Build Your Dream (Not Just Big) Analytics Program

Shu Schiller
Wright State University - Main Campus, shu.schiller@wright.edu

Michael Goul
Arizona State University

Lakshmi S. Iyer
University of North Carolina at Greensboro

Ramesh Sharda
Oklahoma State University

David Schrader
Teradata (retired)

See next page for additional authors

Follow this and additional works at: https://aisel.aisnet.org/cais
Build Your Dream (Not Just Big) Analytics Program

Authors
Shu Schiller, Michael Goul, Lakshmi S. Iyer, Ramesh Sharda, David Schrader, and Daniel Asamoah
Build Your Dream (Not Just Big) Analytics Program

Shu Schiller
Wright State University
shu.schiller@wright.edu

Michael Goul
Arizona State University

Lakshmi S. Iyer
University of North Carolina at Greensboro

Ramesh Sharda
Oklahoma State University

David Schrader
Teradata (retired)

Daniel Asamoah
Wright State University

Abstract:

This paper reports on a panel discussion held at AMCIS 2014 and subsequent panel member research and findings. We focus on curriculum design, program development, and sustainability in business analytics (BA) in higher education. We address some of the burning questions the IS community has asked concerning the various stages of BA program building, and we elaborate challenges that institutions face in constructing successful and competitive analytics programs. Furthermore, given that the panelists have achieved outstanding accomplishments in academic and industrial leadership, we share our experiences and vision of a “dream” analytics program. We hope that our community will continue a dialog that encourages and engages faculty members and administrators to reflect on challenges and opportunities to build dream programs that meet industry needs.

Keywords: Business Analytics, Data Analytics, Curriculum, Program Development, Industry Partnership.

This manuscript underwent editorial review. It was received 05/28/2015 and was with the authors 1 month for 1 revision. Matti Rossi served as Associate Editor.
1 Introduction

The term data scientist was created in 2008 by D. J. Patil (Chief Data Scientist for the White House Office of Science and Technology Policy) and Jeff Hammerbacher (Founder and Chief Scientist of Cloudera). In October 2012, Davenport and Patil (2012) published their famous article in the *Harvard Business Review* in which they name the data scientist as the sexiest job of the 21st century. Today, this “new breed” of talent is still the hottest in the market. Between 2012 and 2013, one-third of companies started aggressively using analytics across the entire enterprise and two-thirds appointed a senior leader of data analytics (such as a chief data officer) (Accenture, 2013). However, big data’s sky-high popularity is coupled with a considerable shortage of analytics expertise worldwide. Some predict that, by 2018, the United States alone may face a 50 to 60 percent gap in deep analytics talent (McKinsey Global Institute, 2014) and that big data will need 4.4 million jobs globally by 2015, only one-third of which is expected to be filled (Gartner, 2012).

Reflecting the increasing demand for individuals with big data and analytics skills is the explosion of academic programs on business and data analytics in higher education. A keyword search at Petersons.com generates more than a hundred graduate and undergraduate programs related to business and data analytics. Academics across the globe have started to launch educational and training programs in various formats and lengths to educate professionals in analytics and big data, many of which integrate business intelligence and analytics in core business curriculum (Chiang, Goes, & Stohr, 2012; Gillon, Aral, Lin, Mithas, & Zoizula, 2014; Gorman & Klimberg, 2015; Gupta, Goul, & Dinter, 2015; Sircar, 2009; Wilder & Ozgur, 2015; Wixom et al., 2011, 2014). We recently documented 133 analytics programs in the US with 35 bachelor programs, 74 graduate programs, and 24 others offered in a concentration, minor, or certificate (Iyer & Schiller, 2014), most of which were established after 20101.

Despite the blossoming of analytics programs, the journey of building a “dream” analytics program can be long, chock-full of political ramifications, and perilous. How can we, as a community, learn best practices from each other and together create more opportunities for success? This paper reports the discussions at a panel at the AMCIS 2014 and our following work and findings. We share experiences from several successful analytics programs and provide answers to the most important and challenging tasks and issues about designing, developing, and sustaining business and data analytics programs in higher education. Specifically, we comment on the dream model curriculum for analytics programs, the “unicorn” and “hydra corollary” strategies for building program competitiveness, integrating big data and related concepts into analytics curriculum, and establishing and maintaining a win-win relationship with industry partners.

2 Program Development

In recent years, business analytics has been one of the fastest growing segments of information technology globally. Recent research by InformationWeek (Henschen, 2013) and Forbes (Columbus, 2014) has forecasted a significant shortage in analytical skills due to the emergence of big data and associated emerging technologies. In addition, 60 percent of 900 IT surveyed executives stated that they intended to increase yearly salaries for business intelligence and big data handling (Schwartz, 2013). Organizations around the world list business analytics as their number one concern in coming years and expect it to play a major role in daily business operations. When Gartner (2012) predicted the 4.4 million job shortage globally, about 1.9 million of those would be in the US alone. Thus, major companies are showing a serious interest in business analytics education. Companies such as Teradata, IBM, and SAS are partnering with academic institutions worldwide through various academic alliance programs to offer support and direction in educating the students that they hope to hire in the near future. Keeping in line with the demand and growth in business analytics, some academic institutions have been creating courses and programs at the undergraduate and graduate levels that focus on various aspects of business analytics (Chiang et al., 2012; Gupta et al., 2015; Iyer & Schiller, 2014; Wixom et al., 2014).

