
Association for Information Systems
AIS Electronic Library (AISeL)

SIGHCI 2003 Proceedings Special Interest Group on Human-Computer
Interaction

2003

A Test of the Theory of DSS Design for User
Calibration: The Effects of Expressiveness and
Visibility on User Calibration
Brian M. Ashford
U.S. Army Logistics Management College, ashfordb@Lee.Army.mil

George M. Kasper
Virginia Commonwealth University, gmkasper@vcu.edu

Follow this and additional works at: http://aisel.aisnet.org/sighci2003

This material is brought to you by the Special Interest Group on Human-Computer Interaction at AIS Electronic Library (AISeL). It has been accepted
for inclusion in SIGHCI 2003 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Ashford, Brian M. and Kasper, George M., "A Test of the Theory of DSS Design for User Calibration: The Effects of Expressiveness and
Visibility on User Calibration" (2003). SIGHCI 2003 Proceedings. 18.
http://aisel.aisnet.org/sighci2003/18

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsighci2003%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sighci2003?utm_source=aisel.aisnet.org%2Fsighci2003%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sighci?utm_source=aisel.aisnet.org%2Fsighci2003%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sighci?utm_source=aisel.aisnet.org%2Fsighci2003%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sighci2003?utm_source=aisel.aisnet.org%2Fsighci2003%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sighci2003/18?utm_source=aisel.aisnet.org%2Fsighci2003%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Ashford & Kasper   Effects of Expressiveness and Visibility on User Calibration 

Proceedings of the Second Annual Workshop on HCI Research in MIS, Seattle, WA, December 12-13, 2003  27

A Test of the Theory of DSS Design for User Calibration:  
The Effects of Expressiveness and Visibility on  

User Calibration 
Brian M. Ashford 

U.S. Army Logistics Management College 
ashfordb@Lee.Army.mil 

 

George M. Kasper 
Virginia Commonwealth University 

gmkasper@VCU.edu 

ABSTRACT 

This paper reports a test of the theory of decision support 
systems design for user calibration that compares the efficiency 
of the visual computing paradigm with that of the conventional 
text paradigm over varied levels of problem novelty.  Perfect 
user calibration exists when a user’s confidence in a decision 
equals the quality of the decision.  The laboratory study reported 
here compared the effects on user calibration of problems 
depicted either using a text paradigm or visual computing 
paradigm.  The results support the theory.  When problems are 
new and novel, visual depiction improves user calibration.  As 
problems became more familiar and problem novelty decreases, 
no difference was found in user calibration between subjects 
exposed to visibility diagrams and those exposed to a traditional 
text paradigm.   

INTRODUCTION 

One’s belief in the quality of a decision influences the decision 
selection process (Russo & Schoemaker 1992). Failure to 
appreciate the quality of a decision can mean that good decisions 
are not implemented or poor decisions are not properly hedged.  
Although confidence, as discussed herein, is a subjective 
prediction, in many situations its accuracy can be objectively 
assessed.  The best-known measure of the accuracy of one's 
confidence in a decision is calibration, the correspondence 
between one’s prediction of the quality of a decision and the 
actual quality of the decision (Lichtenstein et al. 1982, Clemen 
& Murphy 1990, Keren 1991).  When this correspondence is 
equal, and one’s decision confidence equals the quality of the 
decision, calibration is said to be perfect.  Perfect calibration is 
indispensable when selecting a decision from among competing 
alternatives (Russo & Schoemaker 1992).  

The theory of decision support systems (DSS) design for user 
calibration prescribes requisite DSS design properties needed for 
users to realize the performance goal of perfect calibration 
(Kasper 1996).  Reviewed below, the theory asserts that a DSS 
can engender perfect calibration to the extent that it contains 
requisite properties of Expressiveness (expression of words, 
phases, and audio ranging from, e.g., cryptic to 
anthropomorphic), Visibility (visual icons, images, and 
animation ranging from, e.g., realistic to abstract), and 
Inquirability (investigative tools and styles ranging from, e.g., 
data-oriented servile to dialectic contrarian inquiry). The theory 
further asserts that as problem novelty increases the effective 
mix of three properties varies from expressiveness to visibility 
to inquirability. 

