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ABSTRACT 

Dealing with an ever increasing amount of information is 
a major challenge in decision making. This especially 
pertains to information overload in managers, which is 
associated with impeding cognition and thus impairs 
objective decision making. Using visualizations to 
mitigate this effect has been widely discussed as a 
potential countermeasure. The theory of cognitive fit is 
far from being consistent or holistic when it comes to 
explaining information overload and leaves ample room 
for data driven advancements. In this paper we thus report 
the results of an experiment utilizing eye tracking that 
investigates how information overload alters the 
relationship between task complexity and decision 
making outcome. It is shown that information overload 
acts as a mediating variable between task complexity and 
decision making outcome and that it occurs less often 
when graphs instead of tables are being used. This also 
improves decision making outcome. 
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Information Visualization, Information Overload, Task 
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INTRODUCTION 

Technology allows the collection of data from hitherto 
untapped sources in a much more efficient way, and, as a 
consequence, the amount of available data has increased 
tremendously, bringing with it issues of complexity and 
ambiguity (Lemieux et al., 2014). Former research shows 
that decision making quality is enhanced by an increase of 
information (Schroder et al., 1967). However, a turning 
point exists where adding further information deteriorates 
decision making quality because the amount information 
surpasses the cognitive abilities of decision makers 
(Tortaso-Edo et al., 2014). The benefits of a high volume 
of information are often outweighed by the occurrence of 
information overload (Lurie and Mason, 2007).  

A widely accepted method to assist managers in 
understanding high volumes of data is the use of tables 
and graphs. They provide cognitive support by 
representing information visually and transforming 
laborious cognitive processes into few simple perceptual 

operations (Huang et al., 2009). Extensive research has 
been conducted on the applicability of tables and graphs 
but no empirical evidence can be found on whether one 
outperforms the other, a quest which the theory of 
cognitive fit is trying to answer (Vessey, 1991). 

Cognitive fit theory investigates how information needs to 
be presented in order to reduce cognitive load and thus 
enhance efficiency and effectiveness of decision making. 
This theory suggests that a fit between visual 
representations and tasks needs to be established (Vessey, 
1991). If a presentation is congruent with existing 
schemas (i.e., knowledge structures) stored in long term 
memory, decision makers can more easily process 
information (Chandra and Krovi, 1999) and also higher 
amounts thereof. The theory recommends using tables to 
achieve better results for symbolic tasks (e.g., the search 
for a specific value) and graphs for spatial tasks (e.g., 
identification of trends, patterns or sequences) (Vessey, 
1991).  

In this study we investigate high levels of data density and 
high levels of task complexity and their implications on 
mental models. Especially such models are rather 
unexplored as the theory of cognitive fit does not account 
for such subtleties in the theoretical model (Speier, 2006). 
We propose that using graphs instead of tables in cases of 
high data density and high task complexity better supports 
decision makers irrespective of the task type. We assume 
that (1) visual representations of data (i.e., graphs) trigger 
processing with the human visual system, which operates 
faster and with less constraints in comparison to plain text 
or plain numbers, (2) the increasing use of graphs 
presuppose the better applicability of graphs 
(Falschlunger et al., 2015) and (3) using graphs enhances 
human processing capabilities irrespective of the data 
presented because it reduces the demand on working 
memory (Huang et al., 2009).  

HYPOTHESIS DEVELOPMENT 

In this part of the paper we use the two variables task 
complexity and information overload, and put them in a 
new perspective when applying cognitive fit theory:  

Task complexity is used as an independent variable, 
(instead of a moderator or mediator) representing a 
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combined measure for visualization type, data density and 
task type. To understand the complexity and applicability 
of certain information presentation modes which support 
decision making these three influential factors need to be 
considered and aligned (Speier, 2006; Wood, 1986). The 
most useful concept for task complexity with respect to 
these requirements was introduced by Wood (1986), who 
presented a formula to objectively calculate task 
complexity (TC = αTC1+βTC2+γTC3). It is defined as “(1) 
a function of the number of distinct information cues that 
must be processed (TC1); (2) the number of distinct 
processes that must be executed (TC2); and (3) the 
relationship (i.e., interdependence and change over time) 
between the cues and processes (TC3)” (Speier et al., 
2003; p. 1117).  

Only when task complexity is low, the probability of 
achieving cognitive fit and a high-quality decision-
making outcome is high (Falschlunger et al., 2016; 
Chandra and Krovi, 1999). This formula accounts for 
information cues (dependent on data density levels) and 
behavioral acts necessary to fulfill a task dependent on the 
task type and the type of information presentation mode. 
For instance, behavioral acts change when comparing 
tables to graphs, when comparing different graph types, 
and also when comparing various task types. In our 
research, therefore the focus shifts away from matching 
task types and visualization types, to receiving the best 
possible outcome on the objective task complexity 
measure.  

