
Association for Information Systems
AIS Electronic Library (AISeL)

MCIS 2012 Proceedings Mediterranean Conference on Information Systems
(MCIS)

2012

‘PROGRAM BY DESIGN’ AS PART OF A NEW
MAJOR IN COMMUNITY INFORMATION
SYSTEMS
Dalit Levy
Zefat Academic College, levy.dalit@gmail.com

Follow this and additional works at: http://aisel.aisnet.org/mcis2012

This material is brought to you by the Mediterranean Conference on Information Systems (MCIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in MCIS 2012 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Levy, Dalit, "‘PROGRAM BY DESIGN’ AS PART OF A NEW MAJOR IN COMMUNITY INFORMATION SYSTEMS" (2012).
MCIS 2012 Proceedings. 3.
http://aisel.aisnet.org/mcis2012/3

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmcis2012%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2012?utm_source=aisel.aisnet.org%2Fmcis2012%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2012%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2012%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2012?utm_source=aisel.aisnet.org%2Fmcis2012%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2012/3?utm_source=aisel.aisnet.org%2Fmcis2012%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

‘PROGRAM BY DESIGN’ AS PART OF A NEW MAJOR IN
COMMUNITY INFORMATION SYSTEMS

Levy, Dalit, Zefat College of Education, Zefat, ISRAEL, dalitl@zefat.ac.il

Roth, Idan, Zefat College of Education, Zefat, ISRAEL, idanroth@zefat.ac.il

Abstract

During the last decade, social information systems have gained significant popularity by providing the
individual both access to knowledge and powerful means of communication. At the same time, social
information systems have emerged as an empowering force for communities, organizations, and
businesses. In parallel with these changes, a new interdisciplinary area of study has evolved, arguing
that the social and the technological mutually shape each other. New academic programs have been
proposed around the globe, aiming at establishing a framework within which students gain experience
in the socio-technical process of designing information systems in business, libraries, health,
government, education and beyond. These new interdisciplinary programs often regard computer
science (CS) as one of their supporting pillars and therefore include some core CS courses, aiming at
educating broad-minded practitioners rather than expert programmers in the field of information
systems. This paper presents some thoughts on incorporating CS education in academic programs
intended for non-CS majors and proposes an approach called ‘Program by Design’ for the first CS
course in a new undergraduate program in community information systems at Zefat Academic
College.

Keywords: Community Informatics, Design Recipes, Introductory Programming.

mailto:dalitl@zefat.ac.il
mailto:idanroth@zefat.ac.il

1 INTRODUCTION

In the last two decades we have witnessed an invasion of homes, workplaces, public spaces, and both
local and global organizations by information technology tools and systems. The advents of the World
Wide Web, wireless communications, and miniaturized computing technology have considerably
expanded this invasion into mobile devices and remote communities. The widespread everyday use of
computers and information systems reflects a shift in conceptualizing the technology as more social
than it was perceived before: 'the computer started as a totalitarian tool, but has now also been
embraced as a social tool' (Kizza, 2003, p. 158). More recently, over the last several years, social
information systems have gained significant popularity. Social networking sites, social sharing and
tagging systems and social media attract several million users a day all over the globe. These kinds of
information systems provide their individual users with increased social presence, much broader
access to information and knowledge, and powerful means of communication. At the same time, social
information systems emerge as an empowering force for both local and global communities,
organizations, and businesses.

Following these radical changes (Carr, 2008), a new interdisciplinary area of study has evolved,
arguing that the social and the technological mutually shape each other. Studies in this area touch
several different fields, including CS, information systems, information science, and some social
sciences (Kling, 1999). By examining the social aspects of computing, the fields of Social Informatics
and Community Informatics aim to ensure that technical research agendas and information systems
designs are relevant to the lives of people and organizations. Community Informatics aims further at
empowering communities through the use of technology, especially those groups who are excluded
from the mainstream communication systems (Gurstein, 2008).

The increasing interest among different communities of practice in integrating human and social
considerations into traditional information systems curricula has led to the development of new
academic programs around the globe. These are aimed at establishing a framework within which
students develop analytical skills to identify and evaluate the social consequences of ICT-based
systems, and gain experience in the socio-technical process of designing information systems in
business, libraries, health, government, education and beyond. The latest model curricula for
undergraduate degrees in information systems recommended in 2009 by a joint task force of the ACM
and the AIS also supports reaching beyond the schools of management and business. While
information systems curricula have been traditionally targeted to business schools, the current task
force believes that the discipline provides expertise that is critically important for an increasing
number of domains (Topi et. Al., 2010).