Business analytics encompasses the knowledge, skills, and tools that enable one to collect, manage, use, and share information to support the delivery of all aspects of business operations (Watson, 2009). We provide an example to showcase how the following programs in business analytics were created at the University of North Carolina at Greensboro (UNCG) in 2014: a Graduate Certificate in Information

1 For a visual display of the programs, please visit https://public.tableau.com/profile/shu.schiller#!/vizhome/AnalyticsPrograms/AnalyticsPrograms
Technology and a concentration in business analytics as part of its Master’s in Information Technology and Management (MSITM) program. These programs are co-sponsored by SAS, one of the leading vendors in the analytics space whose Global Academic Program provides extensive teaching, learning, and research resources for higher education (http://support.sas.com/learn/ap/prof/index.html). Our process involved developing the curriculum internally (in the university) and working with SAS on the joint programs. While SAS has sponsored both programs, technologies used in the program do not only include SAS products. Various business analytics technologies in addition to SAS are used in the program including Tableau, R, Microstrategy, Microsoft products (SQL Server, Visio, Visual Studio, and Excel), and applications and software in the Teradata University Network (www.teradatauniversitynetwork.com).

Creating the concentration is well aligned with the missions of the university’s Department of Information Systems and Supply Chain Management, the Bryan School of Business and Economics, and its partners at UNCG. We explain the details of each of the program and the development process in Section 2.1.

2.1 Business Analytics Program/Curriculum Development

UNCG’s Department of Information Systems and Supply Chain Management already had a full-fledged Master’s in Information Technology and Management (MSITM) program. As part of the core requirements, students took one course in data management and another in business intelligence. With the growing need for business analytics talent, the department wanted to expand the course offerings to strengthen students’ analytics skills. In doing so, the curriculum committees at the department and school level decided to offer a concentration in business analytics at the master’s level for degree-seeking students. The department’s advisory council that comprised area firm IT executives also whetted the ideas. We also consulted with SAS’s Global Academic Program who offers a co-sponsored certificate option to schools with a minimum of 12 semester hours of course credit that:

a. Cover topics in data management, such as collecting and preparing data for analysis
b. Explore data
c. Cover tools and techniques for mining data (including statistical techniques)
d. Include hands-on projects that use BA tools and techniques, and
e. Use SAS Enterprise Miner (with no restriction in use of other technology solutions).

The department formed a select task force of faculty to develop the curriculum to enable students to:

1) Demonstrate an ability to gather and manage transactional and informational data generated by businesses
2) Evaluate models, methods, and applications suitable for business analytics, and
3) Apply appropriate analytics tools, techniques, and strategies to analyze large amounts of business data for insightful decision making.

The above objectives ensure that students learn state-of-the-art methods, tools, and techniques to be a successful business analyst in any organizational setting. The following four courses (12 hours total) formed the core of the business analytics course work to meet those objectives:

2.1.1 Data Management

The course covers fundamental concepts of database management systems, including designing and implementing databases and using the SQL query language. Specifically, students completing the course will be able to:

1) Model database requirements using the entity-relationship diagram
2) Apply the concepts of normalization in database design
3) Design and implement a relational database
4) Address issues related to concurrent data access
5) Apply methods to address various database security issues, and
6) Express queries using relational algebra.
2.1.2 Models and Methods in Business Analytics

After completing this course, students will demonstrate a broad knowledge and clear understanding of models and methods in business analytics. This course extensively uses SAS Enterprise Guide and Enterprise Miner software. Specifically, students learn to:

1) Demonstrate an understanding of business analytics
2) Identify and assess different business analytics methodologies
3) Prepare and formulate data for analysis (collection, sampling, and preprocessing steps)
4) Describe data quality controls
5) Explore and develop descriptive and predictive analytic models
6) Apply and assess different predictive modeling techniques
7) Evaluate efficacy of different analytics model implementations, and

2.1.3 Business Analytics for Competitive Advantage

Students completing this course will demonstrate a broad knowledge and clear understanding of critical concepts, practices, and issues in how one can use business analytics to achieve and sustain competitive advantage. The course extensively uses business analytics software including SAS Enterprise Guide, Enterprise Miner, and Visual Analytics. The course also discusses the managerial, privacy and organizational implications of business analytics. The course introduces students to several emerging topics in business analytics. Students learn to:

1) Describe the basic concepts of business analytics for competitive advantage
2) Evaluate methods for market basket analysis and rule discovery
3) Describe the challenges presented in analyzing and managing big data
4) Evaluate organizational, managerial, and privacy issues related to business analytics, and
5) Evaluate the emerging technologies in business analytics for competitive advantage.

