
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1987 Proceedings International Conference on Information Systems
(ICIS)

1987

A GENERIC SHELL APPROACH FOR
KMOWLEDGE ELICITATION AMD
REPRESENTATION IM IDSS
Rafael Lazimy
University of Wisconsin, Madison

Follow this and additional works at: http://aisel.aisnet.org/icis1987

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1987 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Lazimy, Rafael, "A GENERIC SHELL APPROACH FOR KMOWLEDGE ELICITATION AMD REPRESENTATION IM IDSS"
(1987). ICIS 1987 Proceedings. 43.
http://aisel.aisnet.org/icis1987/43

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1987%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987/43?utm_source=aisel.aisnet.org%2Ficis1987%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A GEMERIC SHELL APPROACH FOR KMOWLEDGE ELICITATION
AMD REPRESENTATION IM IDSS

Rafael Lazimy
Graduate School of Business

University of Wisconsin, Madison

ABSTRACT
This study focuses on issues of knowledge representation and elicitation in Intelligent DSS
(IDSS) environments. The types, characteristics, levels of logical view, and the levels of
specificity and abstraction of "passive" and "active" knowledge in IDSS are discussed. A
language for knowledge description, whose syntactical objects are entities, relationships,
transformations, and constraints, and which allows four levels of specificity and abstraction is
proposed. Then, a graphical, semantic model for the conceptual-schema representation of
passive and active knowledge, called the extended ERA Model, is presented. Finally, it is
argued that a multi-paradigm programming environment is required for the information-schema
representation of the different types of knowledge in IDSS, and to support reasoning, in-
ference, and inheritance. A LOOPS implementation of the knowledge representation and
elicitation model is described in detail.

1. INTRODUCTION schema representation of passive and active
knowledge, called the extended ERA model, is

The last few years have witnessed an upsurge of described in Section 4. A product-mix domain is
interest and research in Decision Support Systems used to illustrate the model.
(DSS). A trend toward the design of Intelligent
DSS (IDSS) has recently emerged. It is rightfully In Section 5, we suggest that a multi-paradigm
argued that a DSS should possess artificially programming environment is required in order to
intelligent capabilities (reasoning, inference, control) represent and manipulate the different types of
that would effectively heIp decision-makers in all knowledge in an IDSS environment and to support
phases of the decision making process. reasoning, inference, and inheritance requirements.

Consequently, we chose Xerox's LOOPS (Lisp-
This study focuses on the issues of knowledge Object-Oriented-Programming-System) (Bobrow and
representation and the process of knowledge Stefik 1981) as the implementation environment for
elicitation in an IDSS environment. In Section 2 we the IDSS's Problem-Domain Knowledge-Base (PDKB)
discuss the types, characteristics, levels of logical and its knowledge elicitation system. The object-
view, and the levels of specificity and abstraction oriented paradigm in LOOPS is used to create
of knowledge in the IDSS's Problem-Domain objects (frames) in the problem domain and organize
Knowledge-Base (PDKB). The concept of generic them in an inheritance network. The data-oriented
shells is introduced, and the organization of the paradigm is used to create active values that
PDKB is presented. Generic shells provide useful specify procedures to be invoked when the value of
conceptual templates for eliciting and representing a variable (frame slot) marked as "active" is
both data ("passive") and procedural ("active") accessed. The procedure-oriented paradigm is used
knowledge in the problem domain. In Section 3, we to build Interlisp procedures that compute transfor-
present the basic concepts of our model for mations and constraints in the problem domain.
knowledge representation. The basic, syntactical The rule-oriented paradigm is used to trigger the
objects in the knowledge representation language execution of procedures for computing transfor-
are entities, relationships, transformations, and mations and constraints. Rules are also used in the
constraints. Four levels of specificity and abstrac- inference mechanism that interprets the user's input
tion are then identified: instances, classes, about instance-level objects in his application,
subschemas, and schemas. Based on these concepts, instantiates classes in the generic schema, and
a graphical, semantic model for the conceptual builds a representation of the user's instance-level

335

problem. The implementation using LOOPS is decision-oriented and modeling-oriented, and the
described in detail, using the product-mix domain objects of interest are active entities.
for illustration purposes. Finally the Knowledge Traditional data structure models in the database
Elicitation and Representation System (KERS) is field are designed for the representation of
described, along with the process of knowledge transactional information only. To build a know-
elicitation and representation and its LOOPS's ledge representation model sufficiently rich for
implementation. KERS is designed as an expert representing both transactional ("passive") data and
system in order to facilitate, simplify, and expedite conceptual ("active") information requires the
the process of knowledge elicitation and represen- integration and combination of certain AI knowledge
tation. representation models with certain data structure

models.
2. THE PROBLEM-DOMAIN KNOWLEDGE-BASE

There are several distinct levels of logical view of
In this section, we discuss the types, characteris- knowledge, and a model for knowledge represent-
tics, levels of logical view, and levels of specificity ation should be concerned with each of them:
and abstraction of knowledge in an IDSS environ-
ment. Also, we introduce the concept of generic 1. The conceptual schema is the definition of
shells and present the organization of the Problem- knowledge about the problem domain as it exists
Domain Knowledge-Base (PDKB). in our minds. It represents our conceptual view

of both transactional and conceptual knowledge.

2.1 Types, Characteristics, and Levels of Logical 2. The information schema specifies the data
View of Knowledge structures for the organization of transactional

