US, 11 cities in Europe, 6 cities in Canada, 3 cities in Australia, and 3 cities in 

Japan trading weather contracts. As Australia is located in the southern hemisphere and has different weather 

conditions to China, geographic conditions in Australia were not considered. The geographic conditions of all 

other cities except Australia are shown in Table 1. As can be seen, there are similar geographic conditions in 

China and the US, and they both also have large land masses and similar latitudes. Further, because of the 

Figure 1.  A three-layered artificial neural network 
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number of cities trading weather derivatives in the US, the weather derivatives market is mature; therefore, our 

research was combined with the US weather indices. The main US weather indices are HDDs, which trade from 

November to April, and CDDs, which trade from April to October. In this article, CDDs were chosen as the 

basic weather indices, primarily because HDDs can be retrieved from the CDDs 
[20]

. CDDs are calculated from 

the daily average temperatures, the calculation method for which is as follows: 

                           

2

1

max[ 18 C,0]
T

t

t T

CDDs W 



                          

 

 (10)    

where T1 and T2 denote the beginning and the end of a month or a season, and Wt represents the average value of 

the maximum and minimum temperatures of the day; therefore, there is a tight correlation between the average 

temperature values and the CDDs values. 

 

Table 1.  Latitude and longitude of main cities 

Country City Coordinate City Coordinate City Coordinate 

US Atlanta 33°46'N, 84°25’W Detroit 42°23'N, 83°05'W New York 40°44'N, 73°55'W 

 Baltimore 39°17'N, 76°37'W Houston 29°45'N, 95°23'W Philadelphia 40°N, 75°09'W 

 Boston 42°19'N, 71°05'W Jacksonvile 30°2'N, 81°4'W Portland 45°31'N, 122°39'W 

 Chicago 41°53'N, 87°37’W Kansas 39°02'N, 94°33'W Raleigh 35°47'N, 78°39'W 

 Cincinnati 39°1'N, 84°3'W Las Vegas 36°1'N, 115°1'W Sacramento 38°34'N, 121°28'W 

 Colorado Springs 38°51'N, 104°47'W Little Rock 34°44'N, 92°19'W Salt Lake City 40°46'N, 111°52'W 

 Dallas 32°47'N, 96°47'W Los Angeles 34°05'N, 118°22'W Tucson 32°13'N, 110°58'W 

 Des Moines 41°36'N, 93°38'W Minneapolis 0°45'N, 93°15'W Washington 38°53'N, 77°02'W 

Europe Amsterdam 52°21'N, 4°52'E Barcelona 41°18'N, 2°06'E Berlin 52°31'N, 13°2'E 

 Essen 51°27'N, 7°00'E London 51°3'N, 0°07'E Madrid 40°26'N, 3°42'E 

 Oslo 59°56'N, 10°41'E Paris 48°51'N, 2°2'E Prague 50°05'N, 14°25'E 

 Rome 41°52'N, 12°37'E Stockholm 59°23'N, 18°00'E   

Japan Hiroshima 34°23'N, 132°27'E Osaka 34°4'N, 135°30'E Tokyo 35°41'N, 139°44'E 

Canada Calgary 51°05'N, 114°05'W Edmonton 53°34'N, 113°25'W Montreal 45°3'N, 73°35'W 

 Toronto 43°4'N, 79°22'W Vancouver 49°13'N, 123°06'W Winnipeg 49°53'N, 97°1'W 

China Beijing 39°55'N,116°23'E Changchun 43°5'N,125°2'E Changsha 28°1'N,113°E 

 Chengdu 30°37'N,104°06'E Chongqing 29°31'N,106°35'E Foochow 26°01'N,119°2'E 

 Guangzhou 23°10’N，113°18'E Guiyang 26°35'N,106°4'E Haikou 20°03'N,110°10'E 

 Hangzhou 30°1'N,120°07'E Harbin 45°45'N,126°41'E Hefei 31°51'N,117°16'E 

 Huhehot 40°48'N，111°38'E Hong Kong 22°17'N,114°08'E Jinan 36°5'N,117°E 

 Kunming 25°04'N,102°41'E Lanzhou 36°01'N,103°45'E Lhasa 29°41'N,91°1'E 

 Macao 22°11'N,113°33'E Nanchang 28°38'N,115°56'E Nanjing 32°03'N,118°46' E 

 Nanning 23°N,108°E Shanghai 31°14'N,121°27'E Shenyang 41°48′N,123°25′E 

 Shijiazhuang 38°04'N,114°28'E Taipei 25°02'N,121°38'E Taiyuan 37°5'N,112°3'E 

 Tianjin 39°08'N,117°12'E Urumchi 30°35'N,114°19'E Xining 36°34′N,101°49′E 

 Xian 34°16'N,108°54'E Wuhan 30°35'N,114°19'E Yinchuan 38°28'N ,106°13'E 

 Zhengzhou 34°35'N,113°38'E     
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Two American cities were chosen that had high daily average temperature correlation coefficients with 