This paper reports a partial test of the theory of DSS design for 
user calibration. The effects on user calibration of 
expressiveness in the form of text and visibility in the form of 

diagrams were investigated at two levels of problem novelty.  
Specifically, a laboratory study was conducted in which subjects 
were exposed to logically identical sets of problems displayed 
using either expressiveness text or visibility diagrams, and user 
calibration was computed and compared for higher and lower 
levels of problem novelty.  The results show that the effects of 
the instantiations of expressiveness and visibility on user 
calibration varied as prescribed by the theory: visibility resulted 
in significantly better user calibration when problem novelty 
was higher, but there was no difference in user calibration 
between visibility and expressiveness when problem novelty 
was lower.  In other words, visual computing had its greatest 
impact on user calibration when problems were new and novel. 

BACKGROUND 

Differentiating confidence, trust, predictability, and decision 
accuracy, Muir (1994, p. 1915, parenthetics added) states,  

Predictability is a basis for trust (and confidence), which in turn, 
is the basis for an operator (user/decision maker) to make a 
prediction about the future behaviour of a referent. The 
accuracy of that prediction may be assessed by comparing it 
with the actual behavioural outcome.  In addition, an individual 
who makes a prediction may associate a particular level of 
confidence with the prediction.  Thus, confidence is a qualifier 
which is associated with a particular prediction; it is not 
synonymous with trust. 

 
Realism in confidence is essential for good decisions; the 
ruinous consequences of unrealistic confidence litter the 
business decision-making landscape (Russo & Schoemaker 
1992). Because action precedes outcome, confidence plays an 
essential role in both selecting and implementing a decision 
(Russo & Schoemaker 1992). The confidence ascribed to a 
predicted outcome when compared to the accuracy of that 
prediction measures the decision maker’s ability to calibrate his 
or her ascribed confidence 

Since its beginning, the primary goal of DSS has been to 
improve decision quality (Keen & Scott Morton 1978).  
Unfortunately, evidence suggests that existing DSS can produce 
“illusory benefits” (Aldag & Powers 1986, Davis et al. 1991), 
resulting in miscalibration, thereby distorting the decision 
selection process.  Thirty years ago, Chervany and Dickson 
(1974, p. 1342, parenthetics added) recognized this when they 
wrote, “Even though the . . .(decision aided) subjects (in their 
study) did better, their increased average time and reduced 
average confidence lead to the tentative conclusion that they did 
not have a ‘handle’ on the problem.”  By now, almost everyone 
can recount from personal experience a situation where 
computer-generated output produced an aura of exactness and 
reliance bordering on blind acceptance, even in the presence of 
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compelling evidence to the contrary.  In these cases, user 
calibration may be distorted by the design of the DSS. 

Based on and paralleling human problem solving, memory 
representation, and multiple intelligence theories (Kaufmann 
1985; Helstrup 1987; Gardner 1993), Kasper (1996) proposed 
the notion and detailed a theory of DSS design for user 
calibration.  His design theory prescribes requisite properties of 
a DSS so the user/decision maker can achieve the goal of perfect 
calibration. The theory asserts that a user/decision maker can 
achieve the goal of perfect calibration to the extent that the DSS 
possesses requisite properties of expressiveness, visibility, and 
inquirability, and that the effective mix of these properties varies 
with problem novelty. 

The theory of DSS design for user calibration is a design theory 
(Walls, et al. 1992).  It posits a goal, perfect calibration; 
properties, expressiveness, visibility, and inquirability; and the 
interaction of these properties to achieve the goal, a mix of 
expressiveness, visibility, and inquirability that varies 
systematically with problem novelty. 