information and conceptual knowledge.
The knowledge system in an IDSS environment
contains both transactional information and (what 3. The internal schema defines the physical storage
we may term) "conceptual information." Transac- strategies for storing instances of the informa-
tional information is passive, static, descriptive tion schema.
information about simple objects (entities, relation-
ships) in the problem domain. Conceptual informa- In addition to representing different levels of
tion, on the other hand, is structural information logical view of knowledge, it is also highly desirable
and abstract conceptualization about the problem to represent knowledge at different levels of speci-
domain, and about models of analysis and decision ficity and abstraction in an IDSS environment. This
support. The objects of concern are complex will simplify and facilitate the conceptualization and
entities, sophisticated relationships, abstract modeling activities, as well as the process of
structures, procedures, and so on. Since the main knowledge elicitation, inference, and representation,
function of conceptual knowledge in a DSS context as will be seen later. Consequently, a model for
is to support various analysis, modeling, and knowledge representation in IDSS should allow the
decision-making activities, the objects of concern organization (and manipulation) of objects in a
are usually in the form of models: models of the class-subclass hierarchy, where the most generic
problem domain and models for analysis and decision objects in a class lattice are highest in the
support. Models of the problem domain provide a hierarchy, and the most specific objects described
conceptual representation of certain facets/subsys- by a class are lowest.
tems in the enterprise's universe of discourse (e.g.,
conceptual models of a production system, a 2.2 Generic Shells and the Problem-Domain
financial system, etc.). Conceptual models for Knowledge-Base
analysis and decision support are abstract concep-
tualizations that provide selective, focused percep- The Knowledge System (KS) in our IDSS design is
tion of reality, in forms that allow symbolic composed of two parts: the PDKB and the Model-
representation and manipulation (e.g., assessment, Domain Knowledge-Base (MDKB). In this study we
diagnosis, and strategic planning models; mathemati- focus on the PDKB, since our main concern is
cal programming, statistical models; etc.). Conse- problem-domain knowledge elicitation and represen-
quently, conceptual information in a DSS context is tation.

336

Based on the previous observations concerning the o Entities
types, characteristics, levels of logical view, and o Relationships
levels of specificity and abstraction of knowledge in o Transformations
IDSS, we propose that the PDKB have the following o Constraints
structure (see Figure 1):

The concepts of entity and relationship have the
1. Generic Shell Knowledge-Base (GSKB), same interpretation as in the Entity-Relationship

composed of: (ER) model (Chen 1976). Thus, an entity is an
1.1 Generic Conceptual Schema object that can be distinctly identified; a relation-
1.2 Generic Information Schema ship is an association among entities. Attached to
1.3 Rules and Procedures entities and relationships are attributes, transforma-

tions, and constraints: they describe the passive
2. Instance-Level Knowledge-Base (ILKB), (data) and the active (procedural) aspects of entities

composed of: and relationships. (In the classic ER model, only
2.1 Instance-Level Conceptual Schema the passive aspects of objects are represented.)
2.2 Instance-Level Information Schema

We define the following types of attributes:
3. Database

a. Deterministic data attributes, to represent
A generic shell consists of a conceptual schema and passive, descriptive information.
an information schema representation of a generic
problem in a particular domain. The assumption b. Probabilistic data attributes, to represent random
underlying the use of generic shells is that decision events or quantities. Two value sets are defined
problems can usually be classified into classes of for each discrete probabilistic data attribute: a
problems, since most of the instance-level problems "states-of-nature" set and a probability set. The
in a particular generic class have some common information about a continuous probabilistic data
structure, characteristics, and (possibly) common attribute is expressed by a probability density
analysis and solution procedures. Examples of function.
generic problems in a production/manufacturing
domain include product-mix, scheduling, and c. Action/decision attributes are abstract attributes
distribution; examples in a marketing domain include representing decision variables.
product-planning, pricing, and media-planning. The
concept of generic shell provides a useful concep- d. Transformation-based attributes are attributes
tual template for eliciting and representing know- that are generated by transformations. An
ledge about instance-level problems/applications. important case of this type are objective/perfor-
Furthermore, since knowledge in the generic shell is mance attributes, to be described below.
organized in an inheritance network and since the
knowledge elicitation and representation system A transformation T is a mapping of one set of
have built-in inference capabilities, then the process attributes into another set of attributes. Symbol-
of instantiating the generic shell and building a ically,
representation for an instance-level problem is
greatly simplified, facilitated, and expedited. TNAME, f aD .D a } -> { ap,al#....,a }

3. BASIC CONCEPTS (PRIMITIVES) OF THE is a transformation whose name is NAME,
KNOWLEDGE REPRESENTATION MODEL { a ,a,ai? } is the set of domain attributes of T

(i.e., the set of attributes that undergo transforma-
In this section we introduce the different types of tion), and { a ,a ...,a } is the set of rangeobjects in the knowledge representation language attributes of T (i.e., the set of attributes that are
and the different levels of aggregation of these formed by the transformation T operating on the
objects. domain attributes). Transformations represent

functional, causal, definitional and other relation-
3.1 Types of Objects ships in the problem domain. They represent

primitive/atomic models, allow the creation and
We define the following types of objects: representation of abstract concepts, and the

337

construction of complex decision models. Transfor- e : = {EQ, NE, LT, LE, GT, GE}.
mations represent active, procedural, and modeling-
oriented conceptual knowledge. The following
comments are also in order: To each transformation T and to each constraint,

we attach the following: (1) Rules for triggering
a. A transformation T is said to be in imp/icit form the execution of one or more procedures for evalua-

if the mapping from the domain space into the ting/computing the transformation or constraint, and
range space is not specified explicitly. The (2) Procedures for computing the transformation or
explicit form of T is specified in terms of a constraint.
model (active procedure). The model underlying
the transformation may be either analytical or
numerical. Analytical models are usually 3.2 Levels of Aggregation of Objects
mathematical/statistical (e.g., mathematical
expressions, Regression Analysis). If the We identify four levels of aggregation in the
mapping (model) is complex and/or involves proposed language for knowledge representation to
complex probabilistic data attributes in its reflect the different levels of specificity and
domain, so that the mapping is not amenable for abstraction in the problem domain: (1) instances,
analytical formulation, then a numeric model (2) classes, (3) subschema, and (4) schema. More
(usually simulation) is employed. specifically:

b. The domain of T may include any type of a. An instance (of a class) is an object that can be
attributes, as well as other transformations. If distinctly identified.
all the attributes in the domain are data
attributes, then T is a data transformation (most b. Classes are groups of similar objects.
statistical transformations are of this type). If
some of the attributes in the domain are action c. A subschema is an array of one or more related
attributes, then T is an action transformation. classes.

c. A transformation T may have many attributes in d. A schema is an ordered set of subschemas. A
its range. Also, the model for evaluating a schema may have attached to it one or more
transformation in explicit form is not necessarily objective/performance attribute(s). This attri-

unique. bute measures the entire schema's performance.
An operator such as OPTIMIZE (MAXIMIZE or