H1: High task complexity reduces decision making 
outcome. 

The second variable of interest is information overload. 
Hwang and Lin (1999, p. 213-218) describe information 
overload as an inverted u-curve function based on the 
original work of Schroder et al. (1967): “... in response to 
increases in information load, decision makers will 
increase their information processing initially. However, 
if the information load keeps increasing and finally 
exceeds the capacity of decision makers, information 
processing will cease being increased. Instead, decision 
makers will decrease information processing as they 
experience a phenomenon termed ‘information 
overload’.” As soon as the amount of information exceeds 
working memory capacity limits, biased or even irrational 
decisions can be the consequence (Tortaso-Edo et al., 
2014). Each individual has a different working memory 
capacity which depends on experience, knowledge and 
the respective topic. Information overload occurs if 
working memory capacity is outreached. A high task 
complexity, caused by performing highly complex tasks 
and/or using huge amounts of data, increases the 
likelihood of information overload (Mostyn, 2012). This 
indicates a mediating effect of information overload on 
the relationship of task complexity and decision making 
outcomes. We therefore conclude: 

H2: Information Overload mediates the relationship 
between task complexity and decision making outcome. 

H3: Information Overload is moderated by working 
memory capacity of the decision maker.  

By using these two variables and by introducing high task 
complexity levels we focus our attention on the 
applicability of graphs. Tables and graphs are often seen 
as competing modes of presenting information (Chan, 
2001). However, recent studies focus on graphs rather 
than tables because visual representations are supposed to 
further reduce the demand on working memory because 
the visual system operates in a highly automated manner 
(Mostyn, 2012). “Our senses, particularly the visual 
sense, are able to handle a huge amount of input, and to 
identify significant patterns within it” (Bawden and 
Robinson, 2009, p. 180-191). Visualizations allow 
patterns to materialize and focus the attention on specific 
aspects of the data depending on the visualization type 
being used (Lemieux et al., 2014). They boost 
information processing by relying on the human 
perceptual system which is highly developed and allows 
multiple processes to be executed at the same time 
(Mostyn, 2012). Visual representations are therefore often 
said to be an “external memory to reduce demand on 
human memory” (Huang et al., 2009, p. 139). We 
hypothesize: 

H4: The information presentation mode moderates the 
effects of the relationships between task complexity, 
information overload, and decision making outcome. 

RESEARCH METHODOLOGY  

We used a laboratory experiment with a 4x3x3 within-
subjects and between-subjects design. Within-subject 
effects were tested with 4 different visualization types 
(two graphical designs as well as two tabular designs) and 
3 different task types with various complexity levels 
(accumulation, recognition, estimation/projection). 
Between-subjects effects were tested with 3 different 
levels of data density (dashboard with 3 key performance 
indicators (KPIs); dashboard with 2 KPIs; dashboard with 
1 KPI). In total, 2,184 individual observations were 
gathered using validated questionnaires and an eye 
tracking study.  

Subjects and Design Setup 

91 international students participated in this experiment, 
who either received credit points or a small financial 
compensation. Participants were randomly assigned into 
two out of three sessions. Only two levels of data were 
tested with the same participant due to time constraints. 
The 91 students were recruited from a university with a 
focus on business and economics thus representing the 
future target audience of financial reports.  

For measuring working memory capacity a computer-
based test using E-Prime 2.0 was conducted (Foster et al., 
2015). Data was collected at two different points in time. 
First, we measured working memory capacity and 
gathered demographical information. Second, the actual 
eye tracking experiment was carried out. Data collection 
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was done on an individual basis (eye-tracking sample rate 
120 Hz, experimental software: SMI Experiment Center 
3.6; analysis software: SMI BeGaze 3.6). The participants 
were not allowed to use external devices for solving the 
tasks and no feedback on the accuracy of the task or their 
performance efficiency was given during the session. For 
the experimental tasks participants slipped into the role of 
the CEO of a fictitious company. The tasks the 
participants had to perform and the decisions they had to 
make were common in business. In total, the participants 
had to answer 48 questions. One individual session took 
from 15 to 30 minutes. 

Experimental Design 

Figure 1 shows our final research model and in the 
following paragraphs we briefly describe the 
manipulations used to change task complexity levels. Due 
to space constraints the test material is not provided in 
this paper, but can be downloaded on the main author’s 
web site. 