2.1.4 Projects in Business Analytics

After completing this capstone project course, students will demonstrate a broad knowledge and clear understanding of critical concepts, practices, and issues in developing and completing business analytics projects. Specific course outcomes include being able to:

1) Accurately identify specific problems that organizations can solve using business analytics techniques
2) Integrate the learning experiences acquired in the program to effectively develop and recommend analytics-based solution(s) for business problems that organizations face
3) Synthesize the learning experiences acquired in the program to effectively develop and recommend analytics-based solution(s) for business problems that organizations face, and
4) Apply important business analytics concepts, principles, techniques, and practices needed to effectively leverage big data in support of organizational strategic goals.

The department-level committees approved the course syllabi before they were shared it with the SAS Global Academic liaison for approval. Once SAS approved the syllabi, we consulted the other departments in the school and university to avoid any conflict of interest. The school- and university-level committees subsequently approved the curriculum. The entire process from conception to approval took about seven months. Since we did not create a new master’s degree program, we did not require system-wide approval. Programs aiming to create new degree programs rather than just a certificate or concentration must recognize the various approval processes in place and plan accordingly.

3 Unicorn and Hydra Corollary – Define the Program’s Competitiveness

Many of the nation’s top business schools now offer business analytics programs. At this point in time, programs vary with respect to student recruiting targets, university departments or units involved, faculty
members involved, jobs targeted, the skills, knowledge, and experiences baked into the curricula, and so on. Many programs have designed their curricula to adhere to what one might call “the unicorn hypothesis”; that is, they aim to graduate an entire cohort of that elusive, cross-functional, cross-discipline, all-knowing data scientist hero who can go to work for an organization and deliver valuable analytics insights from day one. Further, many educational programs promise to deliver this in 9-16 months with a set of courses taught by faculty from various disciplines who have never or hardly worked together before, and the courses offered are often structured as they were many years ago in the heyday of operations research and management science. We offer an alternative to the unicorn hypothesis, which we refer to as the “hydra corollary”—a much more realistic and pragmatic approach to viewing the design of business analytics programs.

The hydra corollary asserts that conducting data science in organizations is a team effort. We ascribe to the fact that different programs will likely have strengths and advantages over others in the spectrum of the complexities associated with providing value from analytics to organizations. In essence, we view data science projects as the important unit of analysis. A project may need specialized skills in, for example, architecture, and a dashboard or scorecard project would require leadership from an individual who understands how to embed new analytics into regular decision making workflows and teach the right people how to use the new system. The latter example would also require a winning personality to communicate and achieve change management. Other members of the team must be excellent at creating significant and relevant metrics, capturing requirements up-front, designing dashboard or scorecard user interfaces, designing master data management solutions, delivering ETL, and the list can go on. A data scientist leader may play a significant role in unifying the team’s efforts, but many other specialists educated in data science are needed as well to realize a robust solution.

While top-notch data scientists will remain the big dogs in the analytics area, we believe that our course will produce some unicorns no matter what our university curriculum might focus on. These individuals will be the naturals—much of what they bring to the table is likely part of their personalities and prior training; it is innate. The hydra corollary includes the reality that some of those who are trained in analytics programs will fill the unicorn bill. Our analytics curricula need to do no harm to these individuals; we just need to unleash what comes naturally to them. Some of those who are trained in university analytics programs and are placed on teams on graduation will ultimately emerge as a unicorn but only after gaining needed domain experience, mentoring, and industry/organizational understanding.

Many authors have described an emerging set of job titles for those working in the analytics discipline (see Table 1).

<table>
<thead>
<tr>
<th>Job Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business analytics analyst</td>
<td>Creates analytical solutions to business problems; conceptualizes and implements change to business processes by deploying analytics-based solutions.</td>
</tr>
<tr>
<td>Data architect</td>
<td>Works with data that is messy, un-typed, missing values, and ambiguous.</td>
</tr>
<tr>
<td>Data change agent</td>
<td>Drives change in business processes based on analytics.</td>
</tr>
<tr>
<td>Data engineers and operators</td>
<td>Designs, builds, and maintains big data infrastructures; ensures that big data systems are operating according to plan and that they are the ones one will need to, for example, add a MapReduce capability or a new appliance to an existing data architecture.</td>
</tr>
<tr>
<td>Data virtualization and cloud specialists</td>
<td>Leverages complex on-site and off-site computing architectures to perform data-related tasks and to build visualization; understands provisioning of virtual systems with analytics software.</td>
</tr>
<tr>
<td>Data visualization specialists</td>
<td>Envisions how to best present data and evidence in a way that enables efficient management-level interpretation and reinforces follow-up action; understands the technical data and can translate that knowledge to a layman’s language and, thereby, enabling the exploration of different value propositions and alternate ways to assess business impact.</td>
</tr>
</tbody>
</table>

Table 1. Sample Job Titles (Adapted from Accenture, 2013; SmartPlanet, 2012; Bertolucci, 2013)