Shanghai. Therefore, the new weather indices included two parts: regional China and part of the existing US 

weather indices. The correlation coefficients were calculated for the monthly average temperatures in US cities 

and Shanghai. The final American cities chosen were Las Vegas and Little Rock as these two cities were found 

have high monthly average temperature correlation coefficients of 0.9122 and 0.9054.  

  

3.2 Weather indices modeling 

In this article, new weather indices are proposed to introduce Chinese weather derivatives. As China is the 

third largest country in the world and has 665 cities, it would be difficult for Chinese financial markets to 

introduce weather derivatives for only one city. Therefore, it was decided that the best way to introduce weather 

derivatives was to select a part of regional China and consider the weather conditions in several vital cities 
[11]

. 

In this way, the scope of application for the proposed weather derivatives was broadened. Therefore, a 

representative city was chosen as the central city and two more cities near the center city were chosen as the 

regional cities. To ensure a tight correlation with the existing weather derivatives markets, the influence of 

international markets was also considered, with the two cities with the highest weather condition correlation 

coefficients with the center cities being chosen. Therefore, the proposed weather index was included a regional 

section and an existing sections. The equations for the new Chinese Cooling Degree Days indices(C-CDDs) 

were as follows: 

                         = (1 )regional exsitedC CDDs kCDDs k CDDs                   (11)                     
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regional i i

i
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                        (12)                   
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where i denoted the Chinese cities Hangzhou, Nanjing and Shanghai, and j represented the cities which already 

had weather derivatives; Las Vegas and Little Rock; and k, αi and βj were all parameters. Therefore, the 

equations above were used to develop the new weather indices. The calculation coefficients αi and βj for the 

regional temperatures were defined by: 

                                         

i 3

1

i

i

i





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
                                                                     

 

where i represented the researched cities, αi denoted the correlation coefficients between city i and Shanghai, 

and the number 3 indicated Shanghai, Hangzhou, and Nanjing. The same method was used to calculate the 

coefficients β for the international CDDs. The coefficients were compared, Las Vegas and Little Rock selected, 

and the β value calculated using a similar method. 

 

4. PARAMETER SETTLEMENT AND DISCUSSION 

 

4.1 Parameter settlement 

Two principles were followed to develop the proposed weather derivatives; i.) to connect the Chinese 

weather derivatives indices with the US weather derivative indices to ensure feasibility of the new Chinese 

(14)
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weather indices and to ensure that there were highly dynamic correlation coefficients between the Chinese 

weather indices and US city weather indices using the DCC-GARCH model; and ii) as these weather indices 

described the Chinese weather condition, the domestic section needed improving, which required the k value in 

equation (11) to be improved. 

For this research, 10 years of daily average temperatures from April to October were collected for each of 

cities chosen; Shanghai, Nanjing, Hangzhou as the Chinese cities, and Las Vegas and Little Rock, which had 

existing weather indices. The DCC-GARCH (1,1) model was used to simulate the CDDs for the Chinese cities 

and for the existing weather indices. As the daily average temperatures in Las Vegas were found to have the 

highest linear correlations with Shanghai, Las Vegas was selected as the matching city to analyze the DCC 

between C-CDDs and CDDs in Las Vegas (CDDs-LV) to set parameter k.  

The data characteristics were then set, including the C-CDDs for different k values and the CDDs-LV. The 

characteristics for these data were found to be similar. As the ADF test found the data to be non-stationary, the 

1
st

 difference data was set as the data to be analyzed for the building of the DCC-GARCH model. The ADF test 

indicated that the 1
st
 difference data was stationary and that the data for each year was almost normal with 

weekly skewness and kurtosis, and the McLeod Li test showed a significant ARCH effect. Based on these 

characteristics, the DCC-GARCH model was built to calculate the dynamic conditional correlation coefficients. 