A constraint is a relationship that expresses MINIMIZE) or SATISFICE is associated with each
restrictions on the possible values of action/decision objective/performance attribute. Each objective/
attributes. The restrictions may be specified in performance attribute is computed by an action
explicit form, in which case an action-va/ue set is transformation.
associated with each action attribute, and enumer-
ates all the possible values that the action attribute Given the types of objects identified in the previous
may assume. Alternatively, the restrictions may be section, we obtain the following classification of
specified in implicit form, i.e., by a constraint objects:
relationship. The general form of a constraint
relationship is: Instances

< Transformation- Constraint- , a. Entities
Based-Attribute Attribute b. Relationships

c. Attributes:
where <Transformation-Based-Attribute> is generated 1. Data Attributes:
by an action transformation T; <Constraint- i. I)eternninistic

Attribute> is an attribute that represents, for ii. Probabilistic
example, maximum availability/capacity of a resource 2. Action/Decision Attributes
(it may be either a data attribute or a transfor- 3. Transformation-Based Attributes
mation-based attribute); 9 is a binary relation d. Transformations
selected from the set e. Constraints

338

Classes The graphical representation of the conceptual
a. Entity Sets schema is in the form of extended ERA diagrams.
b. Relationship Sets The following graphical symbols are used in
c. Attribute Sets: extended ERA diagrams:

1. Data Attribute Sets:
i. Deterministic 1. Entity sets are represented by rectangular boxes.

ii. Probabilistic
2. Action/Decision Attribute Sets 2. Relationship sets are represented by diamond-
3. Transformation-Based Attribute Sets shaped boxes.

d. Transformation Sets
e.Constraints Sets 3. Attribute sets are represented by circular or oval

boxes connected to entity/relationship sets by
arcs.

4. THE EXTENDED ERA MODEL FOR
CONCEPTUAL SCHEMA REPRESENTATION 4. Action and probabilistic attribute sets are

designated as such.
We propose a graphical, semantic model for the
conceptual schema representation of both "passive" 5. Transformation sets are represented by the
and "active" knowledge, called the extended symbol T AME (where NAME is the name of the
(generalized) ERA model. Recalling the organization transformation) below the arc that connects the
of the PDKB (Figure 1), the extended ERA model is "Attribute.Set.Of" TNAME with the transfor-
used to represent the conceptual schema of generic mation-based attribute set. The implicit form of
problems and the conceptual schema of instance- TNAME is shown in the legend accompanying the
level problems. extended ERA diagram.

6. Constraint sets are graphically represented by an
octagon-shaped box. Two dashed arcs are
connected to each constraint set one from the

PROBLEIAOOMAN KNOWLEDGE ·BASEi <Transformation-Based-Attribute Set> on thew.in¢.Ing,ni (I'llk H) left-hand side (LHS) of the constraint relation-
GENERIC @ELL KNOWLEDGE·BASE ¢OSKBI ship set, and one from the <Constraint Attribute

-4. E,Planallon Kno#«d@/ 1.CONCEPTUAL SCHEMA:
Acquls,lion E,Iondid ERA Gigum 01 G,noi,c Pio IMS Set> on the right-hand side (RHS). The

Sub,yslom Subsvit,m S:,bs 6,•m constraint relationship is stated inside the2. INFORMATION SCHEMA:
Gon i,c Fram,/Obj,ct System octagon-shaped box, and the name of the

3 AULES ANO PROCEDURES constraint set is stated outside the box.

7. If an attribute set is generated/defined in a
INSTANCELEVEL KNOWLEDGE.BASE {IU(8) different conceptual subschema (i.e., a different
1.CONCEPTUAL SCHEMA:

Ext,ndod ERA Olagrims ol Problim Ins,anc., extended ERA diagram), a dashed rectangular box
2. INFORMATION SCHEMA: represents the (external) subschema, with the

F,Irn•/04Et St,Ilm of Pioblem Instances name of the subschema stated in the box, and a
S....

Dala.Base dashed arc connecting it to the attribute set.
The attribute set is usually an action attribute
set, or a transformation-based attribute set.

0.:a 4.1 Extended ERA Diagrams of Generic Problems+ AExt,Iction DSS
Sy.Iim DATA.BASE

A generic shell of a problem domain is defined in
terms of generic classes (i.e., generic entity sets,
generic relationship sets, generic attribute sets,
generic transformation sets, and generic constraint
sets), generic class dependencies, generic

Figure 1. The Knowledge Elicitation and subschemas, and generic schemas. Accordingly,
Representation System generic objects only (with their attached generic

339

FLOW Constraint

C,Tump. F

f -3 m

 TERIAL 4- *ZL. J ,1
INPUT.

RESOURCE_ LE.PLANT
Tul PLANT l.p oc ss':

LABOR 4-
Action 42221./

Action 1,4- 1
L.1 TApp L j

1 LATAP L .1

INTERMED. 4. r'=67PKDET Action L.TZ-J
PFLARP Action

AKO INPUT.
MACHINE 1.1- FESOLACE -r-- ' YIELD

J I Constralm:

/INPUT.\ -
 / RESOURCE-\ \.» /Surpuf\

 PROOJCT_ /
STORAGE. 1.. ' [OUTPUT.PRODUCT,P
FACILITY ™''Op NT) /// uIRA'* 6'\PLANT/ t, VI -,

TKPP

Tranaformations: Action
T'.{UTZJZATOI.RATE. PAOPP}- TUIRP

INTERMED.
T2: L lAIRP. PRAIFIP. PARP 1 - TAPP PRCX1}CT AKO OUTPUT.
T : [YEW. RATE TAIAP I - TYOP PRODUCT

T' . 9 TAmp 1 - TAPP FINAL.
5 PRODUCT

T : { IAOPP PAOPP 1 - TAOPP

Figure 2. Extended ERA Diagram of a Generic Production Process

data and procedures) appear in the extended ERA (Notice that the last is a relationship set between
diagrams of generic problems. an entity set and a relationship set.) The generic

action/decision attribute sets are PAOPP
A generic product-mix problem is used for illustra- (PRODUCTION.AMOUNT of OUTPUT.PRODUCT in
tion purposes. There are two generic subschemas in PLANT), IAOPP (INVENTORY.AMOUNT of
a generic product-mix schema: a generic production OUTPUT.PRODUCT in PLANT), PRAIRP
process and a generic distribution process. (PURCHASE.AMOUNT of INPUT.RESOURCE in