At this point, we note that the hydra corollary has a limitation: one can view it as biased toward small and medium-sized organizations because they may not be able to afford hiring teams to serve in data science roles. However, there are now many alternatives such as Amazon’s analytics-as-a-service capability and other outsourcing firms that specialize in providing business intelligence, predictive analytics, CRM, and other analytics services. These analytics utilities, however, will likely comprise teams much like what is seen in large organizations. To this point, our analytics curricula should consider the training needed to work with such outsourcing and service providers.
The success factor for the new analytics program goes beyond just curriculum. One needs to also embrace student advertising and marketing teams and take time to train marketers, admission specialists, and career services leaders in what this new degree is all about. This oft-missed step will help the professional support staff to understand how to position the new program in view of competitor programs, guide recruiters to the pool of available talent, and deal with an exciting crop of students who will often be seen in the trenches discussing a way to analyze, view, or scrub a particular dataset.

Once launched, the new program will need continuous fine-tuning over time. At Arizona State University, fine-tuning has involved tweaking course durations, how to best manage student expectations given hydra corollary realities, seeding project teams with diversity in student domain expertise, and shoring up applied project/internship offerings and possibilities. We have also become vigilant at ensuring new vendor offerings are vetted and used in our courses, and we view hands-on activities as essential to student advancement.

The hydra corollary is most relevant for anyone considering an undergraduate program in business analytics. We advise those interested to consult with their university’s advisory board with an eye out for “Scotty” versus “Spock” perspectives. These perspectives are, of course, in analogy to starring roles in Star Trek where the engineering types who keep the ship running and firing on all cylinders often have different views than those who view analytics from an exploratory, innovation-oriented vantage point. Neither is right or wrong: one may be more relevant to where an organization/industry might be in the state of its analytics maturity. But, if these organization types are the ones who will be recruiting the...
analytics undergraduate students, it just makes sense to take these perspectives into account in designing the curriculum.

There are tough questions associated with analytics programs that one must be prepared to answer. The most prominent one deals with information technology’s history; for example, “will analytics be another e-commerce?” Will the degree become moot as the IT landscape matures and all disciplines launch analytics courses in their respective silos? In other works, will a finance analytics course model, a marketing one, and a supply chain one each emerge independently and, thereby, diffuse the need for a specialty program? We believe that at the center of the hydra corollary is data management, and that is clearly owned by information systems units. Without the data aspects being prominent in an analytics course, offerings in silos will miss the boat.

After all, what is unique about analytics for the information systems discipline is that analytics can lead organizations to change business strategy, which is a key to explaining the importance of new programs to all stakeholders. Discoveries enabled by analytics methods and data science can provide needed evidence to overturn folklore and even political pressures that exist in organizations. As they say, the facts can speak for themselves if a solid data science team has done its work well.

4 Big Data in Curriculum

Big data analytics has become an indispensable component of any analytics program. The era of big data has been ushered in by a plethora of data sources such as social media, RFID, medical equipment, and GPS that produces data that has high volume, velocity, and variety (Watson, 2014). As more organizations jump onto the big data analytics band wagon, big data is poised to support extensive in-depth analyses of large volumes of data that cannot otherwise be effectively managed and analyzed with traditional data analytics tools. Gartner (2014) has predicted about 85 percent of Fortune 500 companies will be unable to effectively use their big data to gain a competitive advantage in 2015. One major concern is the lack of well-trained professionals who can manage and overcome the peculiar challenges that are associated with the managing big data, including a lack of technical knowledge on how to extract data and automatically read unstructured data. A key requirement for the well-trained analytics workforce is the requisite technical and methodological knowledge to perform and help enhance business processes hinged on a company’s big data analytics capabilities.

The big data analytics platform employs several methods, processes, and frameworks that allows one to handle large volumes of data streamed at high speeds and characterized as multi-structured. Whereas there are multiple ways by which different businesses handle big data applications, one of the most common means is by using the Apache Hadoop platform from the Apache Software Foundation. The four basic components or sub-projects of the Hadoop ecosystem are the MapReduce sub-project, the Hadoop Distributed File System (HDFS), the Hadoop Common, and the Hadoop YARN (Apache Software Foundation, 2014). MapReduce is a programming model for parallel processing large amounts of data on a cluster of computers. HDFS is a fault-tolerant distributed file system that provide fast throughput to data. The Hadoop Common sub-project is a common set of utilities that support other modes on Hadoop. The Hadoop YARN is a framework for job scheduling and cluster management. Besides the above-mentioned sub-projects, there are other sub-projects that support various processes on the big data platform, such as Hive, Pig, Oozie, Cassandra, Mahout, and ZooKeeper.

In this section, we report our experiences on teaching a big data technologies course at Oklahoma State University. We explain how we achieved the learning outcomes of the course by focusing on two exercises that we introduced in the course. We taught our big data course as a management information systems (MIS) course with largely technical perspectives discussed throughout the course period. Furthermore, since the MIS program is situated in the business school, we focused significantly on the business use and implications of the big data analytics platform. Our students had already taken at least two other courses in analytics.