The DCC (1, 1) and the GARCH (1, 1) model were both chosen. 

It was found that the DCC data fluctuated around an approximate certain number. Therefore, the mean 

DCC value was calculated as the DCC for each year, the results for which are shown in Table 2.  

 

  

From Table 2, as k was below 5, this was unable to show the influence of the changes in Chinese 

temperature, with a k above 0.7 showing a poor dynamic correlation with the US weather indices. Therefore, k = 

0.6 was set as a suitable value for the proposed principles. To gain a more accurate k value, a further calculation 

was conducted. Therefore, a k value around from 0.55 to 0.65 was assumed to calculate the DCC value, the 

results for which are shown in Table 3.  

 

Table 2.  DCC for the different k values in ten years 

DCC 

(mean value) 

k value (0 - 1  pause: 0.1) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

2008 0.72 0.72 0.72 0.71 0.71 0.69 0.66 0.61 0.47 0.27 0.01 

2009 0.73 0.73 0.73 0.73 0.71 0.68 0.65 0.58 0.47 0.28 0.04 

2010 0.62 0.62 0.62 0.62 0.61 0.60 0.56 0.49 0.37 0.22 0.06 

2011 0.57 0.56 0.56 0.55 0.54 0.53 0.48 0.42 0.33 0.21 0.04 

2012 0.64 0.65 0.65 0.65 0.64 0.63 0.61 0.55 0.45 0.28 0.09 

2013 0.69 0.69 0.69 0.69 0.69 0.68 0.66 0.62 0.51 0.28 -0.02 

2014 0.73 0.73 0.73 0.73 0.72 0.70 0.67 0.60 0.47 0.22 -0.10 

2015 0.71 0.71 0.71 0.70 0.69 0.67 0.64 0.57 0.46 0.26 0.07 

2016 0.73 0.74 0.73 0.73 0.72 0.70 0.64 0.58 0.47 0.30 0.07 

2017 0.70 0.70 0.70 0.69 0.67 0.64 0.59 0.50 0.36 0.19 0.07 

Mean 0.685 0.684 0.683 0.679 0.670 0.651 0.615 0.553 0.434 0.249 0.033 
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Table 3.  DCC for different k values in ten years 

DCC 

(mean value) 

k value (0.55 - 0.65  pause: 0.01) 

0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 

2008 0.62 0.62 0.61 0.6 0.6 0.59 0.58 0.58 0.57 0.56 0.55 

2009 0.68 0.68 0.67 0.67 0.65 0.64 0.64 0.63 0.62 0.62 0.62 

2010 0.66 0.65 0.65 0.65 0.64 0.64 0.63 0.63 0.62 0.62 0.61 

2011 0.69 0.68 0.68 0.68 0.67 0.67 0.66 0.66 0.65 0.65 0.64 

2012 0.67 0.66 0.66 0.66 0.66 0.66 0.65 0.65 0.65 0.64 0.64 

2013 0.62 0.62 0.62 0.61 0.61 0.61 0.6 0.6 0.6 0.59 0.59 

2014 0.51 0.5 0.5 0.49 0.49 0.48 0.48 0.47 0.47 0.46 0.46 

2015 0.58 0.58 0.57 0.57 0.56 0.56 0.55 0.55 0.54 0.53 0.53 

2016 0.66 0.67 0.67 0.66 0.66 0.65 0.65 0.64 0.64 0.63 0.62 

2017 0.68 0.67 0.67 0.67 0.66 0.66 0.65 0.66 0.66 0.65 0.65 

Mean 0.637  0.633  0.630  0.626  0.620  0.616  0.609  0.607  0.602  0.595  0.591  

   

From Table 3, the DCC results for the k conditions from 0.55 to 0.65 were found to be similar. Because the 

aim was to gain as a high a value as possible, a DCC above 0.6 was considered too small. When k = 0.6, there 

was a high DCC, which was able to secure a large proportion of the Chinese regional data in equation (11). 