Expressiveness recognizes that the tone and delivery of words 
and phrases (written and audio) used in a human-computer 
interface dialogue (ranging from cryptic to anthropomorphic, 
from monotone and monotonous to melodic and overly 
melodramatic) can affect people’s beliefs, perceptions, opinions, 
and predictions.  Visibility encompasses the icons, symbols, and 
animation that promote discovery, comprehension, problem 
solving and engender feelings (Card, MacKinlay, & 
Shneiderman 1999, Gonzalez & Kasper 1997).  Inquirability 
captures the affects produced by actions and interactions with 
the inquiring system, including scope and nature of dialectics 
(Churchman 1971) and the restrictiveness and decisional 
guidance of the system (Silver 1990). 

F ig u r e  1    L o c u s  o f  D S S  D e s ig n  f o r  U se r  C a l ib r a t io n  in  R e la t io n  t o  P r o b le m  N o v e l t y        
( K a s p e r  1 9 9 6 )

 

Depicted in Figure 1, the theory of DSS design for user 
calibration posits that when problems are somewhat novel and 
unfamiliar, Visibility is the primary contributor to perfect 
calibration and Expressiveness and Inquirability play 
important but lesser, supporting roles.  As problems become 
more familiar and problem novelty decreases, the theory posits 
that the contribution of Expressiveness increases, equals, and 
eventually exceeds Visibility as the primary contributor to user 
calibration.  Stated in the null form, it is hypothesized that: 

H0: There is no difference in user calibration between subjects 
exposed to Expressiveness and those exposed to Visibility at 
higher and lower levels of problem novelty.  

Larkin and Simon (1987) posited a beneficial role for visibility 
in search, recognition, and inference processing, and, in 
response, Bauer and Johnson-Laird (1993) studied the effects of 
diagrams on inference and found that the use of diagrams 

improved decision quality.  Commenting on their findings, 
Bauer and Johnson-Laird suggested that in unfamiliar, novel 
situations, diagrams have a beneficial effect on decision making.  
Recently, Speier & Morris (2003) found that visual interface 
users performed better when task complexity was high and their 
subjective mental workload was less compared to users of a text-
based interface.  Extending these findings, the study reported 
here considers the effect of visibility on user calibration and 
whether this effect, if observed, varies with problem novelty. 

EXPERIMENTAL DESIGN, RESEARCH METHOD AND 
MEASURES 

To investigate the hypothesis, a laboratory experiment was 
conducted.  The main effect studied was properties of DSS 
dialogue design and the dependent variable was user calibration.  
Specifically, the differential effect of expressiveness and 
visibility on user calibration was investigated.  The experimental 
design included two different problems to increase the 
generalizability of the findings and to build upon earlier related 
research, in particular, that of Bauer and Johnson-Laird.  Two 
calculations of problem novelty, Higher and Lower, were 
defined by dividing each subject’s responses into earlier and 
later decisions, again based on the work of Bauer and Johnson-
Laird.  The treatments, measures, formula used to calculate user 
calibration, and procedures used in the experiment are discussed 
in detail below. 

Treatments 

The treatment combinations used in this study were borrowed 
directly from those developed by Bauer and Johnson-Laird to 
study deductive reasoning and inference.  They developed two 
logically identical problems presented either as text, a form of 
expressiveness, or diagrams, a form of visibility. In the interest 
of space, the reader is directed to Bauer and Johnson-Laird 
(1993) for detailed descriptions of these treatment conditions. 
To investigating the hypothesis posited here, subjects also 
recorded their decision confidence in their selection.   

Measuring User Calibration 

To measure user calibration requires selecting a method and 
means for recording both decision quality and the subject’s 
belief in the quality of each decision, a scoring rule and 
procedure that discourage gaming so that subjects are 
encouraged to honestly report their beliefs, and a formula for 
calculating calibration.  Each of these requirements is discussed 
in the next sections. 