Currently, most undergraduate programs in information systems (IS) around the globe operate either
as part of the faculty of engineering or within the context of the business environment and related
activities. This is also the case in Israel, where the new community–oriented IS program here reported
has only recently opened. Although other IS programs in the country might offer one or more courses
dealing specifically with social aspects of IS and ICT, these courses are considered marginal.

The new undergraduate program in Community Information Systems has been developed in Zefat
Academic College in light of the global trends discussed above and, in addition, as a response to the
educational gap identified between various population sectors in Israel (Levy, 2010). The program
seeks to be sensitive to the increasing demand for higher education of the population in a rural part of
the country, by considering the multi-cultural facets of businesses, organizations, and communities,
and to empower these developing communities by using advanced technologies and information
systems. The curriculum combines theory and practice while emphasizing subjects that are relevant to
the workforce and the organizations surrounding the college, thus creating “Practice of Relevance” for
its students (Benbasat & Zmud, 1999). Section 2 further describes the program and its curriculum as
an intersection of disciplines.

The discipline of CS is often perceived by IS programs as one of their supporting pillars. CS methods
and ideas, which are at the root of ICT innovations and information systems design processes, are

thought to have the potential to contribute to a greater understanding of those creations. Moreover,
advancing students' understanding of computing has been thought of as critical to developing the
needed workforce for the 21st century (The College Board, 2012). Therefore, students in IS programs
in general, and in an interdisciplinary program such as Community IS in particular, should study
fundamental CS courses in order to acquire the needed broad foundation in computing and consider its
breadth of application. The first part of Section 3 therefore proposes a CS track tailored for non-CS
majors in order to give them an understanding of the principles and practices of computing as well as
its potential for transforming the world (Harvey and Garcia, 2010). The ‘Program by Design’ approach
(Bloch et. al., 2010) found especially appropriate for the first course in this CS track is detailed in the
second part of Section 3. As the new Community IS program has only recently opened, the last section
of this paper offers early remarks on implementing ‘Program by Design’ at Zefat Academic College.

2 AN INTERDISCIPLINARY CURRICULUM IN COMMUNITY IS

2.1 Background

Zefat Academic College's undergraduate program in Community IS has been approved by the Israeli
national council for higher education at the end of 2010 and the first students have started their course
of study in the fall term of 2011. The program's main assumption is that the revolutionary
development of information technologies in general and of information systems in particular, changes
organizational structure and organizational practices. Therefore, the workforce as a whole will benefit
from acquiring basic academic knowledge in information systems, not only the engineers or those in
managerial positions (The College Board, 2012). The notion of "community" in Community
Information Systems is broad, including business communities as well as non-profit organizations,
global or local organizations, public communities, cultural communities, and rural communities.

Imagining information system as a junction connecting (i) human users, (ii) supporting technologies,
and (iii) organizational environment, the new curriculum includes (i) psychological and sociological
aspects, (ii) information technologies and systems, and (iii) issues of organizational culture (Levy,
2010). This interdisciplinary approach can be seen also in Community Informatics (CI) undergraduate
and graduate programs in Canada, USA, Australia, Italy, and many more (Stillman and Linger, 2009)
and in the emerging field of ICT and Development. The interdisciplinary nature of these fields calls
for creating interdisciplinary academic programs that will support educating "more capable learners,
more innovative teachers, more creative thinkers, more effective leaders and more engaged global
citizens" (Bennett and Sterling, 2011, p.626). Such programs enable students' specialization both in the
technical and the social aspects of information systems. They also expose learners to the breadth of
human arenas and communities supported by information systems like public health, economic
development, education, and many more.

2.2 Program Structure

The three years curriculum is structured around "Information Technologies and Systems" as a core
area of study. Required core courses provide half of the program credits - 60 out of 120 credits, where
one credit typically equals fifteen class hours.