Our course had three main foci:

1. To help students to appreciate examples of use cases of Big data analytics
2. To expose students to several big data platforms during the entire course duration, and
3. To build expertise in at least one big data technology platform by working on a class project.
Our course was centered on developing certain important skills relevant for both academia and industry. For instance, we introduced the MapReduce programming framework to students. Furthermore, to decrease the learning curve, we started with discussions on sub-project such as Hive and Pig that have operational resemblance to popular programming tools such as SQL and Java. In addition to introducing the Hadoop ecosystem open source sub projects, we also gave students exposure to industry-strength software platforms through exercises. In Sections 4.1 to 4.3, we summarize two of the class exercises and projects we introduced in the course.

4.1 Class Exercise 1

We derived the first exercise from a telecommunications service provider company. The company noticed an increase in the number of customers cancelling its services over a period of time. This prompted it to enquire into its customers’ behavior and their most common communication patterns with the company prior to their cancelling the company’s services—a central focus in churn analysis. The churn analysis is based on customer profiles and usage history. A key feature of the data sets used is the fact that they are from multiple sources and in multiple formats. Using big data analytics allows deeper level analysis using all sources and formats of data concurrently. This approach would, otherwise, present technical challenges to a regular data analytics system. The intent of the analysis was to develop a business strategy that would help identify a potential churn and resolve customer complaints before they decided to cancel services.

4.1.1 Platform/Software Used

The students used Teradata/Aster’s unified data architecture (UDA) platform, which includes a Hadoop cluster, an Aster data management and analysis software program, and a Teradata enterprise data warehouse (EDW) (Teradata, 2014). The students used Aster nPath and Pathmap SQL-MapReduce functions to query the data. The students also used Tableau as an external tool to comprehensively visualize the results.

4.1.2 Overview of Data and Analysis

Students accessed a high volume of data from multiples sources: call center data on Hadoop, a weblog data on Aster, and an in-store data on Teradata EDW. The students also created a three-way join between all three data sources. The three types of data also had differing formats. For instance, the call center data was a non-traditional structured data.

This assignment emphasized the following concepts:

1) Time series analysis: prior to cancellation, students had to determine the specific order of customer activities.

2) Structured and unstructured data manipulation: the students used multiple sources of data with different cancellation formats. Students had to understand how unstructured data can be handled and combined with standardized data to further analyze it.

3) Visualization and professional communication: the students used Tableau to present results graphically and in a way that could be easily digested and used by non-experts in analytics.

4.2 Class Exercise 2

We based the second exercise on the IBM InfoSphere Streams Commodity Purchasing Case (IBM, 2013). As part of Company A’s business operations, the company needed to make intermittent purchases of its main raw material called infoberry. The timely purchase of this commodity was paramount to the business’s general performance. With the help of a stream processing application, we required students to support the company’s acquiring infoberry by:

1) Keeping track of supply levels and automatically purchasing infoberries from the best supplier when necessary

2) Constantly seeking opportunities to buy high-quality infoberry, and

3) Out of a group of suppliers, determining what supplier to purchase infoberry from while taking into account the quality of product and other risk-management factors.
4.2.1 Platform/Software Used

In this exercise, the students used the IBM InfoSphere Streams platform. The platform is designed to allow one to extract and analyze large amounts of data from multiple sources in real time through developing streaming applications. In this exercise, students loaded infoberry-related data from multiple sources into multiple data sinks by using a browser-based stream processing application (IBM, 2013).

4.2.2 Overview of Data and Analysis

Infoberry purchases were to be made automatically based on a set of rules outlined in the processing application. For instance, if a weather warning developed for any particular location, then no purchase could be made from suppliers in that location to ensure irregular supply for raw commodity was avoided.

The application used weather data from the National Weather Service and geographic location information to generate weather scores for each location where a supplier was located. The application further calculated an average purchase score for each supplier. All suppliers were ranked based on weather score, weather warnings, recent temperature readings, and recent humidity. These factors ensured that the best infoberries in terms of quality were selected for automatic purchase. Information on weather warnings also ensured that situations affecting the delivery of the raw commodity after purchase were avoided.

We introduced students to stream mining, where data is continuously extracted and stored into storage units. The distinguishing feature identified in this exercise was the need to perform real-time analyses and make immediate decisions based on results. Key concepts discussed with this exercise were:

1) Stream mining: students experienced the process of generating instant and actionable insights from multiple sources of data from almost real-time data.
2) Structured and unstructured data manipulation: students sourced both structured and unstructured data from multiple locations. Students had to understand how to use unstructured data from different sources for real-time analysis.

