Location

Hilton Waikoloa Village, Hawaii

Event Website

http://www.hicss.hawaii.edu

Start Date

1-4-2017

End Date

1-7-2017

Description

Natural Language Processing (NLP) is now widely integrated into web and mobile applications, enabling natural interactions between human and computers. Although many NLP studies have been published, none have comprehensively reviewed or synthesized tasks most commonly addressed in NLP research. We conduct a thorough review of IS literature to assess the current state of NLP research, and identify 12 prototypical tasks that are widely researched. Our analysis of 238 articles in Information Systems (IS) journals between 2004 and 2015 shows an increasing trend in NLP research, especially since 2011. Based on our analysis, we propose a roadmap for NLP research, and detail how it may be useful to guide future NLP research in IS. In addition, we employ Association Rules (AR) mining for data analysis to investigate co-occurrence of prototypical tasks and discuss insights from the findings.

Share

COinS
 
Jan 4th, 12:00 AM Jan 7th, 12:00 AM

A Roadmap for Natural Language Processing Research in Information Systems

Hilton Waikoloa Village, Hawaii

Natural Language Processing (NLP) is now widely integrated into web and mobile applications, enabling natural interactions between human and computers. Although many NLP studies have been published, none have comprehensively reviewed or synthesized tasks most commonly addressed in NLP research. We conduct a thorough review of IS literature to assess the current state of NLP research, and identify 12 prototypical tasks that are widely researched. Our analysis of 238 articles in Information Systems (IS) journals between 2004 and 2015 shows an increasing trend in NLP research, especially since 2011. Based on our analysis, we propose a roadmap for NLP research, and detail how it may be useful to guide future NLP research in IS. In addition, we employ Association Rules (AR) mining for data analysis to investigate co-occurrence of prototypical tasks and discuss insights from the findings.

http://aisel.aisnet.org/hicss-50/da/data_text_web_mining/2