PLANT), PAIRP (PRODUCTION.AMOUNT of
Figure 2 shows the extended ERA diagram of the INPUT.RESOURCE in PLANT), and IAIRP
conceptual-schema representation of the generic (INVENTORY.AMOUNT of INPUT.RESOURCE in
production process. A generic production process PLANT). (Notice that PAIRP is generated/defined
represents the conversion of input-resources to by an external Production.Process, which means that
output-products, in plants, at some planning-period. some input resources in the current production
Accordingly, three generic entity sets are defined in process were output products in a previous produc-
Figure 2: INPUT.RESOURCE (with the generic tion process. In other words, multi-stage produc-
subclasses RAW.MATERIAL, LABOR, INTERME- tion systems are allowed.) The following generic
DIATE.PRODUCT, MACHINE, STORAGE.FACI- transformation sets are defined:
LITY), OUTPUT.PRODUCT (with the generic
subclasses INTERMEDIATE.PRODUCT, 1, TTUIRP, or TOTAL.UTILIZATION of
FINAL.PRODUCT), and PLANT. Three generic INPUT.RESOURCE in PLANT. Its implicit
relationship sets appear: INPUT.RESOURCE- form is T·'TUIRP:: {UTILIZATION.RATE,
PLANT, OUTPUT.PRODUCT-PLANT, and PAOPP) ->TUIRP.If I, P, and 0 are, respec-
INPUT.RESOURCE-(OUTPUT.PRODUCT - PLANT). tively, the index sets of INPUT.RESOURCE,

340

PLANT, and OUTPUT.PRODUCT, then the 3. A Yield Constraint Set.
explicit form of TTUIRP is TUIRP[I,P]:=
SUM[0](UTILIZATION.RATE[I,O,P] * <TYOP> .EQ. <TAOPP>.
PAOPP[O,P])where "SUM" is a summation symbol.

Figure 3 shows the extended ERA diagram of a
2. TTAIRp is the transformation that computes the generic distribution process. It describes (in

TOTAL.AVAILABILITY of INPUT.RESOURCE generic terms) the distribution of products from
in PLANT T AIRP: IAIRP, PRAIRP, PIRP} -> sources to destinations at some planning period.
TAIRP, and in explicit form (T is the index for The generic entity sets, relationship sets, action
PLANNING.PERIOD, which we suppressed thus attribute sets, transformation sets, constraint sets,
far): TAIRP[I,P,T]:=IAIRP[I,P,T-1] + etc., are described in Figure 3. Notice that the
PRAIRP[I,P,T] + PAIRP[I,P,T] - IAIRP[I,P,T]. concept "distribution" is defined in a broad sense;

for instance, it includes the sale of products to
3. TTYOp is the transformation that generates markets/customers.

TOTAL.YIELD of OUTPUT.PRODUCT in
PLANT: TTYOP: {YIELD.RATE,TAIRP} -TYOP, 4.2 Extended ERA Diagrams of Instance-Level
and in explicit form:TYOP:[O,P]:= Problems
SUM[I](YIELD.RATE[I,0,P] 0 TAIRP[I,P]).

An instance-level problem is a specific
computes the output of the "blending" of problem/application. As such, it is defined in terms

some input resources in the process of producing of instance-level objects only, and so is the
an output product (as found, for example, in extended ERA diagrams representing it.
many chemical production processes). Notice
that one of the attribute sets in the domain of Using the product-mix domain for illustration
TTY0p :e TAIRP, is a transformation-based purposes, we show in Figures 4 and 5 the extended
attribute set. Thus, to evaluate TTYOP, we first ERA diagrams of two instance-level production
need to evaluate TTAIRP, processes. Figure 4 depicts the process in which

Labor, Iron, Component A, and Component B (all of
4. TTAPp is the transformation that computes which are instances of Input-resources) are used to

TOTAL.AMOUNT (of all INPUT.RESOURCES) produce Final-Products 1,2, and 3 in Plants I and
Processed in PLANT: TTAPP: {TAIRP} -> TAPP, II. Figure 5 depicts a typical "blending" process in
and in explicit form: TAPP[P,T]: = the oil industry, in which Light-Crude and Heavy-
SUM[I]ITAIRP[I,P,T]). Crude are used as inputs in Refineries A and B to

produce Gasoline, Kerosene, and Industrial Fuel. It
5. TrAopp is the transformation that computes the is important to notice that the instance-level

TOTAL.AVAILABILITYofOUTPUT.PRODUCT production processes in Figures 4 and 5 represent
in PLANT: T AOPP: (IAOPP,PAOPP} -> TAOPP, two different instances (realizations) of the sameand in explicit form: generic production process shown in Figure 2.

TAOPP[O,P,T]: = IAOPP[O,P,T-1]+PAOPP[O,P,T]= 5. LOOPS IMPLEMENTATION OF THE
IAOPP[O,P,T]. KNOWLEDGE ELICITATION AND

REPRESENTATION SYSTEM
A generic production process includes three generic
constraint sets: We propose a frame system for the representation

of the information schema of both generic problems
and instance-level problems. Using frames to

1. A Flow Constraint Set. represent the information schema of generic problem
domains and to drive the knowledge elicitation and

<TUIRP> .EQ. <TAIRP>. inference process by which instance-level informa-
tion schemas are derived is quite natural, since
frames are well suitable as data structures for

2. A Capacity Constraint Set.· representing prototyped/stereotyped concepts or
situations (Minsky 1975, 1968). Frames also

<TAPP> .LE. <PROCESSING.CAPACITY>. facilitate recall, inference, and interpretation.

