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Abstract 

Forecasting model selection and model combination are the two contending approaches in the 

time series forecasting literature. Ensemble learning is useful for addressing a given predictive 

task by different predictive models when direct mapping from inputs to outputs is inaccurate. 

We adopt a layered learning approach to an ensemble learning strategy to solve the predictive 

tasks with improved predictive performance and take advantage of multiple learning processes 

into an ensemble model. In this proposed strategy, we build each model with a specific holdout 

and make the ensemble model of time series with a dynamic selection approach. For the 

experimental section, we studied more than twelve thousand observations in a portfolio of 61-

time series of reported respiratory disease deaths to show the amount of improvement in 

predictive performance of excess mortality. Then we compare the forecasting outcome of our 

model with the corresponding total deaths of COVID-19 for selected countries.  

Keywords: Time Series method; Machine Learning; Ensemble Bayesian Model Averaging (EBMA); 

Forecasting; Excess Mortality. 

 

1. INTRODUCTION 

The customary approach to seasonal and non-seasonal time series forecasting is to adopt a single 

believed to be best model for each series chosen from the set of candidate models using some criteria 

or procedure (e.g., information criteria, forecasting accuracy measure, cross validation, 

bootstrapping, construction of confidence intervals, hypothesis testing for nested models), often 

neglecting model and parameter risk for statistical inference purposes. To this end, a growing 

number of linear and non-linear univariate and multivariate times series methods and statistical 

machine learning techniques (Ashofteh, 2018; Ashofteh & Bravo, 2019, 2021a) are proposed to 

increase the short- and long-term predictive accuracy on a wide range of problems, including 

stochastic population – mortality, fertility, net migration - forecasting (Bravo & Coelho, 2019; 

Hyndman et al., 2013), epidemiological and excess mortality forecasting (Scortichini et al., 2020) 

and longevity-linked securities pricing (Bravo & Nunes, 2021). 

Empirical studies in multiple areas show that it is hard to find (if exists) a single widely accepted 

forecasting method that performs consistently well across all data sets and time horizons (Aiolfi & 
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Timmermann, 2006; Chatfield, 2016). The use of different selection methods, different fitting 

periods, alternative accuracy measures, structural breaks in the data generating process and 

misspecification problems can lead to different model choices and time series forecasts (Ashofteh 

& Bravo, 2021c). To tackle the model risk problem, i.e., the uncertainty regarding the identification 

of the true data generating process and the best fitting or forecasting method, to improve the 

forecasting accuracy, to deal with the limitations of some methods and to generate comparable cross-

country and/or subnational forecasts, an alternative approach is to use an ensemble of heterogeneous 

time series models.   

Since the original work of Bates and Granger (1969), several comprehensive theoretical and 

empirical studies have confirmed the superior predictive performance of ensemble methods using 

different approaches (Breiman, 1996; Makridakis & Winkler, 1983; Ueda & Nakano, 1996), 

including stacking and blending to improve-predictions, bagging to decrease variance or boosting to 

decrease bias (Akyuz et al., 2017) and Bayesian Model Ensemble (Bravo et al., 2021; Ayuso et al., 

2021a,b; Bravo & Ayuso, 2021; Bravo, 2020, 2021; Raftery et al., 2005). When adopting this 

empirical strategy, choices must be made with regards to which models to include in the combination 

pool and with regards to each model contribution (weight) in the final prediction. A significant body 

of literature has examined optimal model combination weights (see, e.g., Aiolfi et al., 2010), 

focusing either on assigning equal weights to the set of superior models (Samuels & Sekkel, 2017), 

selecting a subset of best models among the set of candidates (model confidence set) using a dynamic 

trimming scheme and considering the model's out-of-sample forecasting performance in the 

validation period (Bravo & Ayuso, 2020), or using meta-learning (Brazdil et al., 2009) and regret 

minimization (Cesa-Bianchi & Lugosi, 2006) approaches to choose the best models for contributing 

to the ensemble model. Theoretically, any potential model carrying useful information may be 

considered in the pool of models. Building better model combinations to solve real-world time series 

problems has become a critical and active research area in recent years (Khairalla et al., 2018). 