Area of study Year 1 Year 2 Year 3 Sum of credits
Core:
Information Technologies
and Systems

Required credits 21 22 17 60
Elective credits 4 6 10

Sum of core credits 21 26 23 70

Areas of specialization:
(a) The Knowledge
 Society
(b) Information in
 Organizations

Required credits in
area (a)

10 6 4 20

Required credits in
area (b)

10 6 4 20

Elective (a) OR (b) 4 6 10

Sum of credits in areas of specialization 20 16 14 50

Table 1. Distribution of Courses in Different Areas of Study

Additional ten credits are offered through elective courses in the core area of study. The rest of the
credits are equally divided between two supporting areas of study: (a) "The Knowledge Society" and
(b) "Information in Organizations". As can be seen in Table 1, students are exposed to the
interdisciplinary nature of the program from Year 1. In the second and third years, students elect either
area (a) or (b) as an area of specialization.

The core of the curriculum contains required foundation courses in three tracks: ICT, IS, and CS. The
latter track is further described in Section 3 below. Area (a) "The Knowledge Society" includes
required courses like digital culture, sociology of the internet, and evaluating digital communities.
Area (b) "Information in Organizations" includes required courses like knowledge management and
organizational behaviour. As Table 1 demonstrates, while students elect only one area of
specialization, they also take some required courses in the other area. That way the program provides
the multidisciplinary knowledge required for entry-level positions in a wide spectrum of organizations.

The structure of the Community Information Systems program separates the core of the curriculum
from the electives with the intent of supporting the creation of a sound knowledge base of information
systems, at a level appropriate for undergraduate students. At the same time, the courses in both areas
of specializations mark the social, cultural, organizational, and human aspects as central to the
knowledge base of information systems, thus can support the conceptual development of a multi-
faceted body of knowledge by those who will study according to the new curriculum in Community
Information Systems. As a result of such integrated curriculum, we vision graduates who are both
information-technology-oriented and social-oriented, and thus can empower the communities within
they live and work.

3 THE COMPUTER SCIENCE TRACK

3.1 Computer Science Education for non-CS Majors

As has been noted above, the new curriculum builds upon three parallel core tracks, one of which
focuses on computing principles and practices. This computer science track has been designed to suit
the characteristics of the students in the program on the one hand, and to make computer science
discourse and culture understandable by those students on the other hand. In other words, it is this
track's goal to enable the graduates' participation in the professional discourse used among
programmers, software designers, and software development teams. Towards this goal, four
successive courses are offered at the main computer science track, as is illustrated in Figure 1.

Year 1

Year 2

Fall Semester

Year 2

Spring Semester

Year 3

Fall Semester

Program by Design
Introduction to CS and programming, using Racket

Object-Oriented Programming

Introduction to the object-oriented paradigm of
programming, using Java

Software Design Methods
Object oriented design cycle and advanced

programming, using Java

Developing Software Systems
Agile methods for software development teams

Figure 1. The Flow of the Required Courses in the Computer Science Track

Together with few more CS courses (required courses such as data structures and electives such as
applications programming), the CS track integrates theory and practice while engaging students in the
full cycle of software design. Since the students are not majoring in CS, and thus might not have an
advanced mathematical and scientific background, the CS track starts with an educational approach
called ‘Program by Design’ (Bloch and Prolux, 2007; Bloch et al., 2010) which is based on Racket
programming (Flatt and PLT, 2010). As is detailed in the next section, this approach seems especially
appropriate for a first programming course for non-CS majors, by focusing on developing design
practices and desired programming habits from day one, by immersing learners into the profession's
jargon, and by experiencing real coding with pictures instead of the conventional arithmetic jumpstart
(Bloch, 2010).

3.2 The First Course in the Computer Science Track

‘Program by Design’ is a longitudinal educational effort whose mission is 'to turn computing and
programming into an indispensable part of the liberal arts curriculum'

1
 both in high schools and

undergraduate colleges. Led by Matthias Felleisen, the 2011 SIGCSE award winner for outstanding
contribution to CS education, a group of CS professors and their students from several universities
developed an innovative curricula and outreach program in order to address some of the most well-
known issues in introductory programming courses, like the "blank page" syndrome, program
diagnostics, visualizing programming and thinking processes (Lapidot, Levy and Paz 2000),
emphasizing testing (Felleisen, Findle, Flatt, and Krishnamurthi, 2004), and tailoring IDEs for
learners' needs and prior knowledge by offering a series of pedagogic language subsets, in which at
every level the error messages never depend on knowledge that the student does not yet have.