Based on the principles proposed above, the final equation for C-CDDs was determined: 

       =0.6 +0.4regional exsitedC CDDs CDDs CDDs                     (15)                                   
 

 

4.2 Test on American cities 

To assure the feasibility of the proposed C-CDDs, we test the new weather indices proposed on some cities 

that have similar weather conditions with Shanghai, assuming these cities do not trade the weather derivatives 

contracts. Atlanta, which has similar weather conditions and high correlation coefficients of 0.9004 with 

Shanghai, was chosen as the center city to conduct the same analysis using the proposed equation (15). Little 

Rock and Raleigh were chosen as the matching cities, and Columbus and Mascon were chosen as the regional 

cities near to Atlanta that had similar weather conditions according to the monthly average temperatures over 25 

years. The equation (15) was used to calculate the simulated daily C-CDDs in Atlanta and were compared with 

the real daily CDDs in Atlanta over ten years, the simulation results show they have similar fluctuation trends.  

According to the RMSE data, the error in 2011 was the largest at 0.96, with the mean value of the RMSE 

over ten years being approximately 0.793. The RMSE in each year were all below 1, indicating that the 

simulation results were reasonable; therefore, it was believed that the same C-CDDs were feasible in the 

Shanghai market. The CDDs are cumulative cooling degree day indices, and the prior price settlement refers to 

the previous monthly cumulative CDDs. Therefore, it is also important to compare the cumulative CDDs in each 

month. The cumulative CDDs for each month over ten years were calculated and analyzed using equation (10) 

with the pause between T1 and T2 being one month. The mean values for each month were calculated and 

compared with the mean value of the cumulative CDDs in Atlanta. Then, absolute percentage error (APE) δ was 

utilized to determine the simulated and real value errors, the calculation for which was as follows: 

                                    
*

*

y y

y



                                   (16)                           
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where y represented the simulated cumulative CDDs and y* represented the mean real value for the cumulative 

CDDs in Atlanta from 2008 to 2017 (ten years). The results are shown in Table 4. 

 

Table 4.  Mean monthly simulated CDDs and true value in Atlanta over ten years 

Month 
Monthly weather indices 

Simulated values True values δ 

Apr. 42.85 42.47 0.009 

May. 124.7 124.46 0.002 

Jun. 242.4 236.51 0.025 

Jul. 280.25 266.13 0.053 

Aug. 258.03 252 0.024 

Sep. 164.72 165.86 0.007 

Oct. 43.32 44.75 0.032 

 

Table 5.  Mean monthly simulated CDDs and true value in Las Vegas over ten years 

Month 
Monthly weather indices 

Simulated values True values δ 

Apr. 90.80 92.01 0.013 

May. 212.04 222.96 0.049 

Jun. 398.39 424.85 0.062 

Jul. 461.36 512.57 0.100 

Aug. 434.97 471.96 0.078 

Sep. 312.64 337.14 0.073 

Oct. 129.45 129.53 0.001 

 

Table 6.  Mean monthly simulated CDDs and true value in Little Rock over ten years 

Month 
Monthly weather indices 

Simulated values True values δ 

Apr. 36.31 36.04 0.007 

May. 111.12 111.71 0.005 

Jun. 240.19 251.76 0.046 

Jul. 274.63 282.405 0.028 

Aug. 254.70 264.89 0.038 

Sep. 150.89 151.33 0.003 

Oct. 37.23 36.1 0.031 

 

From Table 4, it can be seen that in April, May and September, there were smaller errors than in other 

months and in July, the error was the largest at 5.3%. Besides testing Atlanta city, we also choose Las Vegas and 

Little Rock, which have similar weather conditions, to make sure the viability of proposed weather indices. We 

do the same experiments as we test on Atlanta and the results are shown in Table 5 and 6. It can be seen that, for 
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Las Vegas, in April and September, there were smaller errors than in other months and in July, the error was the 

largest at 10%. As for Little Rock, the error is much smaller in April, May and September and the largest is 

4.6% in June. As the result of RMSE, the Las Vegas over ten years is approximately 1.505 and Little Rock is 

0.90. 

These results indicated that the simulated C-CDDs performed well and proved that it was feasible for 

regions in China such as Shanghai and its surrounding cities to introduce C-CDDs to hedge enterprise risk. 

 

5. SIMULATION AND PROVE 

To further analyze the C-CDDs and CDDs correlations in Las Vegas (CDDs-LV), the DCC-GARCH (1, 1) 

model was used to simulate these two weather indices. The data range was set from 2008 to 2017 as a 

continuous sequence, with the data still being stationary 1
st
 difference data. The two data sets had weak 

skewness, kurtosis, and normality and had a significant ARCH effect. Based on these characteristics, C-CDDs 

and CDDs-LV were simulated using the DCC (1, 1) and GARCH (1, 1) models to determine the parameters for 

these two weather indices. For the C-CDDs the parameter α = 0.103, β = 0.842 and for the CDDs-LV α = 0.286, 

and β = 0.413. The parameter for DCC a was 0.032, and for b was 0.820, which indicated that the results were 

reasonable as the weather indices had a tight correlation, were stable and had strong continuity; therefore the 

feasibility of proposed C-CDDs was demonstrated. 