341

DEMAND Constraint
RAW. INTERMEDIATE. FINAL.
MATERIAL PRODUCT PRODUCT AAMOUNT.SHIPPED,1

GE

< DEMAND, * AKO T -r'
1 DISTRIBUTION .AMT.SHPPED. L____) I PLANT CENTER MARKET

PRODUCT
PRODUCT.DESTIN Y

AMOUNT.AVAILABLE. ,

1 PACCUCT. SOLRCE lpAcoucT. DESTIN.

1 2
T

AKO

1 .AMOUNT.SHPPED.> I
1 1£ 1 PRODUCT_
U AMOu NT- vu.. J SOUACE DISTRBUnON DESTINATION

UNIT. OST. TOT . AMT . CAPACITY T CC,T SHPPED
Constraint CAPACny. i

 OANT. SHPPED 5HFPBG. 03% mANSP .FACILITY ,
lPFooucT. SCU CE

SOURCE
Actiorv I <TOT.AMT.SHPPED 11RANSPORL

l FACILITY C-- .LE.
<CAPAC TY. -.,

Transformations: CAPACITY
Tl: (SHIPPING.AMT} -AMOUNT.SHIPPED.PRODUCT.SOURCE Constraint

TZ: {SHIPPING. AMT] -AMOUNT. SHFPED. PRODUCT. DESTINATION
3

T : [SHIPPING. AMT) - TOT. AMT. SHPPED

Figure 3. Extended ERA Diagram of a Generic Distribution Process

FLOW Constraint:

t----7
 TOT. UTILIZATION» TOT.

r•1 m AVAILABILITY PLANT 1 PLANT 2
| TOT. AVAILABILITY;

1\ . t t
1 2

'TOT. T
UTILIZATION NPUT

FESOUACIL PLANT
LABOR 4- PLANT

PFKJDUCiliN
PRODUCTION. AMOUNT'NVENTORY:IRON 1- .)3AOUNT .

ActionISA Action- INPUT. Action INAL.PURCHASE.
<.-- RESOURCE PRODUCT_

Action PLANT
COM'OKENT

A NPU.
ESOURCE_

(FINAL. PRODUCT
CONPONENT.I. _PLAND UTILIZATION.

8 RATES FINAL.
PRODUCT

 IS

Transformations:

Tl: {UTILIZATION. RATE PRODUCTION. AMOUNT FIN. PAOD. PLANTD - TOT. UTILIZATION

T2. CINVENTORY. AMOUNT, PURCHASE. AMOUNT. PRODUCTION. AMOUNT]- TOT.AVAILABILITY
PRODUCTl PRODUCT 2 PRODUCTE

Figure 4. Extended ERA Diagram of a Production Process Instance

342

REFINERYA REFINERYB
Irxmz,mn

F - imANSPORTAIoNI

i LEE-J
4 A

ISA - PROCESSIC_ CAPACITY
S,iPPInni CAPACVTY , Constraint

Action

T: \
f'<TOT.AMT.PROCESSED, CALDE_ PEP/EFY .LE

REFINERY [c PACCESSNG CAPACFY >

Li TOT.Am. I J
LIGHT. . PAXESSH9-

CFLCE
ISA
+ CRUDE -* TOT.YELD - 1 YIELD

HEAVY. · ;Constraint

CALIZE +. RUDE_ NAL .TOLY[LD,
IN.PRODUCT_ t PRODUCT_J EQ
REFINERY) \ 5/ L <pRooucTIoN.u,T» J

GASOLINE 0- Pr \ /
YELD. I L -fpROCrIc,+
RATES . | i AMI

Action
KEROSINE 4..1. FINAL.

ISA PRODUCTTransformations:

T1: {YIELD. RATE SHFPNG. AMT]-TOT. YELD INDUS.FUEL 1.

T2: {SHIPPNG.AMTI -TOT.AMT.PROCESSED

Figure 5. Extended ERA Diagram of Oil Refining Process Instance

5.1 Capability Requirements requires the ability to represent class-subclass
relationships, membership relationships, and

A primary motivation for employing the concepts of composite ("part-of") relationships.
generic conceptual schema and generic information
schema is to simplify, facilitate, and support the 3. /nheritance mechanisms, so that a subclass in a
process of elicitation and representation of know- class-subclass hierarchy automatically inherits
ledge about instance-level problems. To accomplish certain properties of its superclass, and that
this objective, a programming environment for instance-level objects inherit the
implementing the knowledge representation models attributes/properties of their classes.
and for supporting the knowledge elicitation process
should possess the following capabilities:

4. Inference mechanism that, based on its know-
1. The ability to represent objects such as entities ledge about the generic problem-domain, will

and relationships along with the passive (data) request the user to specify certain instance-
and active (procedural) properties attached to level objects, and then proceed to automatically
these objects, such as data attributes, action instantiate other generic objects/concepts (such
attributes, transformations, and constraints. as relationships, transformations, constraints)

and, finally, create a frame system and extended
2. The ability to represent different levels of ERA diagrams to represent the instance-level

specificity, abstraction, and aggregation. This problem.

343

5. Access to procedural languages, subroutines, and We will use the product-mix problem (whose
software packages. In many cases, the evalua- extended ERA diagrams are shown in Figures 2 and
tion of a transformation requires the execution 3) in order to illustrate the implementation of the
of statistical models, mathematical programming, knowledge elicitation and representation system on
simulation, and other models. A convenient LOOPS. The implementation runs on a Xerox 1108
access to procedural languages/subroutines/ "Dandelion" Workstation.
packages is highly desirable in these cases.

Figure 6 shows a portion of the LOOPS code used
6. The ability to manipulate and maintain attribute to define the generic product-mix problem. Figure

values of entities/relationships, including: (a) 7 shows the pseudo-code of some of the procedures
traditional database functions such as update, that are attached to variables declared as "active"
delete, append, etc., (b) referential constraint in Figure 6. (In the actual implementation, of
checking, to ensure that reference is never made course, these procedures are written in Interlisp.)
to a nonexisting object, and (c) the automatic The reader can verify that the code in Figure 6
update of the value of a transformation-based represents the hierarchy and relationships of the
attribute as a result of updating the value of a generic product-mix problem as shown in Figures 2
data attribute in the transformation's domain. and 3. The following comments highlight the

features of the implementation.
7. Explanations, help, and tutoring capabilities.

a. The object-oriented paradigm is used to create
5.2 LOOPS Implementation of the Knowledge objects (frames) in the problem domain and

Representation System organize them in an inheritance network. The
data-oriented paradigm is used to create active