Rooted in the paradigm of functional programing (Felleisen, Findle, Flatt, and Krishnamurthi, 2004),
‘Program by Design’ is a functions-first approach to teaching introductory programming and problem-
solving emphasizing good software engineering practices such as early testing from the beginning
(Tuttle, 2011). This is combined with the Racket IDE (Flatt and PLT, 2010), featuring different
language levels, simple syntax, customized error messages, and support for 'algebra of images' that
enables students to write code for graphic- and animation-rich computing problems (Bloch, 2010).
Most importantly, this educational approach offers design recipes to lead beginner students through a
sequence of steps to obtain an understanding of the problem's nature and the solution program's
behavior, hence the approach title. Testing is an integral part of the design recipe enabling test-first
development (Crestany and Sperber, 2010). Thus, the multi-step design recipe is useful not only to
write programs but also to diagnose them. The design recipe scales naturally to the design of more and
more complex systems of functions. This in turn empowers students to design programs for deep and
interesting problems after just a minimum of introduction to the language, the environment, and the
design recipes (Bloch et. al. 2010; Felleisen, Findler, Flatt, and Krishnamurthi, 2001).

The features of ‘Program by Design’ make the approach especially suitable as a starter for a computer
science track of courses in the liberal-arts-oriented undergraduate curriculum in Community
Information Systems. Since ‘Program by Design’ also includes support for transitioning to object-
oriented programming in Java and a method for using design recipes as part of an Object Oriented
Programming IDE, the second course in the computer science track builds naturally on the first while
further focusing on the systematic design of programs and classes as a preparation for the more
advanced computer science courses (see the courses of Year 2 and Year 3 in Figure 1).

An overview of the main computer science concepts in the first course is provided in Table 2. The
course meets once a week for a four-hour lab session. The sessions are freely organized as a blend of
short lecturer presentations, individual lab work, pair programming, and reflective class discussions.
During the first weeks of the course, the students focus on fundamentals of programming by dealing

1 http://www.programbydesign.org/overview

http://www.programbydesign.org/overview

with tasks involving pictures of their own choice, like overlaying one picture upon another, cropping
certain parts of a picture, and drawing "the big picture" by combining picture parts (Bloch, 2010).
Such focus is made available by the special library of functions that supports "algebra of images"
included in the "beginner student" dialect of Racket IDE. Programming with pictures also enables
students to creatively develop a small-scale programming project at an early stage of the course.

Week Content

1-2 Built-in functions for manipulating pictures

3 Global variables as names for complex functional expressions

4 Contracts and error tracking

5 First mini-project: flags

6-7 Defining new functions, Parameters as local variables, scope

8 Design recipes and test cases

9 Second mini-project: simple animation

10-11 Conditionals

12 Structures

13 Final project

Table 2. Course Structure

One recurring pedagogical pattern is weaved into many of the learning experiences and curriculum
materials. In coordination with the test-first approach (Crestany and Sperber, 2010) and with Racket's
unique function called check-expect

2
 (Bloch and Proulx, 2007) that play an essential role in

developing the culture of ‘Program by Design’, students are constantly asked to predict what they
would expect to happen in a given situation before running the program, and write it down; to
carefully observe and check the results of running the program; and finally to explain the results
(which may or may not be what they predicted). This learning pattern follows the very well-known
Predict-Observe-Explain structure (Linn and Eylon, 2006) found successful in science education
(Millar, 2004). By using such pattern within the context of learning to program and by being able to
embed it within the actual code, non-CS majors have the opportunity to experience one of the key
components of the professional process of program design even at very early stages.

4 CONCLUDING REMARKS

A first course in computer science is in some sense an almost impossible task (Bloch, 2010), in which
students with various backgrounds need to learn (a) the grammar and the components of a
programming language and (b) how to analyze a problem and design a program to solve it using that
language. It is considered quite easy to get caught up in the details of (a) at the expense of (b), but the
language itself might be obsolete by the time the students finish their course of study. The much more
lasting knowledge is constructed through dealing with how to design a program that is both correct
and easy to write, read, modify, and repair.

This might be true for any first computer science course, whether in middle school, high school, or
college. It is certainly true for an introductory course for non-CS majors who are not intended to
become professional programmers, as is the case described above. The focus on design patterns, which
are step-by-step "recipes" for getting from a vague description of a problem to a working computer
program, gives such students the "taste" of how professional programmers work in real-life contexts.