In this paper we develop and empirically investigate the forecasting performance of a novel flexible 

and dynamic ensemble learning strategy for seasonal time series forecasting. The strategy is based 

on a Bayesian Model Ensemble (BME) of heterogeneous models involving both the selection of the 

subset of best forecasters (model confidence set) to be included in the forecast combination, the 

identification of the best holdout period for each individual contributed model, and the determination 

of optimal weights using the out-of-sample predictive accuracy. A model selection strategy is also 

developed to remove the outlier models and combine the models with reasonable accuracy in the 

ensemble. The novel approach is empirically investigated using monthly respiratory diseases deaths 

data for 61 heterogeneous countries. The pool of candidate models includes traditional linear and 

non-linear univariate time series methods and novel statistical machine learning techniques. We 
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examine and compare run times, accuracy, level of contribution and error metric of the proposed 

technique in comparison with individual forecasting models. 

The ensemble learning procedure involves: (i) setting the different holdouts to be checked for each 

contributed model; (ii) choosing the best holdout for each model based on the out-of-sample 

forecasting accuracy; (iii) selecting the subset of best forecasters (model confidence set) using a 

variable trimming scheme in which the midrange of the set of forecasting accuracy metric values 

obtained for all candidate models is used as the threshold for model exclusion; (iv) the determination 

of each model posterior probabilities (model weights) using the normalized exponential (softmax) 

function; (v) finally, ensemble forecasts are obtained based on the law of total probability 

considering the model confidence set and the corresponding model weights. Contrary to previous 

approaches focusing either on the selection of optimal combination schemes and weights or equally 

weighting a subset of best forecasters, our ensemble procedure involves, for each dataset, both the 

identification of the best holdout period for each model, the selection of the best forecasting models 

and the determination of optimal weights based on the out-of-sample forecasting performance. 

Our empirical results show proposed approach leads to a decrease in the individual error of ensemble 

members in comparison with normal model selection with equal holdouts for selected models, and 

without overly decreasing the diversity among them. Hopefully, this article brings more clarity on 

which time series techniques contribute better to ensembles, and present a suitable ensemble time 

series with improved predictive accuracy. 

The remaining sections of the paper are organized as follows. In section 2, we provide the materials, 

methods and related works considered in this research. Section 3 describes our proposed method. 

The results of an extensive set of experiments on respiratory disease deaths of 61 countries are given 

and discussed in Section 4. Finally, discussion and the main conclusion is presented in section 5. 

2. MATERIALS AND METHODS 

The proposed method is based on a meta-learning approach to adopt the ensemble to the best 

combination of forecasting models. The candidate models are extracted from different layers with 

the best holdout for each contributed model and each panel member. We use multiple learning 

processes to improve the predictive performance of the ensemble. It is built by an ensemble learning 

approach from the addressed candidates with the last layer. In this section, we discuss these 

techniques in brief and highlight their contributions as well. 

2.1. Layered learning and the proposed ensemble learning strategy  

The layered learning approach in time series consists of breaking a forecasting problem down into 

simpler subtasks in several layers. Each layer addresses a different predictive task and the output of 
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one layer could be used as the input of the next layer (Cerqueira et al., 2020). In this research, the 

first task is to obtain a direct mapping from the time series of different countries, combining the 

intractable time series algorithms, and predicting the ensemble model as the final output. Therefore, 

the task of the first layer is finding the best holdout for each individual panel member and for each 

time series algorithm. It facilitates the task of model selection in the second layer, which facilitates 

the identification of the model confidence set of best forecasters in the last layer. It is useful to 

maximize the forecasting accuracy in panel time series dynamically and adopt the learning process 

of the model to possible unexpected shocks.  

Following Ashofteh and Bravo (2021) and Bravo et al. (2021), let each candidate model be denoted 

by 𝑀𝑙 , 𝑙 = 1, . . . , 𝐾 representing a set of probability distributions in which the "true" data-generating 

process is assumed to be included, comprehending the likelihood function 𝐿(𝑦|𝜃𝑙, 𝑀𝑙) of the 

observed data 𝑦 in terms of model specific parameters 𝜃𝑙 and a set of prior probability densities for 

said parameters 𝑝(𝜃𝑙|𝑀𝑙). Consider a quantity of interest 𝛥 present in all models, such as the future 

observation of 𝑦. The marginal posterior distribution across all models is 

𝑝(𝛥|𝑦) = ∑𝑝(𝛥|𝑦,𝑀𝑘)𝑝(𝑀𝑘|𝑦)