The requirements concerning the support of values that specify procedures to be invoked
knowledge representation and elicitation as listed when the value of a variable (frame slot) marked
above suggest that a multi-paradigm programming as "active" is accessed. The procedure-oriented
environment is needed in order to represent and paradigm is used to build Interlisp procedures
manipulate the different types of knowledge in an that compute transformations and constraints in
IDSS environment and to support reasoning, the problem domain. The rule-oriented paradigm
inference, and inheritance requirements. For these is used to trigger the execution of procedures
reasons, we chose Xerox's LOOPS (Lisp-Object- for computing transformations and constraints.
Oriented-Programming-System) (Bobrow and Stefik Rules are also used in the inference mechanism
1981) as the implementation environment for the that interprets the user's input about instance-
IDSS's PDKB and its knowledge elicitation system. level objects in his application, instantiates
LOOPS is built on top of the Interlisp-D program- classes in the generic schema, and builds a
ming environment and supports four programming representation of the user's instance-level
paradigms: object-oriented, procedure-oriented, problem.
rule-oriented, and data-oriented. Under the object-
oriented paradigm, programs are organized around b. Class hierarchy. First, notice that a class in
objects that have aspects of both procedures and LOOPS is a description of one or more similar
data. Procedures are invoked by sending "messages" objects; an instance is an object described by a
between objects. Objects are organized in an particular class; and a metac/ass is a class whose
inheritance network. The procedure-oriented instances are classes. In order to represent the
paradigm allows users to build procedures in hierarchy of objects in the generic product-mix
Interlisp and use the extensive environmental problem (or in any other domain), we need the
support of the Interlisp-D system. The rule- following kinds of relationships: composite
oriented paradigm permits users to create RuleSets, relationships; subclass-class relationships;
i.e., sets of condition-action production rules. The membership relationships. More specifically
data-oriented paradigm allows users to create
procedural attachments, which are procedures 1. Composite relationships describe "part-Of"
attached to variables or frame slots designated as relationships between objects (e.g., "wing" is
"active: The attached procedures are automatically Part-Of "plane"). In LOOPS, this kind of
invoked and executed upon accessing the Ractive relationship is created by the concept of
value" slots. composite object, which is described by

344

[DEFCLASS ProductMix
(MetaCIass Template doc

(** Composite object representing generic product-mix problems composed of
generic production process and generic distribution process.))

(Supers Object)
(InstanceVariables

(Name NIL doc)
(Planning-Horizon NIL doc (* Time periods covered by current product-mix

planning problem.))

(Methods
(ObjectiveAttribute ProductMix.Objective doc (* Computes the equation for

the objective/performance attribute of the product-mix problem.))]

[DEFCLASS ProductionProcess
(MetaC[ass Template PartOf ($ ProductMix) doc (* Generic production process

converts Input-Resources to Output-Products in Plants.))
(Supers Object)
(InstanceVariables)

(Name NILdoc)
(Description NIL doc)

(Methods
(ExtERADiagram ProductionProcess.Diagram doc (* Produces Extended ERA

diagrams of a production process.))]

[DEFCLASS DistributionProcess
(MetaCIass Template partOF ($ ProductMix) doc (* Generic distriubtion process

describes the distribution of products from sources to destinations.))
(Supers Object)
(InstanceVariables

(Methods
(ExtERADiagram DistributionProcess.Diagram doc (* Produces Extended ERA

diagrams of a distribution process.))]

Figure 6. Class Definitions of Generic Product-Mix Problem in LOOPS

345

[DEFCLASS InpulResource
(MetaCIass Template partOf ($ ProductionProcess) doc (* . . .))
(Supers Object)
(InstanceVariables

(Name NIL doc)
(Description NIL doc)

[DEFCLASS Plant
(MetaCIass Template par[Of ($ ProductionProcess) doc (* ...))
(Supers Object)
(instanceVariables

(Name NILdoc)
(Location NIL doc)
(Manager NIL doc)
(Processing-Capacity NIL doc)
(TAPP #(NIL Calc-TAPP NIL) doc (* Compute the equation for the Total-Amount

of all Input-Resources Processed in Plant.))
(Capacity Constraint #(NIL Calc-CapacityConstraint NIW

doc (* Computes the Capacity-Constraint <TAPP>.EQ.<Processing-Capacity>
for Plant.)))]

[DEFCLASS InputResource-Plant
(MetaCIass Class Edited: (* . . .))
(Supers Object)
(InstanceVariables

(Plant-Id NIL)
(InputResource-ID NIL)
(PAIRP NIL doc (- Action/decision variable: Production-Amount of Input-

Resource in Plant.))
(PRAIRP NIL doc (* Action/decision variable: Purchase-Amout of Input-

Resource in Plant.))
(lAIRP NIL doc (* Action/decision variable: Inventory-Amount of Input-

Resource in Plant.))
(TUIRP # (NIL Calc-TUIRP NIL) doc (* Computes the equation for the Total-

Utilization of Input-Resource in Plant.))
(TAIRP # (NIL Calc-TAIRP NIU doc (* Computes the equation for the Total-

Availability of Input-Resource in Plant.)
(FlowConstraint # (NIL Calc-FlowConstraint NIU doc (* Computes the Flow-

Constraint <TUIRP>.EQ.<TAIRP> for Plant.)))]

[DEFCLASS Machine
(MetaCIass Class Edited: C...))
(Supers InputResource)

- (ClassVariables)
(instance Variables

(Machine-Speed NIL doc (* . . .))
(Capacity NIL doc (- . . .))
(Maintenance-Schedule NIL doc (* . . .))]

Figure 6. Continued

346

creating a class whose metaclass is Template. applied when the message ExtERADiagram is
In the representation of the product-mix received: this function creates Extended ERA
problem in Figure 6, composite object diagrams for instances of ProductionProcess
templates are created for ProductMix, (such as the ones shown in Figures 4 and 5).
ProductionProcess, DistributionProcess,
InputResource, OutputProduct, and Plant. The
objects ProductionProcess and Distribution- d. Inheritance. A subclass in the class hierarchy
Process are Part-Of the composite object automatically inherits the properties of variables
ProductMix: in turn, the objects InputRe- and the methods of its superclass, unless over-
source, OutputProduct, and Plant are Part-Of ridden in the subclass. The Supers list in the
the composite object ProductionProcess. class definition specifies the superclasses from
When the message New is sent to a composite which properties and methods are inherited. In
class, then all of the parts starting with this Figure 6, for example, the subclass Machine
class are instantiated. inherits properties from its superclass