Visualization Type Manipulation: The most frequently 
used graphs in business communication are bar, line, and 
pie charts. Although the use of graphical aids is gaining 
importance, tables are still the preferred mode 
(Falschlunger et al., 2015). In our study we used a 
dashboard with two graphical and two tabular layouts for 
each business line. All four visualization types were used 
within one session and each business line was presented 
differently and in random order.  

Data Density Manipulation: Three different data density 
levels were tested: high (3 KPIs within one dashboard; 
180 distinct data points), medium (2 KPIs; 120 distinct 
data points), and low (1 KPI; 60 distinct data points).  

Task Complexity Manipulation: Task types were applied 
in accordance with Hard and Vanecek (1991) resulting in 
three different complexity levels for each type of 
dashboard: (1) Recalling, reading, retrieving of one item 
of information (e.g., How high was the actual throughput-
time in August?); (2) Comparing several items of 
information, recognizing patterns (e.g., Which month had 
the highest negative deviation between the actual value 
and the budget?); (3) Retrieving multiple items of 
information, developing trends (e.g., When you compare 
the actual customer satisfaction index with its outlook, 
which statement is true? (multiple choices were given)). 

Measurement models  

Task Complexity (TC) – reflective construct: Task 
complexity was operationalized using the formula of 
Wood (1986) shown above.  

Decision Making Outcome (DMO) – formative construct: 
Decision making outcome was measured in two ways: 
response accuracy (RA) and response time (RT). RA 
accuracy pertains to the correct completion of a task. The 
scores for accumulation, recognition and estimation 
included two tasks with the same complexity level in each 

setting. A score of 1 indicates that both answers were 
correct, 0.5 was given for 1 correct answer and 0 in case 
both answers were incorrect. RT was measured as the 
time span between stimuli onset and offset. As a low 
response time is favorable we reversed the scale for RT. 

Information Overload (IO) – formative construct: Pupil 
size and fixation count are used to measure cognitive 
load. A high pupil diameter and a high amount of 
fixations indicate high cognitive load (Granholm et al., 
1996). To measure pupil diameter, controlled lighting set-
tings are of utmost importance. Our laboratory did only 
have artificial light which was positioned in an angle that 
caused minimal reflections in glasses or contact lenses. 
When measuring pupil diameter possible confounds exist. 
The unaffected pupil diameter is different for each person 
and an initial high or low diameter results in a lower 
variance than a medium-sized pupil. Furthermore, 
different levels of screen brightness cause variations that 
do not relate to differences in cognitive load. To account 
for these changes in pupil diameter we introduced two 
control variables, namely pupil diameter difference and 
color intensity. The tracking ratio per stimulus, which is 
the time being recorded by the eye tracking system 
divided by the time of the stimulus, needed to be above 
95% to be included in further data analyses. In the case of 
missing or excluded values mean replacement was used. 

Working Memory Capacity (WMC) – formative construct: 
Working memory capacity is used as a moderator for the 
relationship between task complexity and information 
overload. We used the shortened automated operating 
span and symmetry span tests. Combining blocks of 
operation and symmetry span is recommended since 
multiple indicators should be used to draw conclusions 
about working memory capacity (Foster et al., 2015). 
These two tests helped us to draw conclusions about 
spatial and mathematical thinking. The operation span 
infers the cognitive ability in a test where one has to 
remember letters and at the same time calculate math 
problems. The symmetry span tests the ability to recall 
colored areas on the screen while simultaneously judging 
the symmetry of figures. These two different procedures 
allowed us to draw conclusions about the applicability of 
symbolic and spatial information visualization types from 
a working memory capacity perspective. 

Information Presentation Mode (IPM) – formative 
construct: Information presentation mode is a 
dichotomous variable based on the used visualization type 
manipulation (table or graph) splitting the dataset for 
evaluation in half (1,092 observations per IPM).  

RESULTS 

For data analysis we used SmartPLS3 which is based on 
partial least squares modeling. PLS is able to 
simultaneously estimate all the proposed relationships 
while taking the existence of measurement error into 
account and it allows for a complete representation of the 
influences (Hair et al., 2012). We chose PLS SEM over 
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CBS SEM because formative and reflective 
measurements are used, asking for a composite factor 
model. Model fit is measured by SRMR (standardized 
root mean square residual) which is 0.077 for our model 
and below the recommended upper threshold of 0.08 
(Henseler et al., 2014). 