𝐾

𝑘=1

 (1) 

where 𝑝(𝛥|𝑦,𝑀𝑘) denotes the forecast PDF based on model 𝑀𝑘  alone, and 𝑝(𝑀𝑘|𝑦) is the posterior 

probability of model 𝑀𝑘  given the observed data. The posterior probability for model 𝑀𝑘  is denoted 

by 𝑝(𝑀𝑘|𝑦) with ∑ 𝑝(𝑀𝑘|𝑦) =
𝐾
𝑘=1 1. The weight assigned to each model 𝑀𝑘  is given by its posterior 

probability 

𝑝(𝑀𝑘|𝑦) =
𝑝(y|𝑀𝑘)𝑝(𝑀𝑘)

∑ 𝑝(𝑦|𝑀𝑙)𝑝(𝑀𝑙)
𝐾
𝑙=1

. (2) 

The workflow of our proposed method is presented in Figure 1. To identify the model confidence 

set and compute model weights, for each dataset we first specify the different holdouts to be checked 

for each contributed model. Let 𝐻 = {ℎ1, ℎ2, … , ℎ𝑚} represent the set of holdout periods to be 

considered in the estimation procedure.  
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Figure 1 – Proposed strategy of ensemble learning. 

We use the symmetric mean absolute percentage error (SMAPE) as forecasting accuracy measure. 

For choosing the best holdout for each individual model, we tested the different values of the holdout 

set (𝐻 = {3,5,7} years) and compared the SMAPE’s values at each iteration, keeping the model with 

the lowest SMAPE as the candidate for the model confidence set selection step.  

The subset of best forecasters is selected using the best holdout period and a variable trimming 

scheme in which the midrange of the forecasting accuracy metric is used as the threshold for model 

exclusion, i.e., using 

Γ𝑔 =
max{𝑆𝑀𝐴𝑃𝐸𝑔,𝑙}𝑙=1,…,𝐾 −min{𝑆𝑀𝐴𝑃𝐸𝑔,𝑙}𝑙=1,…,𝐾

2
, (2) 

where 𝑆𝑀𝐴𝑃𝐸𝑔,𝑙 is the SMAPE value for model 𝑙 in dataset (country) 𝑔. For each dataset, if the 

forecasting accuracy of a candidate model is greater than the midrange indicator, i.e., if 𝑆𝑀𝐴𝑃𝐸𝑔,𝑙 >

Γ𝑔 the model is excluded from the model confidence set and the ensemble forecast computation 

receives a zero weight in (1). In this case, the far forecasting models will be removed from the 

ensemble. If the models are all close to the original time series, then although some of them would 

be removed, however, the mean of remaining models could be considered as a good candidate for 

even removed ones. This could be magnificent to avoid overfitting and control the redundancy in 

the output of the ensemble model. The intuition is the removal of only models, which are extremely 

far from other candidate models. It will save the diversity of the selected models and prevent the 

overfitting problem. 

Fourth, the best forecasters model posterior probabilities (model weights) are computed using the 

Softmax function, i.e., we compute 𝑝(𝑀𝑘|𝑦) using 

𝑝(𝑀𝑘|𝑦) =
𝑒𝑥𝑝(−|𝜉𝑘|)

∑ 𝑒𝑥𝑝(−|𝜉𝑙|)
𝐾
𝑙=1

, 𝑘 = 1, . . . , 𝐾, (3) 

with 𝜉𝑘 = 𝑆𝑘/𝑚𝑎𝑥{𝑆𝑙}𝑙=1,...,𝐾 and 𝑆𝑘: = 𝑆𝑀𝐴𝑃𝐸𝑔,𝑘. The Softmax function is a generalization of the 

logistic function often used in classification and forecasting exercises using traditional, machine 

learning and deep learning methods as a combiner or an activation function. The function assigns 

Holdout 
Set(H)
ℎ1

ℎ2

...

ℎ𝑚

Best holdout for 
each model
M1{ℎ1∈𝐻}

M2{ℎ2∈𝐻}

...

M𝑘{ℎ𝑘∈𝐻}

Model 
Selection

M1{ℎ1∈𝐻}

...