Recording Beliefs And Decisions 

Following convention in calibration research, subjects in this 
study answered a series of multiple-choice questions by 
reporting both their decision and confidence in the correctness 
of each decision. Each subject answered a total of ten multiple-
choice questions.  The ten questions consisted of the four 
questions used in the Bauer and Johnson-Laird (1993) study plus 
six additional questions generated using the same truth table.  
For each of these ten questions, the subject selected one 
alternative as his or her choice as the correct alternative and then 
assigned a confidence value to that alternative and other 
alternatives as desired.  Analysis of pilot study data showed that 
assigning confidence values to multiple alternatives improved 
user calibration; a finding consistent with that of  Sniezek et al. 
(1990). 
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Recording Sales 

Confidence is typically recorded on a scale ranging from 0 to 1 
or some subset.  In this study, this range was divided into 
increments of five-hundredths (i.e., 0.0, 0.05, 0.10, 0.15,..., 1.0) 
because research suggests that this is consistent with the 
respondent's “natural scaling” of decision confidence (Winkler 
1971). 

Scoring Rules 

The purpose of a scoring rule is to encourage respondents to 
honestly report their confidence in each decision by eliciting 
values that reflect the respondent's actual belief in the quality of 
his or her selection. For this to occur, a scoring rule must (1) be 
understood by the subject so that its implications and the 
correspondence between beliefs and numerical values can be 
fully appreciated, and (2) maximize the subject’s expected total 
score only when the subject reports values that correspond to his 
or her actual beliefs (Stael von Holstein, 1970).    

Assume that a subject's true decision confidence is expressed by 
probability vector P = (p1, p2, ..., pn) for a mutually exclusive 
and collectively exhaustive set of events, {E1, E2, ..., En}.  
Assume further that the confidence values an assessor reports 
are represented by R = (r1, r2, ..., rn).  A proper scoring rule S 
exists if S is maximized only when r = p. This requirement is 
satisfied by only a very few somewhat complex scoring rules 
that require the respondent to perform high level operations such 
as exponential, root, or log calculations (Murphy & Winkler 
1970).  These complex operations make it almost impossible for 
subjects to quickly compute and fully appreciate the 
implications of their decisions and the correspondence between 
their actual beliefs and the values they report.  In other words, 
these scoring rules confuse and may actually interfere with the 
subject’s reporting values reflecting his or her actual beliefs. 

A scoring rule that meets the criterion of understandability is the 
well-known simple linear scoring rule Sk(r) = rk, where k refers 
to the event that actually occurred and rk is the confidence 
probability assigned by the subject to the kth response.  
Unfortunately, in its simplest form, this scoring rule is not 
strictly proper because S(r,p) = ∑pkrk is maximized by setting 
one ri (i.e., the ri corresponding to the largest pi) equal to 1.0 and 
the other ris equal to 0.0.  If ri=k, then the subject appears to have 
complete confidence in the answer that turns out to be correct.  
On the other hand, if ri≠k, the subject appears totally wrong, but 
losses nothing because the scoring rule imposes no penalty for 
being wrong.  In other words, a subject maximizes his or her 
score by assigning a confidence of 1.0 to one answer despite his 
or her true belief in the quality of any answer.   

Despite this limitation, most calibration research has used some 
variation of this simple linear scoring rule. In fact, comparing 
three complex proper scoring rules to the simple linear scoring 
rule, Rippey (1970) reported that the simple linear scoring rule 
actually produced more reliable results.  Likewise, reviewing a 
number of these studies, Phillips (1970) concluded that the 
complex proper scoring rules did not yield significantly different 
values than those collected using a simple linear scoring rule, 
but, as expected, subjects found simple linear scoring rules more 
realistic and easier to understand.  

Considering these tradeoffs, this study used a variant of the 
simple linear scoring rule that discouraged gaming and guessing 
by penalizing wrong answers.  The scoring rule used here was: 

    S = rk - [(largest ri≠k)/2 

where S is the score, k refers to the correct alternative, rk is the 
confidence probability assigned to that alternative, and ri≠k are 
the confidence probabilities assigned to the alternatives that turn 
out to be incorrect.  This variant of the simple scoring rule is 
easily understood because its implications can be more readily 
appreciated and the respondent can better understand the 
correspondence between her beliefs and numerical values she 
reports.  Yet, subjects are encouraged to report numerical values 
that correspond to their actual beliefs because of the penalty of 
one-half the largest confidence value assigned to an alternative 
that is wrong.  