InputResource. Also, instance-level objects
2. Subclass-class relationships relate subclasses inherit values through default facets of the

to their superclasses: they represent the class.
AKO (A-Kind-Of) relationship. In LOOPS,
the concept of metaclass describes the e. Attached procedures: active values. If the
subclass-class relationship; the Supers list in value of a variable/slot is marked as "active,"
a class definition shows the list of all the then the active value specifies the Interlisp
metaclasses of the class. In Figure 6, for procedures to be invoked when the value of the
example, Machine is a subclass of the variable/slot is accessed (read or set). Active
metaclass template InputResource. values are used to compute and generate the

equations for transformations and constraints in
3. Membership relationships relate instances to a the problem domain. Consider the instance

class: They represent the IS-A relationship. variables TUIRP, TAIRP, and FlowConstraint in
In LOOPS, instances of a class are created by the definition of the relationship set Input-
sending the class the message New. For Resource-Plant in Figure 6 and their respective
example, all the lowest level objects in active values #(NIL Calc-TUIRP NIL), #(NIL
Figures 4 and 5 (e.g., Iron, Component A, Calc-TAIRP NIL), and #(NIL Calc-
Plant 1, Product 2, Light Crude, Refinary A, FlowConstraint NIL). Whenever the variable
Gasoline) are instances of classes defined in TUIRP, TAIRP, or FlowConstraint is accessed,
Figure 3 (in conceptual-schema form) and in the corresponding function (Calc-TUIRP, Calc-
Figure 6 (in LOOPS code form). TAIRP, or Calc-FlowConstraint) is invoked.

Each of these functions, whose pseudo code is
c. Variables and methods. Objects may have shown in Figure 7, performs two tasks. First, it

variables and methods. Class variables contain checks the conditions for triggering the execu-
information shared by all instances of the class; tion of the procedure that computes the equation
instance variables contain information specific to for the transformation or constraint for each
an instance (see examples in Figure 6). Proce- instance of the relationship set InputResource-
dures are invoked by sending "messages" between Plant. If these conditions are met, then the
objects; these procedures (or methods) are equation for the transformation or constraint is
Interlisp functions. In Figure 6, computed, using the generic procedure specified
ProductMix.Objective in the Methods declaration by the function. For illustration purposes,
of the metaclass template ProductMix is the consider the instance (InputResource-Plant)[I=4,
name of an Interlisp function that computes the P=3, T=1] (where I, P, and T are, respectively,
equation for the objective/performance attribute the indices for InputResource, Plant, and
(e.g., NetRevenue or Profits) for each instance TimePeriod). Using the generic procedures in
of ProductMix. The function ProductMix.Objec- Figure 7, and assuming that the conditions for
tive is to be applied when the message Objec- computing the transformations and constraint are
tive,litribute is received. Similarly, the Interlisp met, then Calc-TUIRP may produce the equation
function ProductionProcess.Diagram in the TUIRP[4,3,1]: =2* PAOPP[1,3,1] +5* PAOPP
metaclass template ProductionProcess is to be [2,3,1], Calc-TAIRP may produce the equation

347

1. Calc-TUIRP:

IF (UtilizationRate ISA Data-Attribute.Of (Input.Resource-(Output.Product-
Plant)) Relationship) AND (PAOPP ISA Action-Attribute.Of (Output.Product-
Plant) Relationship)

THEN TUIRP[I,P,T]:=SUM[O]*(Utilization.Rate[I,O,P,T] * PAOPP[O,P,T]).

2. Calc-TAIRP:

IF (lAIRP or PRAIRP or PAIRP ISA Action-Attribute.Of (Input.Resource-Plant)
Relationship)

THEN TAIRP[I,P,T]:=IAIRP[I,P,T-1] + PRAIRP[I,P,T] +
PAIRP[I,P,T] - IAIRP[I,P,T].

3. CALC-FlowConstraint:

IF (TUIRP AND TAIRP ISA Transformation-Based-Attribute.Of (Input.Resource-
Plant) Relationship)

THEN FlowConstraint[I,P,T]:=<TUIRP[I,P,T]>.EQ.<TAIRP[I,P,T]>.

Figure 7. Pseudo-Code of Procedures Attached to Active Values

TAIRP[4,3,1]: = IAIRP[4,3,01 + PRAIRP[4,3,1] + 5.3 The Knowledge Elicitation and Representation
PAIRP[4,3,1] - IAIRP[4,3,1], in which case Calc- System (KERS)
FlowConstraint produces the following
flow-constraint The Knowledge Elicitation and Representation

System (KERS) is a subsystem of the IDSS respon-
sible for eliciting basic facts and other knowledge
about instance-level problems/applications from the

<2*PAOPP[1,3,1]+5*PAOPP[2,3,1]> user, and creating information- and conceptual-
.EQ. schema representations of the user's instance-level

<IAIRP[4,3,0]+PRAIRP[4,3,1]+PAIRP[4,3,1]- problem/application. In order to simplify, facilitate,
IAIRP[4,3,1]> and expedite these tasks, KERS is designed as an

expert system (see Figure 1):

(The transformations involved in the product-mix a. Its knowledge-base is the Problem-Domain
problem and, consequently, the Interlisp Knowledge-Base (PDKB), composed of Generic
functions to compute them are relatively simple. Shell Knowledge-Base (GSKB), Instance-Level
In other problem domains, however, the trans- Knowledge-Base (ILKB), and Data-Base. More
formations may be quite complex and require, for specifically:
example, a simulation model in order to compute
them. Being built on top of Interlisp, LOOPS 1. The Generic Shell Knowledge-Base contains
has an immediate access to Interlisp functions, the following:
as well as to other procedural languages (through
interfaces), thus enabling it to compute complex 1.1 A description of generic problems/applica-
transformations.) tions in the enterprise's universe of

348

discourse, in both a conceptua/-schema objects/concepts and produces information- and
representation (e.g., the Extended ERA conceptual-schema representations of the
diagrams for generic product-mix problems, problem/application instance. The instantiation
Figures 2 and 3), and an information- process works in a top-down fashion, following
schema representation (e.g., LOOPS code, the class hierarchy of the generic
Figure 6). problem/domain representation. In terms of the

conceptual-schema representation, the subschemas
1.2 Rules and procedures for eliciting basic are first identified, then the generic entity sets

facts and knowledge about instance-level of each subschema are instantiated, then the
problems/applications from the user, and generic relationship sets, followed by the
for instantiating the relevant generic instantiation of the generic transformation and
shells and building conceptual- and constraint sets. This strategy is implemented in
information-schema representations of the terms of the information-schema representation
instance-level problems/applications. (described in Figure 6) as follows:

b. The inference engine contains the inference 1. The user-system dialogue identifies the composite
strategies and controls used during the instantia- relationships in the domain, i.e., the composite
tion process. objects and the objects that are declared as

Part-Of composite objects. Recalling the
c. The knowledge acquisition subsystem is used to composite relationships defined in Figure 6,

create conceptual- and information-schema assume that the user indicates that the first
representations of new generic problems/ process in his product-mix application is a
applications, to update and modify existing production process. The system then informs the
representations, and to create new rules and user that the (generic) objects InputResource,
procedures, and update and modify existing rules. Output Product, and Plant are Part-Of the

metaclass template ProductionProcess.