M𝑘{ℎ𝑘∈𝐻}

The Ensemble model

Forecast combination 

of best forecasters, 

each obtained by a 

model-specific 

holdout period 
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larger weights to models with smaller forecasting error, with the weights decaying exponentially the 

larger the error. Fifth, the Bayesian model ensemble forecasts are obtained based on the law of total 

probability (1) considering the model confidence set and the corresponding model weights (3). The 

pseudo-code of the proposed methodology is listed in Table 1. 

 

INPUT panel time series (panel members = countries); OUTPUT ensemble model; 

1. STATEXPLORE time series decomposition; 

2. IMPUTE[missing] = TRUE; 

3. First_year = 2000 (for most of time series but some of them start later) 

4. Last_year = 2016 

5. Target_year = 2020 

6. Confidence_level = 0.95 

7. Holdout_set={3, 5, 7} 

8. Ensemble_criteria_for_computing_weights = “Symmetric Mean Absolute Percentage Error (SMAPE)” 

9. Set.seed() 

10. Model_list ={SNAIVE, RWF, HWA, HWM, ETS, ARIMA, TBATS, STL, NNAR, MLP, ELM, SSA, ENS) 

11. FUNCTION model_weights (error) 

12.      Pr = error/max(error) 

13.      exp(-abs(pr))/sum(exp(-abs(pr))) 

14. # First loop repeat for each country 

15. FOR each panel in list of countries DO 

16.      SET panel.data = SUBSET dataset(country = panel & Year > First_year & Months=”Jan-Dec” 

17.      SET Year_min = min(Year of panel.data) 

18.      panel_data = MISSING VALUE IMPUTATION by na_seasplit 

19.      SET (START of the run-time calculation) 

20. # Second loop for selecting holdouts 

21.      FOR each holdout in Houldout_set DO 

22.           IF ( ymax-ho+1 < ymin+3 ) { break } 

23.           ELSE 

24.                SET train_dataset WINDOW (START = Year_min , END = Last_year – holdout) 

25.                SET test_dataset   WINDOW (START = Last_year – holdout + 1) 

26.                FIT models in Model_list 

27.                CALCULATE accuracy (model , holdout)  

28.                IF accuracy (model[holdout]) > last_accuracy (model[holdout – 1]) THEN 

29.                     SET model = model[holdout] 

30.                ELSE 

31.                     SET model = model[holdout -1] 

32.      CALCULATE error(ALL models), min_error(ALL models), max_error(ALL models) 

33.      CALCULATE id_error = (min_error + max_error)/2 

34.      FOR model in Model_list  

35.           IF ( error_model > id_error) THEN 

36.                PRINT (“Model is excluded!”) 

37.           ELSE 

38.                 ADD model into selected_model_list  

39. # The model ensemble 

40. IF selected_model_list = NULL {next country} 

41. ELSE 

42.        CALCULATE model_weights for ensemble 

43.        SET First_year  based on model with min_holdouts 

44.        SET First_month based on model with min_holdouts 

45.        CALCULATE ensemble 

46.        SET (END of the run-time calculation) 

47. # The outputs 

48. PRINT GRAPHS; SAVE OUTPUTS 

Table 1 – Pseudo Code of the Proposed Ensemble Strategy. 



 

 

21.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2021) 

13 a 16 de outubro de 2021, Vila Real e Viseu, Portugal 

7 

 

2.2. The learning algorithms   

This section summarizes the characteristics of the individual candidate learning algorithms 

(times series methods) used in this study. For a detailed presentation and discussion of the methods 

see, for instance, Hyndman and Athanasopoulos (2021). Table 2 summarizes the hyper-parameters 

of the algorithms used in this study.  

 
ALGORITHM PARAMETERS VALUE 

Seasonal Trend Decomposition using Loess lambda 

t.window  

s.window  

biasadj 

"auto" 

6 

6 

TRUE 

Seasonal naive drift  

lambda 

level 

biasadj 

F 

0 

clevel 

TRUE 

The Auto-Regressive Integrated Moving Average Auto  

The Exponential Smoothing State Space Model 

The ETS method with automatic and ZZA parameter setting 

from the forecast statistical software R package (Hyndman et 

al., 2020), and the TBATS method, which includes Box-Cox 

transformation, ARMA errors, trend and seasonal components 

(de Livera, Hyndman, & Snyder, 2011). 