4.3 Concept Focused, Not Platform Focused

To avoid making the class vendor specific, we did not stick to just one vendor but introduced students to multiple big data analytics platforms from different vendors. We required students to use several tools to complete their home works and projects, which added the extra benefit of exposing students to a wide array of software and platforms to enrich their technical knowledge. However, the vast amount of technical skills needed to manage each of the mostly nascent applications had the potential of focusing students’ attention on knowing only how to use a particular software rather than learning the underlying concepts being discussed. Depending on the background of the students and the primary aim and context in which such a course is taught, instructors need to be mindful about bogging down students with too many “cool” applications that would make them “application kingpins” rather than “big data professionals”.

Generally, students were receptive to the course’s structure and organization. Students particularly found the course to be challenging yet one that sustained their continual interest. They felt the course introduced them to a new discipline of analytics in an effective way. One student said of the course: “Very interesting and informative. Nice initiative to start the course”, and another said: “Clear and precise. Great class, learned a lot.”.

5 Partnership with Industry

Partnerships with industry are a key goal of most analytics programs, and many schools have corporate or industry advisory boards to capture industry inputs and foster strong relationships. For universities, collaborating with industry has countless benefits. When referring to analytics and big data, industry can provide valuable advice on evolving curriculum requirements (especially for big data), can possibly provide “real-world” problems that can spawn research and teaching activities, and, finally, can provide job opportunities for graduates.

Universities face some noticeable difficulties when building the “dream” analytics program including the question of turf (i.e., who “owns” analytics and where should it reside in the curriculum), the problem of making room to teach new topics in a typically already packed set of required courses, and the issue of hiring or retraining existing faculty to get up to speed on new analytics topics. A major dilemma is making
sure that the curriculum has a mix of theory and hands-on practice without it becoming vocational training. Luckily, there are available resources today for faculty training and development on these topics (see the appendix).

Forging industry relationships is not easy, but there’s a big opportunity right now because of the hype around big data and the need for companies to hire more analytics-smart employees. Most companies realize that data is a key corporate asset. Most traditional processes are becoming more data-intensive because of the Internet of things (IoT) and growth in the number of customer channels. These will drive new requirements for graduates adept at data visualization, time series analytics, social network graph insights, and statistics acumen to pick out signals from noise.

Many schools are reacting by developing new analytics programs. Sometimes these new programs are minor modifications to existing programs. At typical schools, the program would include a few courses from each of the domains of business, stats, and IS and culminate with a capstone project involving a data set and the use of tools to illustrate comprehension of the class material. In the best case, students do the capstone by getting an internship with a company where they work on real data sets to solve real analytical problems. One example in this category is the Nationwide Center for Advanced Customer Insights (http://fisher.osu.edu/centers/ncaci), developed in conjunction with The Ohio State University, where MBA and undergraduate senior students intern at the center and analyze data to discover business insights.

Anyone building a dream model curriculum should consider the practical aspect of the program (i.e. where and how students can learn analytics best from the real business practices). From an academic perspective, many educators have suggested the needed analytical skills and knowledge (Chiang et al., 2012; Gupta et al., 2015). In the ideal case, in addition to having coverage of these topics, the key is also to begin with data and data types and educate students about the various possibilities using plenty of industry examples. This first module could be a 6 credit hour survey course. This survey course could focus on explaining various data sets and data types/operators in the context of what various industries are doing. Depending on faculty and student interest, drill-down topics can include: marketing (Web click sequences, sentiment scoring of tweets, ad clicks, SEO, social media graphs), customer service (voice analytics, Web self-serve, agent behavior, service metrics), and operations (sensors in driverless cars and jet engines, Internet of things). A requirement of this first module would be that students need to find one or two data sets that they can use throughout their subsequent studies in the program.

One should leverage the students’ interests and the diversity of their previous academic backgrounds to encourage them to seek out data sets. Data could come from industry, other institutional departments (e.g., medical school, transportation operations research, sports science), or public sources such as: www.GDELTProject.org, www.KDNuggets.com, UCI Machine Learning data sets (https://archive.ics.uci.edu/ml/datasets.html), Eurostat and U.S. Government data sets (www.google.com/publicdata/directory), and so on. In addition, the contest site Kaggle (www.kaggle.com) has a variety of data sets contributed by industries and non-profits that need analysis, often with prize money for the winners.

The survey class should be adapted so students learn and use various visualization techniques and tools. A requirement of completing this class is that the students does three or four visualizations on the two data sets they select. After completing this foundation, the remaining courses in statistics and IS should then drive students to use their datasets to address a specific analytical problems in a particular business domain such as healthcare or supply chain. Students learn to spot anomalies and glean insights from the data using SAS and R packages with SQL and, in some cases, especially when the curriculum includes computer science, even learn to write new algorithms on big data types. Most importantly, these flexible options allow (and require) students find their “niche of expertise” as an analytics program manager, deep analytics data scientist, or liaison between IT and business analytics.

A challenge of this approach will be that faculty must grow/adjust as they are exposed to the data sets the students find. As a starting point, there can be some “canned” data sets or the classes could use Kaggle knowledge contests (e.g., predict the survivors of the Titanic) to illustrate building and validating predictive models. Some faculty such as Professor Kai Larsen at the University of Colorado—Boulder requires his IT students participate in two Kaggle contests to pass his class.