 

 

 

The ANNs was employed to simulate the C-CDDs in Shanghai, the temperatures in Hangzhou, Nanjing 

and Shanghai and the CDDs in Las Vegas and Little Rock as inputs, with the C-CDDs calculated using equation 

(15) being the outputs. The previous seven years data was used as the training sets, and the other data was the 

test set. The simulation for the test set is shown in Figure 2. The RMSE for the simulation was 0.025, and the 

R-square was 0.978. The simulation results were almost perfect, with a reasonable simulation degree. Only the 

temperatures in Hangzhou, Nanjing and Shanghai were then used as the inputs for the simulation, with the 

influence of the US weather indices excluded, as shown in Figure 3; the RMSE and R-square were 0.132 and 

0.770. Compared with the previous simulation which included Hangzhou, Nanjing and Shanghai and the CDDs 

from Las Vegas and Little Rock as the inputs, the simulation degree was found to be worse and the RMSE was 

Simulation           Observation 

Figure 2: The simulation results of C-CDDs using ANNs 
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Simulation           Observation 

much higher. 

 

 

 

As the new weather indices were not predictable and lacked a unified market logic, the poor ANNs 

simulation results indicated there were design inefficiencies. The 100% fitness also indicated an over fitting as 

there was no natural variability or volatility. However, in general, the simulation showed that the proposed 

weather indices had the ability to express the market logic, and were accepted by the machine learning. The 

exclusion of the US weather indices illuminated some characteristics of the new weather indices. The influence 

of the US weather indices improved the simulation accuracy of the new weather indices by 21% with the other 

77% being influenced by the regional weather in China.  

The results of the deep machine learning showed that it was able to part predict the new weather indices 

and because the ANN performed well when learning the new weather indices, the new weather indices were 

considered stable and feasible. Therefore, the C-CDDs could be used to determine the prior prices for the 

weather derivative contracts. 

 

6. CONCLUSION AND FUTURE WORKS 

In this paper, a new weather index was proposed that combined Chinese regional weather conditions with 

US cities that already employed weather derivatives. Two principles were followed when creating the new 

weather indices and the influence of existing weather indices was added to improve feasibility. From the 

experiments, it was shown that the proposed weather indices were reasonable and feasible. The Atlanta, Las 

Vegas and Little Rock weather indices were included in a further assessment to test the suitability of the 

proposed weather indices for the Chinese derivatives markets, and the DCC-GARCH and ANN models were 

employed to demonstrate the feasibility, for which the error in the simulated results was found to be acceptable.  

China’s position as the core global supply chain country significantly influences international trade. 

Because of China’s large land mass, there are varying weather conditions across the country, which can affect 

production; therefore, it would be sensible for enterprises dealing with China to hedge their risk by trading on 

the Chinese financial markets. While weather derivatives are being used in Japan, as there are only a few types, 

they do not cover all situations; therefore, it would be more convenient for surrounding countries to trade 

Figure 3: C-CDDs Simulation results using ANNs without US components 



20          The Seventeenth Wuhan International Conference on E-Business－Cross-border e-Commerce Initiatives under China’s Belt and Road Initiative  

weather derivatives on the Chinese financial markets based on the variability in Chinese weather conditions. In 

future work, we plan to further develop the Chinese weather derivative markets to assist enterprises and 

especially energy firms efficiently hedge risk to avoid losses. The creation of the new weather indices may 

provide a well reference for Chinese financial markets to develop the Chinese weather derivative market, which 

can help managers well to hedge the risk brought by terrible weather. The policy maker could set the prior prices 

for the weather derivatives contracts, according to the weather indices we proposed, to help start trading weather 

derivatives in Chinese financial markets. The development of regional temperature indices could also provide 

inspiration to other large cities that do not have weather derivatives. 

The proposed Chinese weather derivative indices were connected with the US market; however, European 

indices were not considered in this paper. However, with the expansion of "The Belt and Road" initiative, it is 

necessary to deepen cooperation with European countries, improve the development of the international 

financial markets, and ensure communication between the two regions. 
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