Computing Calibration 

The most popular calculation for calibration is:

 )crnN
1=ncalibratio 2

ttt

T

=1t

-(∑  

where N is the total number of responses, nt is the number of 
times the confidence value rt is used, ct is the proportion correct 
for all items assigned confidence value rt, and T is the total 
number of different response categories used (Lichtenstein & 
Fischhoff 1977, Clemen & Murphy 1990).  Using this formula, 
perfect calibration is a score of 0.0.  The worst possible score, 
1.0, can only be obtained when the responses are completely and 
consistently wrong; that is, rt = 1.0 is always assigned to the 
wrong answer and rt = 0.0 is always assigned to the answer that 
turns out to be correct. 

Procedures 

Subjects were recruited from students enrolled in upper-division, 
undergraduate courses in information systems and psychology.   
All participants volunteered for the study and were rewarded 
course credit as required by American Psychological 
Association guidelines (1992). 

Upon arrival, each subject was randomly assigned to one 
combination of the two treatment levels, expressiveness or 
visibility, and the two problems, so as to balance the number of 
subjects in each cell of the experimental design.  The subject 
then read a two-page handout of instructions that included an 
example of the expressiveness or visibility display, depending 
upon the treatment condition assigned, and a description of the 
navigation procedures and operations the subject would be using 
to answer the multiple-choice questions. The instructions also 
included a detailed discussion of the scoring rule, including a 
table of all possible outcomes that could be referred to 
throughout the study.  The subject was then guided through a 
demonstration, and questions regarding the procedures and 
objectives of the study were answered.  Each subject then 
completed a consent form and a short, 11-item questionnaire 
designed to collect descriptive demographic and background 
data.  To describe the groups’ visual acuity, the 16-question 
Vividness of Visual Imagery Questionnaire (Marks 1972, 1973) 
was also administered.  The subject then began answering the 
ten questions presented as either visibility diagrams or 
expressiveness text.   

To minimize any question ordering effect, the ten questions in 
each treatment combination were counterbalanced by order with 
each question presented in each order position once.  This 
resulted in ten different primary orderings of the ten questions in 
each treatment.  Each question was displayed and data collected 
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using Dell II machines with 17" monitors.  The display used in 
the study was written in ToolBook 5.0 by Asymetrix. 

DATA ANALYSIS AND RESULTS 

A total of 54 students participated as subjects in the study.  Forty 
subjects, 10 in each group, completed all aspects of the 
experiment, followed all the instructions and answered all the 
questions.  Although subjects were not given a specific time 
restriction, on average, they took about 35 minutes to complete 
all aspects of the study. 

Seventy percent of the subjects in the study were information 
systems majors and the remainder were psychology majors.  
Most subjects were adult, non-traditional students reporting an 
average age of 30.3 years.  Forty-seven percent of the subjects 
were female and 80 percent reported that English was their 
native language.  As a group, subjects also reported average to 
above average (mean = 32.4; s.d. = 9.62) visual acuity as 
measured by the Vividness of Visual Imagery Questionnaire and 
self-reported “average” facility with logic and math problems. 

Recall that each subject in each treatment answered ten 
counterbalanced questions.  The ten responses from each subject 
were divided into the first four and the last six responses, again, 
based on Bauer and Johnson-Laird’s research.  A calibration 
score was then computed for each of these two subsets for each 
subject.  These subsets defined the two levels of problem 
novelty.  Calibration based on the first four responses defined 
the Higher category of Problem Novelty and calibration 
computed on the subject’s last six responses defined the Lower 
category of Problem Novelty.  