2 Racket has a check-expect function which can be used inline with other Racket code to compare the result of
two expressions.

The emphasis on test-first tools and pair programming helps the students experience a culture of
programming and thus better understand the professional discourse among teams of programmers.

As the new program in Community IS has only recently opened at our college, the implementation of
‘Program by Design’ with the first students has been in its early trial phase and the following
conclusions are thus preliminary. However, even at this early stage, three central principles have
proven viable for non-CS majors with variable background in programming. First, using
pedagogically-grounded language tools and IDEs can indeed support novice learners' focus on the
design process rather on the specifics of the language. Second, initiating the programming venture
with tasks within the world of pictures, graphics, and animations, while building on an "algebra of
images" rather than on arithmetic, opens up a whole new and unprejudiced context for both novices
and those who have had some previous programming experience (or even a lot of experience). Within
such a context, creativity often shows itself both at the level of the design process and at the level of
the product. And third, applying test-first design and strict documentation requirements as early as
possible (the third or four week) enforces disciplined programming while illustrating in a concrete way
the program's desired behavior. Within the context of pictorial functional programming, students can
combine small pieces of code into quite a complex program at an early stage. From the very beginning
of the course they practice writing test cases before writing each function definition, and gain
experience in phrasing each piece's contract (Felleisen, Findler, Flatt, and Krishnamurthi, 2001),
expected result, and test cases.

In summary, although the students in the Community IS program are not expected to become
professional programmers, their exposure to these basic features of software engineering makes them
more able to talk to computer scientists, understand these professionals' concerns, collaborate with
them in developing and maintaining organizational and communal IT projects, and at the same time to
develop their own interdisciplinary career on a proper foundation. In the specific case here described,
it is too early to tell how successful the CS introductory course will be in these regards. However,
considering other cases, it is clear that one key to the success will be the distilling of well-known
functional principles of programming into generally applicable design recipes that work also in other
paradigms like that of object-oriented programming. In light of current trends that call for
programming for all

3
 and regard coding as the literacy of the 21st century, the proposed CS track

tailored for non-CS majors presents a valuable alternative to consider. Together with its ‘Program by
Design’-based introductory course, such a CS track has the potential to give students majoring in any
field an understanding of the principles of computing and knowledge about the practices of computing
professionals. That knowledge will undoubtedly support students' ability to make the choice so much
needed "In the emergent, highly programmed landscape ahead… - Program or Be Programmed"
(Rushkoff, 2010).

References

Benbasat, I., and Zmud, R. W. (1999). Empirical Research in Information Systems: The Practice of
Relevance. MIS Quarterly 23 (1), 3-16.

Bennett, J. and Sterling, J. (2011). Computer Science is not enough. tripleC 9(2) Special Issue: ICTs
and Society - A New Transdiscipline?, 624-631. http://www.triple-
c.at/index.php/tripleC/article/view/190 .

Bloch, S. and Proulx, V. K. (2007). TeachScheme, ReachJava: Introducing OOP without drowning in
syntax. Journal of Computing Sciences in Colleges 22(4).

Bloch, S., Clements, J., Felleisen, M., Findler, R.B., Fisler, K., Flatt, M., Proulx, V. and
Krishnamurthi, S. (2010). Program by Design Project Overview.
http://www.programbydesign.org/overview .

3 As Audrey Watters posted in Hack (Higher) Education blog http://www.insidehighered.com/blogs/should-all-
majors-not-just-computer-science-majors-learn-code (Jan 10, 2012). See also http://codeyear.com/ .

http://www.triple-c.at/index.php/tripleC/article/view/190
http://www.triple-c.at/index.php/tripleC/article/view/190
http://www.programbydesign.org/overview
http://www.insidehighered.com/blogs/should-all-majors-not-just-computer-science-majors-learn-code
http://www.insidehighered.com/blogs/should-all-majors-not-just-computer-science-majors-learn-code
http://codeyear.com/

Bloch, S. (2010). Picturing Programs: An Introduction to Computer Programming. King's College
London: College Publications.