 

Model 

Box-Cox tran. 

Multiplicative trend 

restricted for the models with 

infinite variance 

{ETS, TBATS} 

ZZA 

TRUE 

Allow 

TRUE 

Holt-Winters' multiplicative method Seasonal 

level 

Multiplicative 

clevel 

Holt-Winters' additive method Seasonal 

level 

Additive 

clevel 

Random Walk Forecasts Drift 

Lambda 

Level 

biasadj 

F 

"auto" 

clevel 

TRUE 

Extreme Learning Machines type 

hd 

comb  

reps  

difforder 

Lasso 

500 

mean 

200 

NULL 

Multilayer Perceptron for time series Comb 

hd.auto.type 

hd.max 

Mode 

Valid 

5 

Neural network model to a time series P  

size  

decay 

lambda 

repeats  

MaxNWts 

2 

1 

0.001 

Auto 

100 

2000 

Singular spectrum analysis Kind 

svd.method 

L 

neig           force.decompose 

1d-ssa 

Auto 

12 

NULL 
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mask TRUE 

NULL 

Table 2 – Algorithms and hyper-parameters choices. 

The model fitting, forecasting and simulation procedures have been implemented using a R 

statistical software using libraries such as the forecast library (Hyndman et al., 2020). 

3. EMPIRICAL EXPERIMENTS 

In this study, we use cause-of-death data from the World Health Organization (WHO) mortality 

database (World Health Organization, 2018), which includes the death time series of different 

countries for all genders. First, we distinguished the quality of data for each country according to 

the metadata of the dataset. We ranked the data quality of countries as is shown in Table 3. 

 
RANK EVALUATION DESCRIPTION 

1 Excellent quality These countries may be compared, and time series may be used for priority setting 

and policy evaluation. 

2 Moderate quality Data have low completeness and/or issues with cause-of-death assignment, which 

likely affect estimated deaths by cause and time trends. Comparisons among 

countries should be interpreted with caution. 

3 Low quality Data have severe quality issues. Comparisons among countries should be 

interpreted with caution. 

4 Unacceptable Death registration data are unavailable or unusable due to quality issues. Estimates 

may be used for priority setting; however, they are not likely to be informative for 

policy evaluation or comparisons among countries. 

5 Unacceptable Data should be ignored 

Table 3 – Different levels of quality allocated for the reported respiratory disease deaths by countries. 

Source:(World Health Organization, 2018). 

We considered only countries with quality ranked in the first three categories. Some countries 

reported the total death for three months in one row for some years. We divided this aggregate value 

to three equal values for each corresponding month. We filtered the datasets for respiratory diseases 

and considered the death variable as a univariate time series with monthly sampling frequency. Table 

4 shows the codes that were classified as respiratory infections. 

 
CODE DESCRIPTION 

380 For Respiratory infections (This code is the aggregate of 390 and 400) 

390 For Lower respiratory infections 

400 For Upper respiratory infections 

410 Otitis media: Acute otitis media (AOM) is a common complication of upper respiratory tract infection 

whose pathogenesis involves both viruses and bacteria. 

Table 4 – Metadata of code of diseases categorized as respiratory disease. Source: (World Health 

Organization, 2018). 

For obtaining the total deaths caused by respiratory diseases, we had to aggregate either the 

codes 380 and 410 or equivalently the codes 390, 400 and 410. From this, we calculated the 
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proportion of deaths caused by respiratory diseases. To estimate the number of monthly deaths 

caused by respiratory diseases, we multiply the annual proportion by the total forecasted deaths each 

month. The procedure provided us a dataset with more than twelve thousand observations in a pool 

of 61 panel members’ time-series (countries) from 2000 to 2016. These panel time series cover the 

different possible situations of stationarity, non-stationarity, increasing trends, seasonality and 

structural breaks to evaluate the accuracy improvement of candidate and ensemble models in 

different scenarios comprehensively.  

4. RESULTS 

4.1. Forecasting accuracy comparison 

We present three approaches in Table 5. In the first approach entitled “only holdout”, we only 

use a set of different forecasting models to make the ensemble model by different holdouts. As we 

can see, there are some models exhibiting better performance when compared with the ensemble 

model. Even in average error, the TBATS shows lower error than the ensemble.  