Analysis of this data shows that the content of the problem, 
electrical circuit or people and places, had no effect on either 
percentage correct (questions 1-4, F(1,36) = .08, p = 0.7 and 
questions 5-10, F(1,36) = .01, p = 0.9) or user calibration 
(questions 1-4, F(1,36) = .07, p = 0.7 and questions 5-10, F(1,36) = 
.01, p = 0.9), so the data was collapsed over the problem content 
scenarios.  In terms of percentage correct, these results are 
identical to those found by Bauer and Johnson-Laird who also 
collapsed the data over the same people-and-places and electric 
circuit scenarios.  The mean of user calibration of this pooled 
data is shown for expressiveness and visibility for the two 
Problem Novelty categories in Figure 4. 

Focusing on the higher category of the Problem Novelty axis 
shows that subjects using the visibility (V) treatment were much 
better calibrated, had calibration scores closer to zero, than were 
those assigned to the expressiveness (E) treatment.  Conversely, 
at the Lower category of Problem Novelty there seems to be 
little difference between the average calibration of those 
exposed to expressiveness (E) and those exposed to visibility 
(V).  In other words, over the last six questions, when decisions 
were more familiar and less novel, exposure to visibility or 
expressiveness did not differentially affected user calibration. 

Figure 4 also shows that average user calibration for the 
visibility (V) treatment was overall the best, closest to zero, at 
the Higher category of Problem Novelty (.078).  The next best 
level of user calibration was at the visibility (V) Lower category 
of Problem Novelty (.100). Comparing these results, the data 
suggest that the same subjects exposed to the visibility (V) 
treatment produced better user calibration in the first four tries 
(.078), when problem novelty was highest, than they did over 
the last six tries (.100) when problem novelty was lower.   

F i g u r e  4    M e a n  C a l i b r a t i o n  o f  E x p r e s s i v e n e s s  ( E )  a n d  V i s i b i l i t y  ( V )  f o r  H i g h e r  a n d  L o w e r   
P r o b l e m  N o v e l t y .  

For expressiveness (E), the results in Figure 4 show that subjects 
exposed to the expressiveness (E) treatment had on average 
poorer calibration than did those exposed to visibility.  
Expressiveness produced the poorest average user calibration at 
both the higher and lower category of Problem Novelty (.163 & 
.116).  However, comparing the two expressiveness (E) bars 
shows that there was a marked improvement in user calibration 
from the Higher to the Lower category of Problem Novelty for 
those exposed to expressiveness (.163 to .116). In this regard, 
the change in user calibration for those exposed to the 
expressiveness treatment was as might be expected, user 
calibration improved as problem novelty decreased.  

To assess the statistical significance of the differences in user 
calibration suggested by the means depicted in Figure 4, a 
multivariate analysis of variance (MANOVA) was computed 
using the two dependent variables, user calibration at the Higher 
and Lower groupings of Problem Novelty, and the independent 
variable of DSS Locus of Design, either expressiveness or 
visibility, for each subject.  This model produced a Wilks 
Lambda treatment effect of F(2,37) = 2.8, p = 0.07.  Although 
insignificant at the α = 0.05 level, this result does not preclude 
significant univariate effects.  Indeed, in the case of strong 
positive correlation between the dependent variables (r = 0.45, p 
= 0.0031), and interaction consistent with that hypothesized in 
Figure 1, the multivariate test is less powerful than it would be if 
the data were negatively correlated (Bray & Maxwell 1988, pp. 
31-32).  In other words, the Wilks Lambda F-value may be 
confounded by the nature of the interaction between dependent 
variables.  

1.a. ANOVA Results of User Calibration by Expressiveness and 
Visibility for Higher Problem Novelty (questions 1-4). 
Source df Type III SS F-Value P-Value 
E/V   1 .073 5.232 .028* 
Error    38 .528 
Total     39 .601 

 

R2  = 0.121; * p < .05 

1.b.  ANOVA Results of User Calibration by Expressiveness 
and Visibility for Lower Problem Novelty (questions 5-10). 
Source df Type III SS  F-Value  P-Value 
E/V   1 .002  .229   .635 
Error    38 .405 
Total     39 .407 

 

R2 = 0.006 
Table 1: Analysis of Variance of User Calibration for Higher 
(questions 1-4) and Lower Problem Novelty (questions 5-10). 