Table 1 shows that hypotheses 1-3 are corroborated. Task 
complexity significantly impacts decision making 
outcome (H1, p<0.05). Additionally, this relationship is 
mediated by information overload (H2, p<0.05) and the 
dataset shows an indication for information overload to be 
moderated by working memory capacity (H3, p<0.1). The 
bootstrapping results are shown in Table 1.  

 Original 
Sample 

Standar
d Error 

T-Value P-Values 

TC => DMO  
(accept H1) 

-0.200 0.018 11.303 0.000 

TC=>IO 
IO=>DMO  
(accept H2) 

0.622 
-0.726 

0.019 
0.029 

32.228 
25.431 

0.000 
0.000 

WMC=> IO 
Moderating Effect  
(accept H3) 

-0.086 
-0.057 

0.030 
0.031 

2.836 
1.814 

0.005 
0.070 

Table 1: Bootstrapping Results 

Decision making outcome has an R² of 0.726 (R² 
adjusted: 0.726) indicating that task complexity and 
information overload are the main drivers of DMO. The 
model’s out of sample predictive power (or the predictive 
power) was measured using the blindfolding routine 
(0.391 for DMO). VIF, HTMT as well as AVE were well 
within the proposed thresholds proving construct 
reliability and discriminant validity.  

Multigroup analysis was used to test H4. Splitting the data 
into the two fundamental presentation formats graphs and 
tables makes it possible to test for the moderating role of 
visualization mode. A multigroup comparison based on 
the Welch-Satterthwaite test was used and the results are 
shown in Table 2. 

(accept H4) Ip(1)-p(2)I T-Statistics P-Values 

TC => DMO  0.058 1.660 0.097 
TC=>IO 
IO=>DMO  

0.088 
0.000 

2.240 
0.009 

0.025 
0.993 

WMC=> IO 
Moderating Effect 

0.028 
0.034 

0.404 
0.438 

0.686 
0.661 

Table 2: Multi-Group Analysis (tables vs. graphs) 

When task complexity increases the dataset indicates a 
higher effect when decisions are based on tables. 
Additionally a significant effect can be identified when it 
comes to the occurrence of information overload (H4, 
p<0.05). Tables seem to trigger information overload 
more frequently than graphs. The higher the complexity 
of a task and the higher the data density, the more 
important the use of graphs as decision aids is (see Figure 
1). 

 

Figure 1: Decision Accuracy Model 
(IPM: Information presentation mode; WMC: Working memory capacity; IO: 

Information Overload; TC: Task Complexity; DMO: Decision Making Outcome) 

DISCUSSION  

This paper shows that individual differences result in 
varying information overload levels, which have to be 
considered when testing for cognitive fit. Our findings 
add to the ongoing discussion of information visualization 
as well as to the decision making literature which 
focusses on information processing of high amounts of 
data. Our model predicts information overload and 
decision making outcome independently while it 
acknowledges and considers their interrelatedness. 
Combining various eye tracking measures such as pupil 
dilation and fixation count, standardized span tests as well 
as questionnaire based research, our model has 
considerable power in explaining and predicting decision 
making outcome (R²: 0.709). This paper shows 
shortcomings of the theory of cognitive fit which suggests 
using spatial modes for spatial tasks and symbolic modes 
for symbolic tasks respectively. It presents an alternative 
method using the task complexity formula introduced by 
Wood (1986) and accounting for individual differences by 
taking working memory capacity into account. We show 
that information overload mediates the relationship 
between task complexity and decision making outcome.  

In line with previous research this experimental study 
highlights visualizations as a presentation mode that 
supports the comprehension of large amounts of 
information, and that enhances the ability of humans to 
detect patterns, trends, and sequences (Gettinger et al., 
2012). Therefore, an effective and efficient visualization 
of information can be seen as a precondition and a 
possible first step in reducing cognitive load and 
enhancing decision making quality (Dilla et al., 2010).  

Limitations 

Limitations of this study include a potential sample bias 
due to a population solely based on students. However, 
this population includes extra-occupational as well as full 
time students of various age groups, varying work 
experience and different cultural backgrounds. 
Additionally, the amount of information and data cues in 
our study might not have induced a state of information 
overload in all participants. Looking at the nature of these 
limitations it is possible that actual effect sizes might be 
even higher if more data sets or a higher task complexity 
were used. Furthermore, some limitations stem from 
using eye tracking data: First, while eye tracking provides 
a good approximation for cognition, it is not ensured that 
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the perceived information is actually being processed 
(“eye-mind hypothesis” - Just and Carpenter, 1980); and, 
second, eye tracking cannot capture every occurring 
peripheral vision (Kim et al., 2012). 
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