The second approach is named “Holdout and selection”. This approach uses the midrange of the 

SMAPE values to evaluate the distance of each model to the remaining others as shown above in 

the Pseudo code (Table 1). Model’s with SMAPE value higher than the midrange indicator are 

considered poor forecasters and eliminated from the ensemble forecast. The results in Table 5 clearly 

highlight the improvement in the accuracy of the Bayesian model ensemble (BME) when pursuing 

the Holdout and selection approach, ranking first among all tested methods.  

The final proposed approach is a combination of the two previous ones. It combines the best 

forecasting models fitted using each model optimal holdout selection. It makes the models free of 

the equal holdout restriction. The accuracy of the ensemble is dramatically improved, leaving the 

individual learning algorithms at a reasonable distance. 
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BME 0.112 0.181 0.191 0.161 0.103 0.125 0.136 0.121 0.102 0.128 1 

TBATS 0.120 0.150 0.172 0.147 0.114 0.143 0.177 0.145 0.119 0.137 2 

ETS 0.125 0.200 0.185 0.170 0.110 0.138 0.158 0.135 0.117 0.141 3 

ARIMA 0.133 0.178 0.214 0.175 0.107 0.145 0.166 0.139 0.114 0.143 4 

SNAIVE 0.124 0.181 0.212 0.172 0.114 0.142 0.164 0.140 0.121 0.144 5 

STL 0.117 0.180 0.201 0.166 0.118 0.155 0.169 0.147 0.121 0.145 6 
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NNETAR 0.141 0.194 0.210 0.182 0.106 0.150 0.181 0.146 0.106 0.145 7 

HWA 0.134 0.193 0.222 0.183 0.117 0.154 0.179 0.150 0.128 0.154 8 

MLP 0.130 0.220 0.240 0.197 0.123 0.140 0.169 0.144 0.123 0.155 9 

HWM 0.148 0.195 0.256 0.200 0.124 0.157 0.156 0.146 0.128 0.158 10 

ELM 0.139 0.227 0.242 0.203 0.114 0.150 0.203 0.156 0.122 0.16 11 

SSA 0.160 0.190 0.231 0.194 0.136 0.168 0.188 0.164 0.139 0.166 12 

RWF 0.153 0.289 0.362 0.268 0.111 0.141 0.184 0.145 0.123 0.179 13 

Table 5 – Ranking the models and ensembles according to the accuracy measure. 

4.2. Model excluded in model selection 

In Table 6, we can see that all models are excluded several times in different situations, and it shows 

that the model selection approach is an appropriate strategy to employ the efficient models in the 

ensemble. The methods are ranked base on their contribution rate in the ensemble. The vertical 

comparison of the results gives us an insight about the contribution of the different models to the 

ensemble, while the horizontal comparison is useful to assess the rate of contribution across different 

holdout periods. The variation in the contribution rates from the best model to the worst one and 

from the lowest holdout period to the highest one suggest a potential positive effect on the final 

forecasting accuracy of the ensemble model by selecting the best holdout for each individual model 

along with selecting the best forecasters to the model confidence set finally used to forecast.  

 

M
O

D
E

L
S

 THE MODEL’S EXCLUSION FREQUENCY 

(2)IN MODEL SELECTION LAYER FOR EACH HOLDOUT 

R
A

N
K

 

HO=3 HO=5 HO=7 AVE 

FREQ. PROP. FREQ. PROP. FREQ. PROP. FREQ. PROP. 

ETS 10 4.61% 8 3.56% 8 4.30% 9 4.31% 1 

TBATS 12 5.53% 13 5.78% 9 4.84% 11 5.26% 2 

STL 13 5.99% 11 4.89% 11 5.91% 12 5.74% 3 

ARIMA 13 5.99% 13 5.78% 14 7.53% 13 6.22% 4 

SNAIVE 18 8.29% 13 5.78% 14 7.53% 15 7.18% 5 

HWA 13 5.99% 19 8.44% 17 9.14% 16 7.66% 6 

HWM 19 8.76% 17 7.56% 17 9.14% 18 8.61% 7 

NNETAR 23 10.60% 21 9.33% 13 6.99% 19 9.09% 8 

MLP 22 10.14% 24 10.67% 14 7.53% 20 9.57% 9 

ELM 17 7.83% 28 12.44% 18 9.68% 21 10.05% 10 

SSA 27 12.44% 21 9.33% 18 9.68% 22 10.53% 11 

RWF 30 13.82% 37 16.44% 33 17.74% 33 15.79% 12 

Table 6 – Contribution rate of the models in the ensemble. 