Carr, N. (20080. The Big Switch. WW Norton & Company, New York.
Crestany, M. and Sperber, M. (2010). Experience report: growing programming languages for

beginning students. In proceeding of ICFP '10 - the 15th ACM SIGPLAN international conference
on Functional programming. Baltimore, MD.

The College Board (2012). Proposed New Course and Exam—AP® Computer Science: Principles.
http://www.collegeboard.com/html/computerscience/index.html#backrational

Felleisen, M., Findler, R.B., Flatt, M. and Krishnamurthi, S. (2001). How to Design Programs. MIT
Press.

Felleisen, M., Findler, R.B., Flatt, M. and Krishnamurthi, S. (2004). The TeachScheme! project:
computing and programming for every student. Computer Science Education 14, 1 (March 2004),
55-77.

Felleisen, M., Findler, R.B., Flatt, M. and Krishnamurthi, S. (2004). The structure and interpretation of
the computer science curriculum. Journal of Functional Programming, 14, 4 (July 2004), 365-378.
DOI=10.1017/S0956796804005076

Flatt, M. and PLT. (2010). Reference: Racket. Technical Report PLT-TR-2010-1, PLT Inc.
http://racket-lang.org/tr1/.

Gurstein, M. (2008). What is community informatics (and why does it matter)?, Polimetrica, Milan,
Italy.

Harvey, B. and Garcia, D.D. (2011). CS10 : The beauty and joy of computing. UC Berkeley course
site http://inst.eecs.berkeley.edu/~cs10/fa11/

Kizza, J.M. (2003). Ethical and Social Issues in the Information Age. Springer-Verlag Inc. 2
nd

 edition,
New York, NY.

Kling, R. (1999). What is social informatics and why does it matter? D-Lib Magazine, 5, 1 (Jan.
1999). DOI= http://www.dlib.org:80/dlib/january99/kling/01kling.html

Lapidot T., Levy D. and Paz T. (2000). Teaching Functional Programming to High School Students.
In Robson R. (ed.), Proceedings of the international conference on mathematics/science education
and technology (M/SET), 245- 249, San Diego, CA.

Levy, D. (2010). Information Systems curriculum goes social: An Israeli proposal for undergraduate
curriculum in Community Information Systems. The 5

th
 Mediterranean Conference on Information

Systems – MCIS2010, Tel Aviv, Israel.
Linn, M.C., and Eylon, B.-S. (2006). Science education: Integrating views of learning and instruction.

In P.A. Alexander & P.H. Winne (Eds.), Handbook of educational psychology (2d ed.) pp. 511-
544. Mahwah, NJ: Erlbaum.

Millar, R. (2004). The role of practical work in the teaching and learning of science. Paper presented
at the meeting: High School Science Laboratories: Role and Vision, National Academy of
Sciences, Washington, DC. http://www7.nationalacademies.org/bose/millar_draftpaper_jun_04.pdf

Rushkoff, D. (2010). Program or Be Programmed: Ten Commands for a Digital Age. Introduction,
Retrieved 1.12.12 from http://www.amazon.com/Program-Be-Programmed-Commands-
Digital/dp/1935928155#reader_B004ELAPME .

Stillman, L., and Linger, H. (2009). Community informatics and information systems: how can they be
better connected? The Information Society 25 (4) (Jul. 2009), 255-264.

Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K., Nunamaker, Jr., J.F., Sipior, J.C., and de Vreede, G.
(2010). IS 2010: Curriculum guidelines for undergraduate degree programs in Information
Systems. Communications of the Association for Information Systems Vol. 26, Article 18.

Tuttle, S.T. (2011). Introducing programming in a functions-first manner, using the "Program by
Design" approach. The Journal of Computing Sciences in Colleges, 27, 1, p. 101.

http://www.collegeboard.com/html/computerscience/index.html#backrational
http://dx.doi.org/10.1017/S0956796804005076
http://racket-lang.org/tr1/
http://inst.eecs.berkeley.edu/~cs10/fa11/
http://www.amazon.com/Program-Be-Programmed-Commands-Digital/dp/1935928155#reader_B004ELAPME
http://www.amazon.com/Program-Be-Programmed-Commands-Digital/dp/1935928155#reader_B004ELAPME

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2012

	‘PROGRAM BY DESIGN’ AS PART OF A NEW MAJOR IN COMMUNITY INFORMATION SYSTEMS
	Dalit Levy
	Recommended Citation

	