 
To clarify the MANOVA results, analysis of variance 
(ANOVA) was computed for the Higher and Lower groupings 
of Problem Novelty separately.  The results of these analyses are 
presented in Table 1.  
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The first ANOVA, Table 1a, shows results for data from the 
higher category of Problem Novelty.  These data show that 
subjects exposed to visibility produced user calibration that was 
significantly better than those subjects exposed to 
expressiveness (F(2,37) = 5.23, p = 0.028).  The Bonferroni 
minimum significant difference of 0.0755 confirms that the 
difference between 0.163 and 0.078 is significant at the α = 0.05 
level.  For this data, H0 can be rejected.  The evidence shows 
that for the higher category of Problem Novelty (i.e., when the 
problems were the most novel), the average calibration of 
subjects using visibility diagrams was significantly better than it 
was for those subjects using expressiveness text.   

In contrast, results in Table 1b show no significant difference in 
user calibration as a result of visibility and expressiveness 
treatment levels  (F(2,37) = .229, p = 0.635).  The Bonferroni 
minimum significant difference of 0.0661 exceeds the 0.016 
difference in means (0.116 - 0.100). In this case, H0 cannot be 
rejected.  The data indicate that when problem novelty was 
Lower and problems were more familiar and less novel, there 
was no difference in user calibration between subjects using 
visibility diagrams and those using expressiveness text.   

Though not related to the hypothesis, comparisons of visibility 
(V) or expressiveness (E) across Higher and Lower levels of 
Problem Novelty resulted in no significant differences.  
Likewise, comparing visibility (V) at the Higher level of 
Problem Novelty to visibility and expressiveness at the Lower 
level of Problem Novelty resulted in no significant differences.  
Analyses also showed no significant difference in user 
calibration due to VVIQ subject differences (questions 1-4, 
F(1,37) = 2.57, p = 0.12; questions 5-10, F(1,37) = .14, p = 0.71) or  
decision time. These results add to the generalizibility of the 
main finding that visibility improves user calibration when 
problems are new and somewhat novel. 

SUMMARY AND CONCLUSIONS 

The results of a partial test of the theory of DSS design for user 
calibration are reported.  Specifically, a laboratory study was 
conducted to compare the effects of expressiveness and visibility 
on user calibration at two levels of problem novelty.  The results 
of this study support the theory.   When problems were new and 
novel, visibility diagrams significantly improved user calibration 
compared to expressiveness text.  Later, when problems became 
more familiar, less novel, there was no difference in user 
calibration between visibility and expressiveness.  

Bauer and Johnson-Laird (1993) and Speier and Morris (2003) 
report that diagrams improved decision quality.  The results 
reported here demonstrate that visibility diagrams also improve 
user calibration.  Together, these studies suggest that visibility 
results in better decisions and decision makers are better 
calibrated about their decisions.  Specifically, when problems 
are new and somewhat novel, visibility can both improve 
performance and help decision makers assess their decision 
performance, combining to improve user calibration and better 
outcomes.    

For researchers, these findings bode well for the continued 
development of the DSS design theory for user calibration. To 
the extent that DSS are applied in novel, one-shot situations, this 
study demonstrates the importance of visibility in DSS design 
for user calibration.  This study also encourages more research 
into the effects of different forms of expressiveness, visibility, 

and inquirability on user calibration at different levels of 
problem novelty. 

For builders and designers of DSS, these results clearly highlight 
the importance of visibility to decision-making and user 
performance, especially in new, novel decision environments. 

This research also highlights the effects of interface design on 
user calibration.  In particular, the results of this research 
establish the importance of visibility in DSS design, especially 
for new and relatively novel decision situations.    
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