Table 7 presents the contribution ranks, exclusion frequency and proportion of the selected 

models with the best holdout for each. As it is clear, the contribution of the models in the ensemble 

is changed in comparison with Table 6. It gives a proper explanation for the improvement in the 

accuracy of the ensemble by using the proposed method.  
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Frequency 13 15 17 17 18 19 19 21 23 25 29 37 

Proportion 5% 6% 7% 7% 7% 8% 8% 8% 9% 10% 11% 14% 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 

Table 7 – The model’s exclusion frequency for the Ensemble with dynamic holdouts. 

4.3. Algorithmic efficiency analysis 

We analyse the algorithmic efficiency of each method, i.e., the amount of computational 

resources used by the algorithm, by measuring the time spent in fitting the ensemble model with 

each approach and using it to predict the maximum likely run-time of a new given time series (Table 

8). 

 

M
O

D
E

L
S

 RUN-TIME ANALYSIS OF OBTAINING ENSEMBLE MODEL (IN MINUTE) 

ONLY HOLDOUT HOLDOUT AND SELECTION MODEL SELECTION & DYNAMIC 

HOLDOUTS 

HO=3 HO=5 HO=7 AVE HO=3 HO=5 HO=7 AVE. HO=3 HO=5 HO=7 AVE 

ART 2.97 2.86 2.39 2.74 3.03 2.65 2.41 2.70 3.29 2.96 2.64 2.96 

STD 0.72 0.72 0.52 0.65 0.70 0.60 0.54 0.61 0.84 0.71 0.70 0.75 

LCL 2.79 2.68 2.26 2.58 2.85 2.50 2.27 2.54 3.08 2.78 2.46 2.77 

UCL 3.15 3.04 2.52 2.90 3.21 2.80 2.55 2.85 3.50 3.14 2.82 3.15 

ART: Average run-time, STD: Standard deviation, LCL: Lower confidence limit, UCL: Upper confidence limit. 

Table 8 – The methodology effect on the run-time and computational efficiency. 

If we look at the average of run-time and their mean confidence intervals for the proposed method 

and the other two approaches, we could see that they are not significantly different. It shows that our 

proposed method is efficient in terms of computation time. 

4.4. Excess mortality analysis 

We used the proposed ensemble learning for panel time-series with selecting strategy and dynamic 

holdouts to forecast the number of deaths caused by different kinds of respiratory diseases for a 

subset of 61 countries in 2020. Additionally, the COVID-19 deaths were extracted for the same year 

from the COVID-19 Weekly Epidemiological Update of the World Health Organization (WHO) 

with data as received from national authorities, as of 3 January 2021, which has a proper coverage 

on the whole period of 2020 (World Health Organization, 2021).  

As it is shown in Table 9, we considered the European countries, Canada, the United States of 

America, and the United Kingdom from the list to calculate the correlation between actual COVID-

19 deaths and our forecasts of respiratory deaths. The selection criteria was related to the official 

statistics maturity, the models of corruption in official statistics (Georgiou, 2021), and quality level 
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of deaths data according to the WHO ranking discussed in section 4.1.  The correlation was 94% (P-

value =0.000). It could be because of a high quality of the Official Statistics in these countries as 

Ashofteh and Bravo (2020) show the significant quality variation of reported data about COVID-19 

worldwide and the role of data science and new technologies in improving their quality (Ashofteh 

& Bravo, 2021b). 
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1 Austria AUT 40 8955.108 234 6214 -0.392 -0.227 