In addition, the KERS also contains an explanation 2. The user-system dialogue identifies the relevant
subsystem and a dialogue subsystem. subclasses in each subc/ass-class relationship,

using the Supers list in the class definitions of
KERS is also implemented in LOOPS, using the Figure 6. Assuming that the ProductionProcess
RuleSets in LOOPS's rule-oriented paradigm. Given instance is the one shown in Figure 4, it is
the relevant generic shells in KERS's Generic Shell determined that RawMaterial, Labor, and
Knowledge-Base, the knowledge elicitation and IntermediateProduct are the relevant subclasses
representation process works as follows (we again of the superclass InputResource, and that
use the product-mix problem for illustration FinalProduct is the relevant subclass of
purposes). OutputProduct.

a. Prob/em classification. A user-system dialogue
takes place at this step. The purpose is to 3. The classes in the membership relationships are
classify the user's problem/application instance instantiated. To this end, the user is asked to
into a generic class. The inference process at instantiate entity sets only. In the example of
this stage involves matching instance-level facts Figure 4, the user specifies that Iron is an
and knowledge (elicitated from the user) with instance of the RawMaterial class; Labor is an
knowledge about generic problems. Key words instance of the Labor class; Components A and B
and terms, as well as the objectives of the are instances of the IntermediateProduct class;
analysis (as stated by the user), are also used in Products 1, 2, and 3 are instances of the
the identification and classification process. (In FinalProduct class; and Plant 1 and 2 are
many cases, the user knows the classification of instances of the Plant class. Then, the system
a given problem instance, in which case this step automatically instantiates the relationship sets,
is bypassed.) based on its knowledge about the entity sets

instances and on the definition of generic
b. Object instantiation. In this step, the inference relationship sets (e.g., the class InputResource-

mechanism instantiates the generic Plant in Figure 6).

349

4. The values of variables of objects are instan- Finally, the reasoning process in KERS is made
tiated. To this end, the system presents the transparent through LOOPS's audit trail mechan-
user with the instance variables of each object ism, which gives an account and explanation for
defined in the generic information schema, and its reasoning process.
the user is asked to supply values for these
variables. For example, the user will specify the 2. Verification and validation. During the object
values of the instance variable UtilizationRate instantiation process, the system will verify with
for each instance of the object InputResource- the user its "understanding" of the semantics of
(FinalProduct-Plant) in Figure 4. Then, the the instantiation. As an example, consider the
inheritance mechanisms are applied according to instantiation of the relationship sets (e. g.,
the class hierarchy: each subclass inherits the InputResource-Plant, OutputProduct-Plant in
values of class variables of its superclasses as Figure 2). The system presents the user with
specified in the Supers list; each instance each possib/e instance of, say, OutputProduct-
inherits values through default facets of its Plant; the user then indicates if the instance
class. exists or not. Furthermore, the instance-level

Extended ERA diagrams are also used for
5. The Interlisp procedures specified in the active verification/validation: the point here is that

va/ues are automatically invoked and executed at verification/validation is best done using a
this stage: they compute the equations for the graphical conceptual representation of the
transformations and constraints of each instance problem/application rather than a detailed data-
of a class whose definition contains active structure representation. Finally, LOOPS
values. In the example of Figure 4, a Total. provides delete, append and other functions for
Utilization equation (transformation Ti), a update/revision purposes.
Total.Availability equation (T' in Figure 4), and
a Flow.Constraint equation are produced for each 3. The design of KERS simplifies, facilitates, and
instance of the relationship set InputProduct- expedites the process of knowledge elicitation
Plant. These equations are produced, respec- and representation. First, the use of the
tively, by the generic procedures Calc-TUIRP, concept of generic problem domains provides a
Calc-TAIRP, and Calc-FlowConstraint. convenient conceptual template for knowledge

elicitation and representation. Second, the
c. Generation of instance-level Extended ERA system requires the user to provide only the

diagrams. Given the information about the necessary minimal information about objects in
instances of all the objects, KERS produces the his application; other objects and constructs are
Extended ERA diagrams of the then generated automatically by the system.
subschema/schema. In the example of the
production subschema, this task is performed by
sending the message ExtERADiagram to the REFERENCES
object Production Process (see Figure 6), which
activates the Interlisp function Bobrow, D. G., and Stefik, N. The LOOPS Manual,
ProductionProcessDiagram that generates the Technical Report KB-VLSI-81-13, Knowledge Systems
diagram shown in Figure 4. Area, Xerox, Palo Alto Research Center, 1981.

The following comments are in order: Chen, P. P. "The Entity-Relationship Model:
Toward a Unified View of Data." ACM Transactions

1. Explanation and tutoring. At each step, the on Database Systems, Vol. 1, March 1976, pp. 9-36.
system provides the user with explanation, help,
and tutoring support. This includes a detailed Minsky, M. "Framework for Representing Know-
explanation of the structure of the generic shell ledge." In P. H. Winston (ed.), The Psychology of
of the domain (e.g., generic product-mix Computer Vision, McGraw-Hill, New York, 1975.
problems) with examples, prototypes, etc. It also
includes explanations of each object and the Minsky, M. (Ed.) Semantic /nformation Processing.
variables, procedures, and methods attached to MIT Press, Cambridge, 1968.
it, through the declaration "doc" ("documenta-
tion") in the class definitions (see Figure 6).

350

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1987

	A GENERIC SHELL APPROACH FOR KMOWLEDGE ELICITATION AMD REPRESENTATION IM IDSS
	Rafael Lazimy
	Recommended Citation

	tmp.1422284972.pdf.QT8ax