There are a large and growing number of resources for building new curriculum modules that follow these ideas. Two books—“Taming the Big Data Tidal Wave” (Franks, 2012), and “The Analytics Revolution” (Franks, 2014), both by Teradata’s Chief Analytics Officer Bill Franks—provide a basic grounding of the
industry needs and opportunities and technology/management fundamentals. In addition, there are also a growing number of assets free of charge to academics appearing on the Teradata University Network (www.teradatauniversitynetwork.com).

Building the curriculum to include big data topics should benefit relationships with industry. In the best case, the analytics program can obtain and leverage sample data sets from local companies. This model benefits both students and faculty because they become more fully aware of state-of-the-art technology and analytical needs. In some cases, collaborating with the industry may drive new research and funding opportunities and cross-department, inter-disciplinary contacts that otherwise might not happen. It also benefits industry because it presents industry needs to universities and provides graduates with skills that employers need. In all, the dream analytics program can start with the data and continue using data to drive and grow student exposure to advanced analytics throughout the ideal curriculum.

6 Conclusions

Building a dream analytics program is a journey. Many researchers are walking the same journey but are at different points and a varied pace. With this paper, we introduce a beginning to stimulate more conversations in our IS community and to help scholars, practitioners, and administrators further clarify and evaluate their positions regarding building their “dream” analytics programs. Our experiences, advice, guidance, and innovative ideas presented in this paper can be a reference point to other researchers’ journey. We hope that the paper will inspire researchers’ thinking and ongoing practices to continuously improve their dream analytics program versions and, ultimately, achieve significant program and student success.
References

Appendix: Resources for Faculty Training

Today there are resources available for faculty to receive training on business analytics and big data. Several notable organizations and programs are listed below:

TDWI World Conferences

The Data Warehouse Institute offers a comprehensive portfolio of business and technical education and training. Its world conferences are held a few times each year in major U.S. cities. The conference comprises different tracks and topics and usually lasts five days. Faculty can apply for scholarship to receive a reduced registration rate.

MIT Professional Education Certificate: Tackling the Challenges of Big Data

This MOOC was first offered in April 2014. The course is taught by several professors at MIT. It starts with the introduction to big data then dives into more technical discussions on big data technologies. Cases are used to provide illustrations of the applications of big data in different industries. Each module of the course features a series of video lectures with text script on the side. Students need to complete the required assignments and earn a passing grade to obtain the certificate.

Teradata University Network (TUN)

TUN has over 3600 registered faculty members from over 1700 universities in 98 countries with over 45,000 student users. It provides a great selection of resources for integrated data warehousing, big data analytics, and business applications. Faculty can have access to free software, such as Teradata Database, Teradata Aster (coming soon), MicroStrategy, SAS Visual Analytics, ERDPlus, the Planners Lab, and to teaching materials and tutorials. Each year, students are invited to participate in the Student Poster Competition and the winners will present at the annual Teradata Partners Conference in October.

SAS’s Global Academic Program

SAS’s Global Academic Program provides a large repository of teaching and training resources for faculty and students. Faculty have access to teaching material and tutorials for SAS software including SAS Studio, Enterprise, Statistical Analysis, Data Mining, Text Analytics, JMP, and Visual Analytics. Supplementary materials such as books are also available on request. Workshops for professors are offered multiple times each year in San Diego and Cary, NC. The training is free (travel and food at one’s own expense) http://support.sas.com/learn/ap/prof/index.html#t3.

INFORMS Conference on Business Analytics

The conference is held each year in April. It was once named Conference on Operational Research. Attendees of this event are a healthy mix of academia and industry. The conference also hosts the Franz Edelman Competition for excellence in applied analytics.

Business Analytics Congress

The congress meets prior to the International Conference on Information Systems (ICIS). The first congress was held in 2009 with the name of Business Intelligence then again in 2010 and 2013. Shortly after, the congress was reconfigured to business analytics and will assemble again in December 2015. The conference features a research track and teaching track and is well attended by scholars and practitioners in the analytics discipline.

Publications

2 http://tdwi.org/calendar/event-calendar.aspx

3 https://mitprofessionalx.mit.edu/courses/course-v1/MITProfessionalX+6.BDx+5T2015/about

4 http://www.teradatauniversitynetwork.com/

5 http://support.sas.com/learn/ap/index.html

6 https://www.informs.org/Attend-a-Conference/Analytics-Conference

7 https://sites.google.com/a/uncg.edu/bac2015/
About the Authors

Shu Schiller is an Associate Professor of Information Systems in the Raj Soin College of Business at Wright State University. She holds a PhD in Business Administration in Management Information Systems from the Fox School of Business at Temple University. As a scholar, she has a passionate interest in improving communication and collaboration in today’s highly networked society. Her research focuses on data analytics and visualization, computer-mediated communication, multimedia in marketing, virtual teams and virtual worlds, and interactive technology for e-learning. At the inaugural TEDxDayton in November 2013, she gave a talk on how analytics and visualization can be used to tell interesting stories. Between 2013 and 2014, she spent her Professional Development Leave with Teradata working on big data analytics. She believes that scholarly work should enrich our insights and stimulate meaningful and relevant actions to improve our lives and the world we live in.