2 Belgium BEL 56 11539.326 1571 19693 -0.172 0.052 

3 Bulgaria BGR 100 7000.117 412 7644 -0.363 -0.198 

4 Canada CAN 124 37411.038 1766 15679 -0.14 -0.031 

5 Denmark DNK 208 5771.877 595 1345 -0.333 -0.328 

6 Finland FIN 246 5532.159 53 561 -0.422 -0.344 

7 France FRA 250 65129.731 4733 64543 0.347 0.98 

8 Germany DEU 276 83517.046 5815 34272 0.524 0.354 

9 Greece GRC 300 10473.452 2000 4921 -0.102 -0.254 

10 Hungary HUN 348 9684.68 344 9884 -0.374 -0.151 

11 Iceland ISL 352 339.037 17 29 -0.428 -0.355 

12 Ireland IRL 372 4882.498 316 2252 -0.379 -0.309 

13 Italy ITA 380 60550.092 4792 74985 0.356 1.196 

14 Netherlands NLD 528 17097.123 1206 11565 -0.232 -0.117 

15 Norway NOR 578 5378.859 528 436 -0.344 -0.347 

16 Poland POL 616 37887.771 5347 29119 0.448 0.247 

17 Portugal PRT 620 10226.178 2097 7045 -0.086 -0.21 

18 Romania ROU 642 19364.558 1484 15919 -0.187 -0.026 

19 Serbia SRB 688 8772.228 419 3288 -0.362 -0.288 

20 Slovakia SVK 703 5457.012 476 2317 -0.352 -0.308 

21 Slovenia SVN 705 2078.654 145 2889 -0.407 -0.296 

22 Spain ESP 724 46736.782 3042 50442 0.069 0.688 

23 Sweden SWE 752 10036.391 665 8727 -0.321 -0.175 

24 Switzerland CHE 756 8591.361 428 7049 -0.36 -0.21 

25 The UK GBR 826 67530.161 6943 74570 0.71 1.188 

26 Ukraine UKR 804 43993.643 1089 18854 -0.252 0.034 

27 US of America USA 840 329064.917 16554 345253 2.288 6.791 

Source: Author’s preparation. Notes: (1) Abbreviation code of the country (Three letters); (2) Respiratory diseases 

deaths; (3) WHO COVID-19 deaths. 

Table 9 – Comparison between forecasting deaths for respiratory diseases and actual COVID-19 deaths. 
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The comparison of respiratory diseases and COVID-19 deaths are shown in Figures 2 and 3. 

 

Figure 2 – Respiratory diseases deaths and COVID-19 deaths for Europe and North America in 2020. 

Figure 2 shows that some countries in our sample have dealt with this COVID-19 in 2020 better than 

others in respect to their vulnerability to respiratory diseases. The countries with the forecast of 

respiratory diseases significantly higher than the COVID-19 deaths show notable performance to 

manage this chaotic year despite the statistically significant positive correlation between these two 

indicators. Although it is not the case for the European countries and North America, we can see in 

Figure 3 that Japan and the Philippines are two fitted examples for this case. 

 

 

Figure 3 – Respiratory diseases deaths and COVID-19 deaths for Each Country in 2020. 
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5. DISCUSSION AND CONCLUSION 

According to the performance of the models, we provided clear evidence on the competitiveness of 

our method in terms of predictive performance when compared to the state of the arts and even the 

usual ensemble models with fix holdouts for all models and without our proposed model selection 

layer. In comparison of candidate models to contribute to the ensemble, Tables 5 and 6 show the 

positive effect on prediction accuracy by selecting the best holdout for each model and removing the 

outlier models from the ensemble. The proposed ensemble model shows a significant improvement 

in the accuracy in comparison with the other ensembles and each individual state-of-arts. 

We used this new ensemble strategy to forecast the number of death for respiratory diseases for 2020 

of our sample, included 61 countries. The correlation between the standardized values of the 

respiratory diseases death and the COVID-19 deaths were positive and statistically significant. It 

recommends us to consider the forecasted values of the respiratory diseases as a covariate to evaluate 

the effective strategies of different countries, such as lockdown rules or relaxing of border control 

regulations. Japan and the Philippines are candidates with our study for more investigation in this 

regard, and they are more eligible than other countries with only a low death toll. It could be probable 

that the experience of these countries with high mortality of respiratory diseases played a role in 

managing the pandemic. 

It is considerable in this pandemic to focus more on the death toll than the cumulative number of 

patients. According to the nature of pandemics, it is challenging to control its spread, however the 

main concern could be controlling the severe cases and the patients with a high likelihood of death. 

These countries with a high number of respiratory diseases that could manage the pandemic 

reasonably could be more recommendable for further studies on their policies and health strategies 

in comparison with the countries with only a low rate of mortality. 
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