Location

Hilton Waikoloa Village, Hawaii

Event Website

http://hicss.hawaii.edu/

Start Date

1-3-2018

End Date

1-6-2018

Description

Despite the widespread use of techniques and tools for causal analysis, existing methodologies still fall short as they largely regard causal variables as independent elements, thereby failing to appreciate the significance of the interactions of causal variables. The prospect of inferring causal relationships from weaker structural assumptions compels for further research in this area. This study explores the effects of the interactions of variables in the context of causal analysis, and introduces new advancements to this area of research. In this study, we introduce a new approach for the causal complexity with the goal of making the solution set closer to deterministic by taking into consideration the underlying patterns embedded within a dataset; in particular, the interactions of causal variables. Our model follows the configurational approach, and as such, is able to account for the three major phenomena of conjunctural causation, equifinality, and causal asymmetry.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 6th, 12:00 AM

A Network-Based Deterministic Model for Causal Complexity

Hilton Waikoloa Village, Hawaii

Despite the widespread use of techniques and tools for causal analysis, existing methodologies still fall short as they largely regard causal variables as independent elements, thereby failing to appreciate the significance of the interactions of causal variables. The prospect of inferring causal relationships from weaker structural assumptions compels for further research in this area. This study explores the effects of the interactions of variables in the context of causal analysis, and introduces new advancements to this area of research. In this study, we introduce a new approach for the causal complexity with the goal of making the solution set closer to deterministic by taking into consideration the underlying patterns embedded within a dataset; in particular, the interactions of causal variables. Our model follows the configurational approach, and as such, is able to account for the three major phenomena of conjunctural causation, equifinality, and causal asymmetry.

http://aisel.aisnet.org/hicss-51/da/soft_computing/2