Michael Goul was recently appointed to serve as Associate Dean for Research at the W. P. Carey School of Business, Arizona State University. He works with the School’s portfolio of research centers, and he is the lead on a cross-university big data/data science research collaboration. For the six years prior, he served as chair of the school’s department of information systems. U.S. News and World Report consistently ranks the Carey school’s programs among the best in the nation. Goul spearheaded the development of the school’s Master of Science in Business Analytics program. He administered the launch of the School’s undergraduate Business Data Analytics degree. Michael also administered the launch of the online version of Carey’s Master of Science in Information Management program. U.S. News and World Report recently included that program in its ranking of Carey’s online graduate offerings as second best in the nation. Carey’s graduate program’s information systems specialty was ranked 12th, and the undergraduate program was ranked 18th. Goul is passionate about how the concomitant explosion of big data, the shift to cloud computing and the emergence of the mobile/social web does and will impact the global economy.

Lakshmi Iyer is Associate Professor and Director of Graduate Programs in the Information Systems and Supply Chain Management Department at the University of North Carolina at Greensboro. Her research interests are in the areas of business intelligence, knowledge management, emerging technologies and its organizational impact, and social inclusion in IT. Her research work has been published in the Journal of Association for Information Systems, European Journal of Information Systems, Communications of the Association for Information Systems, Communications of the ACM, Decision Support Systems, eService Journal, Journal of Electronic Commerce Research, Information Systems Management, International Journal of Business Intelligence Research, and others. She is a Board member of the Teradata University Network and recent past Chair of the Special Interest Group in Decision Support and Analytics (SIGDSA) for the Association for Information Systems (AIS). As a founder and director of the “IT is for Girls” program, she has been involved in community engaged outreach and scholarship that furthers the role of women in IT (wit.uncg.edu). She received the Dr. Shirley Hall Award from AAUW Greensboro Branch in April 2011 and the National Center for Women in IT’s 2015 Educator Award for her exemplary contribution to enrich STEM education for women.

Ramesh Sharda is the Vice Dean of the Watson Graduate School of Management, Watson/ConocoPhillips Chair and a Regents Professor of Management Science and Information Systems in the Spears School of Business at Oklahoma State University. He has coauthored two textbooks (Business Intelligence and Analytics: Systems for Decision Support, 10th edition, Prentice Hall and Business Intelligence: A Managerial Perspective on Analytics, 3rd Edition, Prentice Hall). His research has been published in major journals in management science and information systems including Management Science, Operations Research, Information Systems Research, Decision Support Systems, Interfaces, INFORMS Journal on Computing, and many others. He is a member of the editorial boards of journals such as the Decision Support Systems, Decision Sciences, and Information Systems Frontiers. He is currently serving as the Executive Director of Teradata University Network and received the 2013 INFORMS HG Computing Society Lifetime Service Award. Ramesh’s full bio is available at http://spears.okstate.edu/profiles/?id=7

Dave Schrader worked for 24 years as a marketing and advanced development software engineering director at Teradata. He was responsible for marketing the Teradata® Big Data initiative, helping Teradata customers and prospects derive more value from Teradata, Teradata Aster, and Hadoop solutions. Previous to Big Data, he led the marketing of Teradata’s Active Intelligence real-time data warehousing initiatives. Though retired, he continues to help Teradata as a board member of the Teradata University.
Network, giving talks at universities and helping them with curriculum development for data analytics programs. Dave is currently working on creating new teaching materials and homework assignments in the area of sports analytics. He is also known for producing 12 episodes of “Business Scenario Investigations” (BSI), a CSI-like “show” on YouTube that demonstrates how data forensic investigators solve business problems by analyzing tweets, social media, geospatial, and other types of data. He joined Teradata in 1991. Previously, he held engineering management positions at Digital Equipment Corporation and at Servio Logic. Schrader holds a PhD in Computer Science from Purdue University, has published in the areas of customer management and pervasive business intelligence, and is a popular worldwide speaker at conferences on how companies can gain a competitive edge from using technology.

Daniel Asamoah is an Assistant Professor of Information Systems in the Raj Soin College of Business at the Wright State University. His research and teaching activities focuses on business analytics/intelligence, big data applications, decision support systems in health care and operations management. Conferences such as the annual meetings of the Americas Conference on Information Systems (AMCIS), the Decision Sciences Institute (DSI) and the Institute for Operations Research and the Management Sciences Healthcare (INFORMS Healthcare) have accepted his papers. He has also published in multiple journals, including Decision Support Systems and Simulation. Prior to earning a PhD degree in Management Information Systems, Daniel earned his bachelor’s and master’s degrees in electrical/electronic engineering and telecommunications management respectively. He also has a background as a Telecommunications Engineer at Huawei Technologies Company Limited.